帳號:guest(18.118.93.185)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉冠毅
作者(外文):Liu, Kuan-Yi
論文名稱(中文):採用針狀鰭片熱沉的無人機鋰離子電池模組的散熱
論文名稱(外文):Thermal Management for Unmanned Aerial Vehicle Powered by Li-Ion Batteries Using a Pin-Fin Heat Sink
指導教授(中文):王訓忠
指導教授(外文):Wong, Shwin-Chung
口試委員(中文):李明蒼
陳金銘
口試委員(外文):Lee, Ming-Tsang
Chen, Jin-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:110033510
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:76
中文關鍵詞:鋰離子電池鋁均溫板針狀鰭片熱沉旁通效應
外文關鍵詞:lithium-ion batteryaluminum vapor chamberpin fin heat sinkbypass effects
相關次數:
  • 推薦推薦:0
  • 點閱點閱:299
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究解決無人機鋰離子電池模組散熱之問題,散熱模組使用針狀鰭片熱沉搭配均溫性優異的鋁均溫板以達到良好散熱效果。首先採用文獻之理論方法分析無側邊旁通的狀況,電池模組使用MATLAB曲線擬合估算21700單電池在6C下的發熱率為5.04W。在無人機飛行速度10m/s下,熱沉使用Khan經驗公式求得交錯排列之針狀鰭片在最佳無因次橫向間距l_T=1.5~1.75時有最大熱傳率。當考慮無人機的無定向飛行時,採用圓形熱沉底板,在有側邊旁通流的狀況,使用ANSYS Fluent對無側邊擋板的半圓形熱沉進行數值模擬。經與正方形排列的針狀鰭片比較後,採用性能較佳的正三角形排列針狀鰭片熱沉。真實使用之熱沉體積龐大,因此模擬不同底板直徑下之鰭片最佳間距,透過外插之方式得到底板直徑600mm的鰭片無因次最佳間距(l_T)為3.6,並且在操作溫度45℃之限制下,計算得針狀鰭片之長度為850mm可解決電池模組產生之熱量,此長度之鰭片效率低落且重量也會帶來負面影響,故將鰭片長度改至100mm,雖此鰭片長度會讓底板溫度T_base升至55.5℃,但電池模組本身也將受到強制對流之影響,有機會讓T_base接近45℃。另外,選定一種尺寸之熱沉探討具側邊旁通流下不同入口角度與局部對流熱傳係數。考慮0°, 15°, 與30°三種氣流方向的加權平均結果顯示,在底板直徑120mm中,當D=3mm且鰭片高度大於25mm時可達到電池溫度小於45℃的限制。
This study investigates the heat dissipation of the UAV (unmanned aerial vehicle) lithium-ion battery module, using an aluminum vapor chamber with pin fin heat sink to achieve temperature uniformity and sufficient heat dissipation capacity. For conditions without side bypass, the 21700 battery module uses MATLAB curve fitting to calculate the heating rate at 6C is 5.04W. At a UAV flying speed of 10m/s, the maximum heat dissipation rate for the pin fin heat sink with staggered arrangement exists at dimensionless transverse spacing l_T=1.5~1.75, calculating using the Khan empirical formula. As a UAV flies in an arbitrary direction, a circular pin-fin heat sink with side bypass airflow is analyzed numerically using the commercial ANSYS Fluent software. The pin fins are arranged in an equilateral triangle pattern, which is preferred to a square pattern according to numerical comparison. The actual use of heat sink is too large for direct simulation. So, different base plate diameters are simulated to get respective optimal spacing, and the dimensionless optimal spacing of D_b=600mm heat sink is estimated by extrapolation to be 3.6. Under the limit of temperature of 45℃, estimated the length 850mm of pin fin can solve the heat generation by battery module. The efficiency of this length is low and the weight will also have a negative impact. Therefore, the length of the fins is changed to 100mm. Although this fin length will increase T_base to 55.5℃, the battery module will also be cooled by forced convection, which may make T_base close to 45℃. In addition, a size of heat sink is selected to discuss different inlet angles and local convective heat transfer coefficients with side bypass flow. Considering the weighting average of three directions of 0°, 15°, and 30° to represent the arbitrary flying direction, the 45℃ limit for the lithium-ion battery temperature can be met with D=3mm and a fin height > 25mm.
摘要----------------------------------3
Abstract------------------------------4
誌謝辭--------------------------------5
目錄----------------------------------I
表目錄----------------------------------III
圖目錄----------------------------------IV
符號表---------------------------------------------------------------1
第一章 緒論---------------------------------------------------------4
1.1 研究背景-----------------------------------------------------4
1.2 文獻回顧 -----------------------------------------------------5
1.2.1 鋰離子電池發熱率----------------------------------------------5
1.2.2 針狀鰭片熱沉--------------------------------------------------8
1.3 研究動機與目的-----------------------------------------------26
第二章 計算、驗證與數值方法-----------------------------------------28
2.1 鋰電池發熱量估算---------------------------------------------28
2.2 針狀鰭片最佳間距與最大熱傳率計算------------------------------28
2.3 模型驗證----------------------------------------------------34
2.4 理論模型與假設-----------------------------------------------42
2.4.1 半圓形熱沉幾何模型-------------------------------------------42
2.4.2 統御方程式與邊界條件-----------------------------------------43
2.4.3 求解方法----------------------------------------------------45
2.4.4 離散方法----------------------------------------------------46
2.4.5 相關參數與收斂判定-------------------------------------------46
2.4.6 流域長度與網格獨立性-----------------------------------------47
2.5 參數介紹----------------------------------------------------49
第三章 結果與討論----------------------------------------------------52
3.1 發熱率估算結果-----------------------------------------------52
3.2 無側旁通之針狀鰭片熱沉最佳間距與最大熱傳率---------------------53
3.3 有側旁通之半圓形熱沉性能綜合比較------------------------------54
3.4 有側旁通時熱沉底板直徑之影響----------------------------------65
3.5 有側旁通時估算熱沉所需之鰭片長度------------------------------67
第四章 結論---------------------------------------------------------71
參考文獻------------------------------------------------------------73
[1] N. Sato, Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles, J. Power Sources 99 (2001) 70-77.
[2] D. Bernardi, E. Pawlikowski, J. Newman, A general energy balance for battery systems, J. Electrochem. Soc. 132 (1985) 50.
[3] 江承翰, 21700鋰電池模組熱管理之實驗及模擬研究, 國立成功大學, 2018.
[4] P. Jindal, R. Katiyar, J. Bhattacharya, Evaluation of accuracy for Bernardi equation in estimating heat generation rate for continuous and pulse-discharge protocols in LFP and NMC based Li-ion batteries, Appl. Therm. Eng. 201 (2022) 117794.
[5] A. Zukauskas, Heat transfer from tubes in crossflow, Adv. Heat Transfer 8 (1972) 93-160.
[6] A. Zukauskas, R. Ulinskas, Heat Transfer in Tube Banks in Crossflow, Hemisphere, Washington DC, 1988.
[7] B.A. Jubran, M.A. Hamdan, R.M. Abdualh, Enhanced heat transfer, missing pin, and optimization for cylindrical pin fin arrays, ASME J. Heat Transfer 113 (1993) 576-583.
[8] E.M. Sparrow, J.W. Ramsey, Heat transfer and pressure drop for a staggered wall-attached array of cylinders with tip clearance, Int. J. Heat Mass Transfer 21 (1978) 1369-1377.
[9] A. Rozati, D. K. Tafti, N. E. Blackwell, Effect of pin tip clearance on flow and heat transfer at low Reynolds numbers, ASME J. Heat Transfer 130 (2008) 071704.
[10] W.A. Khan, Modeling of Fluid Flow and Heat Transfer for Optimization of Pin-Fin Heat Sinks, Ph.D. Thesis, University of Waterloo, Canada, 2004.
[11] W.A. Khan, J.R. Culham, M.M. Yovanovich, Convection heat transfer from tube banks in crossflow: analytical approach, Int. J. Heat Mass Transfer 49 (2006) 4831-4838.
[12] A. Dewan. P. Patro, I. Khan, P. Mahanta, The effect of fin spacing and material on the performance of a heat sink with circular pin fins, J. Power and Energy, 224 (2009).
[13] M.B. Dogruoz, M. Urdaneta, A. Ortega, Experiments and modeling of the hydraulic resistance of in-line square pin fin heat sinks with top by-pass flow, Eighth Intersociety Con. on Therm. Phenomena, No.02CH37258 (2002).
[14] M.B. Dogruoz, M. Urdaneta, A. Ortega, Experiments and Modeling of the Heat Transfer of In-Line Square Pin Fin Heat Sinks With Top By-Pass Flow, Inter, Mech. Eng. Congress and Exposition (2002) 39245.
[15] M.B. Dogruoz, M. Urdaneta, A. Ortega, Experiments and modeling of the hydraulic resistance and heat transfer of in-line square pin fin heat sinks with top by-pass flow, Int. J. Heat Mass Transfer 48 (2005) 5058-5071.
[16] M.B. Dogruoz, A. Ortega, R.V. Westphal, A Model for Flow Bypass and Tip Leakage in Pin Fin Heat Sinks, J. Elec. Packaging 128 (2006) 53-60.
[17] W.A. Khan, M.M. Yovanovich, Effect of Bypass on Overall Performance of Pin-Fin Heat Sinks, J. Thermophysics Heat Transfer.
[18] N. Lei, A. Ortega, Experimental hydraulic characterization of pin fin heat sinks with top and side bypass, Ninth Intersociety Con. on Thermomechanical Phenomena in Elec. Systems, No8108980 (2004).
[19] Y. Khetib, K. Sedraoui, A. Gari, Numerical study of the effects of pin geometry and configuration in micro-pin-fin heat sinks for turbulent flows, Case Studies in Therm. Eng. 27 (2021) 101243.
[20] W. Jin, Wu. Junmei, J. Ning, L. Jiang, J. Wentao, X. Gongnan, Effect of shape and distribution of pin-fins on the flow and heat transfer characteristics in the rectangular cooling channel, Int. J. Therm. Sci. 161 (2021) 106758.
[21] B. Moshfegh, R. Nyiredy, Comparing RANS Models for Flow and Thermal Analysis of Pin Fin Heat Sinks, 〖15〗^th Australasian Fluid Mechanics Con., (2004) 13-17.
[22] C-H. Wu, H-W, Tang, Y-T. Yang, Numerical simulation and optimization of turbulent flows through perforated circular pin fin heat sinks, Numerical Heat Transfer 71 (2017) 172-188.
[23] W. Xiang, C. Min, T. Derrick, R. Hamidreza, Z. Shunqi, Numerical investigation on hydraulic and thermal characteristics of micro latticed pin fin in the heat sink, Int. J. Heat Mass Transfer, 149 (2020) 119157.
[24] A. Maji, D. Bhanja, P.K. Patowari, Numerical investigation on heat transfer enhancement of heat sink using perforated pin fins with inline and staggered arrangement, Appl. Therm. Eng. 125 (2017) 596-616.
[25] H-C. Chiu, R-H. Hsieh, K. Wang, J-H. Jang, C-R. Yu, The heat transfer characteristics of liquid cooling heat sink with micro pin fins, Int. Com. Heat Mass Transfer 86 (2017) 174-180.
[26] J. Dong, J. Chen, W. Zhang, J. Hu, Experimental and numerical investigation of thermal -hydraulic performance in wavy fin-and-flat tube heat exchanger, Appl. Therm. Eng. 30 (2010) 1377-1386.
[27] W. Yuan, J. Zhao, C.P. Tso, T. Wu, W. Liu, T. Ming, Numerical simulation of the thermal hydraulic performance of a plate pin fin heat sink, Appl. Therm. Eng. 48 (2012) 81-88.
[28] M.R. Haque, T.J. Hridi, M.M. Haque, CFD studies on thermal performance augmentation of heat sink using perforated twisted, and grooved pin fins, Int. J. Therm. Sci., 182 (2022) 107832.
[29] A. Diani, S. Mancin, C. Zilio, L. Rossetto, An assessment on air forced convection on extended surfaces Experimental results and numerical modeling, Int. J. Therm. Sci., 67 (2013) 120-134.
[30] A. Kosar, C. Mishra, Y. Peles, Laminar flow across a bank of low aspect ratio micro pin fins, Int. J. Heat Mass Transfer 127 (2005) 458-471.
[31] R.L. Webb, E.R.G. Eckert, Application of rough surfaces to heat exchanger design, Int. J. Heat Mass Transfer 15 (1972) 1647-1658.
[32] D.L. Gee, R.L. Webb, Forced convection heat transfer in helically rib-roughened tubes, Int. J. Heat Mass Transfer 23 (1980) 1127-1136.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *