帳號:guest(18.216.86.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉福開
作者(外文):Liu, Fu-Kai
論文名稱(中文):四驅電動賽車之模型建構與自動駕駛控制研究
論文名稱(外文):Modeling and Autonomous Driving Control for a 4WD Electric Racing Vehicle
指導教授(中文):葉廷仁
指導教授(外文):Yeh, Ting-Jen
口試委員(中文):劉承賢
顏炳郎
口試委員(外文):Liu, Cheng-Hsien
Yen, Ping-Lang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:110033531
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:76
中文關鍵詞:四輪獨立驅動車輛模型建構自動駕駛模型預測控制隨機最佳化控制扭力引導系統卡爾曼濾波器即時時定位與地圖建構
外文關鍵詞:Four-wheel Drive (4WD)Vehicle Model ConstructionAutonomous Driving SystemModel Predictive Control (MPC)Stochastic OptimizationTorque VectoringKalman FilterSimultaneous Localization and Mapping (SLAM)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:102
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究基於學生方程式無人賽車之競賽,將原本已完成在縮小比例實驗載具之演算法,導入實際大小賽車參數進行模擬,同時改良與精進相關演算法。研究主要以建構四輪車輛模型為主,利用參考之載體資訊,再對於模型預測控制進一步進行性能改善。模型預測控制導入扭力引導系統(Torque vectoring system),來幫助車輛能在更高的速度進行過彎,並避免轉向不足之現象。此外,即時定位與地圖建構演算法將會改良至Fast SLAM2.0來提升自動駕駛之定位能力。
This research is based on Formula Student Driverless competition. The algorithms developed from the scaled-down experimental vehicle are adapted and implemented for the real-sized racing car in the simulation. The algorithms are further improved and refined in this research. The primary focus of this research is to construct a four-wheel drive (4WD) vehicle model and explore the model predictive control (MPC) using information from the racing car. The model predictive control incorporates a torque vectoring system in order to enhance the ability of the vehicle during cornering, which can be at higher speeds and prevent understeering. The Simultaneous Localization and Mapping (SLAM) algorithm will be enhanced by using Fast SLAM 2.0 to improve the localization capability of autonomous driving.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
名詞縮寫與常用代號對照表 x
1.緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 論文概要 7
2.系統規劃與參考載具 8
2.1 駕駛環境 9
2.2 四輪獨立驅動載具(TH06) 11
2.2.1 電機牽引系統規格 12
2.2.2 懸吊以及轉向裝置規格 13
2.2.3 輪胎規格 16
2.2.4 輪內馬達傳動系統 18
3.模型建構 20
3.1 修正單軌動力學模型 25
3.2 四輪平面動態模型 26
3.3 無側滑角運動學模型 27
3.4 輪胎與地面交互作用力模型 27
3.4.1 輪胎縱向模型 29
3.4.2 輪胎側向模型 30
3.4.3 滾動摩擦 32
3.5 輪胎重量轉移動態(Weight Transfer) 33
3.6 扭矩分配系統 34
3.7 轉向系統建構與整合 36
3.7.1 轉向系統之建構 36
3.7.2 轉向系統之整合 37
3.8 馬達動態的建立和整合 38
3.8.1 馬達動態的建立 38
3.8.2 馬達動態的整合 39
4.導航動態模型建立與控制 40
4.1 動態模型 40
4.2 電機牽引系統限制 42
4.3 隨機最佳化模型預測控制 44
5.定位估測與地圖建構 51
5.1 高速動態估測器 52
5.2 即時定位與地圖建構演算法 54
6.模擬設計與結果 59
6.1 四輪驅動車輛之模型建立與分析 60
6.1.1 四輪驅動車輛模型之建立 60
6.1.2 四輪驅動車輛模型之分析 61
6.2 扭矩分配系統成效之分析 65
6.3 即時定位與地圖建構演算之改進 69
7.結論與未來工作 72
7.1 電機系統之效率測試資料整合 72
7.2 煞車回充系統 72
8.參考文獻 73
[1] FSG. "FSG Competition Handbook 2021, v1.2" https://www.formulastudent.de/fileadmin/user_upload/all/2021/rules/FSG21_Competition_Handbook_v1.2.pdf
[2] T. Kanade, C. Thorpe, and W. Whittaker, "Autonomous land vehicle project at CMU," presented at the Proceedings of the 1986 ACM fourteenth annual conference on Computer science, Cincinnati, Ohio, USA, 1986. [Online]. Available: https://doi.org/10.1145/324634.325197.
[3] 謝昇翰, "四輪獨立驅動自駕賽車之設計與實作:機電整合、定位及導航控制", 2020
[4] 陳子靖, "四輪驅動自駕賽車之同步定位與地圖建置、導航控制及扭力引導系統研究", 2021
[5] Q. Zou, H. Jiang, Q. Dai, Y. Yue, L. Chen, and Q. Wang, "Robust Lane Detection From Continuous Driving Scenes Using Deep Neural Networks," IEEE Transactions on Vehicular Technology, vol. 69, no. 1, pp. 41-54, 2020, doi: 10.1109/TVT.2019.2949603.
[6] P. Pydipogu, M. Fahim, and M. Shafique, "Robust lane detection and object tracking In relation to the intelligence transport system," 2013.
[7] Formula Student Germany "Rules & Important Documents." https://www.formulastudent.de/fsg/rules/ (accessed 2021).
[8] FSG. "Galleries" https://media.formulastudent.de/2021/Hockenheim
[9] G. Tanzmeister, M. Friedl, A. Lawitzky, D. Wollherr, and M. Buss, "Road course estimation in unknown, structured environments," in 2013 IEEE Intelligent Vehicles Symposium (IV), 23-26 June 2013 2013, pp. 630-635, doi: 10.1109/IVS.2013.6629537
[10] G. Tanzmeister, M. Friedl, D. Wollherr, and M. Buss, "Path planning on grid maps with unknown goal poses," in 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), 6-9 Oct. 2013 2013, pp. 430-435, doi: 10.1109/ITSC.2013.6728269.
[11] G. Tanzmeister, D. Wollherr, and M. Buss, "Environment-based trajectory clustering to extract principal directions for autonomous vehicles," in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 14-18 Sept. 2014 2014, pp. 667-673, doi: 10.1109/IROS.2014.6942630.
[12] G. Tanzmeister, D. Wollherr, and M. Buss, "Grid-Based Multi-Road-Course Estimation Using Motion Planning," IEEE Transactions on Vehicular Technology, vol. 65, no. 4, pp. 1924-1935, 2016, doi: 10.1109/TVT.2015.2420752.
[13] S. Srinivasan, I. Sa, A. Zyner, V. Reijgwart, M. I. Valls, and R. Siegwart, "End-to-End Velocity Estimation for Autonomous Racing," IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6869-6875, 2020, doi: 10.1109/LRA.2020.3016929.
[14] S. Srinivasan, I. Sa, A. Zyner, V. Reijgwart, M. I. Valls, and R. Siegwart, "End-to-End Velocity Estimation for Autonomous Racing," IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6869-6875, 2020, doi: 10.1109/LRA.2020.3016929.
[15] M. Bojarski et al., "End to end learning for self-driving cars. arXiv 2016," arXiv preprint arXiv:1604.07316, 2016
[16] L. Curiel-Ramirez et al., "End-to-End Automated Guided Modular Vehicle," Applied Sciences, vol. 10, p. 4400, 06/26 2020, doi: 10.3390/app10124400
[17] J. Vázquez, M. Brühlmeier, A. Liniger, A. Rupenyan, and J. Lygeros, Optimization-Based Hierarchical Motion Planning for Autonomous Racing. 2020.
[18] J. Kabzan et al., AMZ Driverless: The Full Autonomous Racing System. 2019
[19] R. C. Coulter, "Implementation of the pure pursuit path tracking algorithm," Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, 1992.
[20] S. Koehler, A. Viehl, O. Bringmann, and W. Rosenstiel, "Energy-Efficiency Optimization of Torque Vectoring Control for Battery Electric Vehicles," IEEE Intelligent Transportation Systems Magazine, vol. 9, no. 3, pp. 59-74, 2017, doi: 10.1109/MITS.2017.2709799
[21] C. Knobel, A. Pruckner, and T. Bünte, "OPTIMIZED FORCE ALLOCATION: A General Approach to Control and to Investigate the Motion of Over-Actuated Vehicles," IFAC Proceedings Volumes, vol. 39, no. 16, pp. 366-371, 2006/01/01/ 2006, doi: https://doi.org/10.3182/20060912-3-DE-2911.00065
[22] J. Y. Goh, T. Goel, and J. Christian Gerdes, "Toward Automated Vehicle Control Beyond the Stability Limits: Drifting Along a General Path," Journal of Dynamic Systems, Measurement, and Control, vol. 142, no. 2, 2019, doi: 10.1115/1.4045320
[23] G. Tech. "AutoRally." https://autorally.github.io/ (accessed 2021)
[24] H. Pacejka, I. J. M. Besselink, and I. Besselink, “Tire and Vehicle Dynamics. Elsevier Science”, 2012
[25] SAE International. "SAE Levels of Driving Autonation"
https://www.sae.org/blog/sae-j3016-update (accessed 2021)
[26] FSG. "FSG Competition Handbook 2021, v1.2" https://www.formulastudent.de/fileadmin/user_upload/all/2021/rules/FSG21_Competition_Handbook_v1.2.pdf
[27] S. H. Żak and S. H. Żak, Systems and Control. Oxford University Press, 2003.
[28] Hoosier FSAE 18.0/7.5-10 R25B - 43105R25B - Hoosier Tire Great Plains (hoosiertiregp.com)
[29] Reza N. Jazar, “Advanced Vehicle Dynamics”, RMIT University,2019
[30] R. E. Kalman, "A New Approach to Linear Filtering and Prediction Problems," Transactions of the ASME--Journal of Basic Engineering, vol. 82, Series D, pp. 35-45, 1960.
[31] H. Durrant-Whyte and T. Bailey, "Simultaneous localization and mapping: part I," IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 99-110, 2006, doi: 10.1109/MRA.2006.1638022
[32] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, "Fastslam: a factored solution to simultaneous mapping and localization," in Proceedings of the National Conference on Artificial Intelligence (AAAI), 2003.
[33] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, "FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges," Proc. IJCAI Int. Joint Conf. Artif. Intell., 06/25 2003.
[34] E. Theodorou, J. Buchli, and S. Schaal, "A Generalized Path Integral Control Approach to Reinforcement Learning," Journal of Machine Learning Research, vol. 11, pp. 3137-3181, 11/01 2010.
[35] E. Theodorou, F. Stulp, J. Buchli, and S. Schaal, "An Iterative Path Integral Stochastic Optimal Control Approach for Learning Robotic Tasks," IFAC Proceedings Volumes, vol. 44, no. 1, pp. 11594-11601, 2011/01/01/ 2011, doi: https://doi.org/10.3182/20110828-6-IT-1002.02249.
[36] E. A. Theodorou, "Iterative path integral stochastic optimal control: Theory and applications to motor control," 2011.
[37] G. Williams, A. Aldrich, and E. A. Theodorou, "Model Predictive Path Integral Control: From Theory to Parallel Computation," Journal of Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344-357, 2017, doi: 10.2514/1.G001921.
[38] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, "Information-Theoretic Model Predictive Control: Theory and Applications to Autonomous Driving," IEEE Transactions on Robotics, vol. 34, no. 6, pp. 1603-1622, 2018, doi: 10.1109/TRO.2018.2865891
[39] Anshul Kumar SHARMA , Mohamed BOUTELDJA , Véronique CEREZO “High gain and sliding mode adaptive observers comparison: estimation of tire rolling resistance” IEEE Transactions on Control Engineering & Information Technology (CEIT), October 2018
[40] P. Shakouri ∗ A. Ordys ∗ M. Askari ∗ D. S. Laila , “Longitudinal vehicle dynamics using Simulink/Matlab”, IEEE Transactions on Electronic, September 2010, doi: 10.1049/ic.2010.0410
[41] Cui Shuhua, Song Xigang, Li Zhijie, “The study of vehicle tire's temperature rising mechanism”, IEEE International Conference on TMEE, December 2011, doi: 10.1109/TMEE.2011.6199312
[42] The tyre rolling resistance and fuel savings (Michelin book 2002)
[43] 清大賽車工廠 | NTHU Racing Team | 國立清華大學 | 台灣
https://www.nthuracing.com/
(此全文20250814後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *