|
[1] 王芳, 夏軍, 電動汽車動力電池系統設計與制造技術, 科學出版社, 北京, 2017.8. [2] M. Shahjalal, T. Shams, M.E. Islam, W. Alam, M. Modak, S.B. Hossain, V. Ramadesigan, M.R. Ahmed, H. Ahmed, A. Iqbal, A review of thermal management for Li-ion batteries: Prospects, challenges, and issues, Journal of Energy Storage 39 (2021) 102518. [3] L.H. Saw, Y. Ye, A.A.O. Tay, W.T. Chong, S.H. Kuan, M.C. Yew, Computational fluid dynamic and thermal analysis of lithium-ion battery pack with air cooling, Applied Energy 177 (2016) 783-792. [4] S. Hong, X. Zhang, K. Chen, S. Wang, Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent, International Journal of Heat and Mass Transfer 116 (2018) 1204-1212. [5] T. Wang, K.J. Tseng, J. Zhao, Z. Wei, Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies, Applied Energy 134 (2014) 229-238. [6] T. Wang, K.J. Tseng, J. Zhao, Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model, Applied Thermal Engineering 90 (2015) 521-529. [7] R. Mahamud, C. Park, Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity, Journal of Power Sources 196(13) (2011) 5685-5696. [8] X. Zhang, Z. Li, L. Luo, Y. Fan, Z. Du, A review on thermal management of lithium-ion batteries for electric vehicles, Energy 238 (2022) 121652. [9] R. Mahamud, C. Park, Theory and practices of Li-ion battery thermal management for electric and hybrid electric vehicles, Energies 15(11) (2022) 103930.) [10] Z. Ling, F. Wang, X. Fang, X. Gao, Z. Zhang, A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling, Applied Energy 148 (2015) 403-409. [11] D. Kong, R. Peng, P. Ping, J. Du, G. Chen, J. Wen, A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures, Energy Conversion and Management 204 (2020) 112280. [12] W. Li, L. Li, W. Cui, M. Guo, Thermal performance of vapour chamber in different tilting configurations for battery liquid cooling system, Journal of Physics: Conference Series 1877(1) (2021) 012029. [13] W. Liu, Z. Jia, Y. Luo, W. Xie, T. Deng, Experimental investigation on thermal management of cylindrical Li-ion battery pack based on vapor chamber combined with fin structure, Applied Thermal Engineering 162 (2019) 114272. [14] Y. Qian, W. Zhuge, Y. Zhang, C. Yao, H. Lian, W. Ren, Y. Wang, D. Dan, Experimental research on battery thermal management system based on vapor chamber technology, SCIENTIA SINICA Technologica 49(9) (2019) 1023-1030. [15] Y. Luo, Y. Tang, X. Zhang, H. Wang, G. Zhou, P. Bai, A novel composite vapor chamber for battery thermal management system, Energy Conversion and Management 254 (2022). [16] 林唯耕, 林唯耕教授詳解:電動車的四種熱管理方案. https://www.tglobalcorp.com/tw/blogs/classroom/electric-car-management-plan [17] C. Zhao, A.C.M. Sousa, F. Jiang, Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow, International Journal of Heat and Mass Transfer 129 (2019) 660-670. [18] H. Sun, R. Dixon, Development of cooling strategy for an air cooled lithium-ion battery pack, Journal of Power Sources 272 (2014) 404-414. [19] X. Lin, H.E. Perez, S. Mohan, J.B. Siegel, A.G. Stefanopoulou, Y. Ding, M.P. Castanier, A lumped-parameter electro-thermal model for cylindrical batteries, Journal of Power Sources 257 (2014) 1-11. [20] A.K. de Souza, G.L. Plett, M.S. Trimboli Lithium-Ion battery charging control using a coupled Electro-Thermal model and model predictive control, 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), 2020, pp. 3534-3539. [21] F. Geifes, C. Bolsinger, P. Mielcarek, K.P. Birke, Determination of the entropic heat coefficient in a simple electro-thermal lithium-ion cell model with pulse relaxation measurements and least squares algorithm, Journal of Power Sources 419 (2019) 148-154. [22] H. He, R. Xiong, H. Guo, S. Li, Comparison study on the battery models used for the energy management of batteries in electric vehicles, Energy Conversion and Management 64 (2012) 113-121. [23] G.L. Plett, Battery Management Systems, Volume I: Battery Modeling, Artech House, 2015. [24] S. Thanagasundram, R. Arunachala, K. Löffler, T. Teutsch, A. Jossen, A cell level model for battery simulation, European Electric Vehicle Conference, 2012. [25] S. Ma, M. Jiang, P. Tao, C. Song, J. Wu, J. Wang, T. Deng, W. Shang, Temperature effect and thermal impact in lithium-ion batteries: A review, Progress in Natural Science: Materials International 28(6) (2018) 653-666. [26] T.M. Bandhauer, S. Garimella, T.F. Fuller, A critical review of thermal issues in lithium-ion batteries, Journal of The Electrochemical Society 158(3) (2011) R1. [27] K. Löffler, A lumped electro-thermal model for Li-Ion cells in electric vehicle application, Conference EVS28, 2015. [28] C. Forgez, D. Vinh Do, G. Friedrich, M. Morcrette, C. Delacourt, Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery, Journal of Power Sources 195(9) (2010) 2961-2968. [29] D. Bernardi, EM. Pawlikowski, JA. Newman, A general energy balance for battery systems, Journal of the Electrochemical Society 132(1) (1985) 5–12. [30] T.S. Bryden, B. Dimitrov, G. Hilton, C. Ponce de León, P. Bugryniec, S. Brown, D. Cumming, A. Cruden, Methodology to determine the heat capacity of lithium-ion cells, Journal of Power Sources 395 (2018) 369-378. [31] L. Wei, Z. Lu, F. Cao, L. Zhang, X. Yang, X. Yu, L. Jin, A comprehensive study on thermal conductivity of the lithium‐ion battery, International Journal of Energy Research 44(12) (2020) 9466-9478. [32] S.J. Drake, D.A. Wetz, J.K. Ostanek, S.P. Miller, J.M. Heinzel, A. Jain, Measurement of anisotropic thermophysical properties of cylindrical Li-ion cells, Journal of Power Sources 252 (2014) 298-304. [33] I.A. Hunt, Y. Zhao, Y. Patel, J. Offer, Surface Cooling Causes Accelerated Degradation Compared to Tab Cooling for Lithium-Ion Pouch Cells, Journal of The Electrochemical Society 163(9) (2016) A1846-A1852. [34] G.L. Plett, Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs, Journal of Power Sources 134(2) (2004) 262-276. [35] P. Jindal, R. Katiyar, J. Bhattacharya, Evaluation of accuracy for Bernardi equation in estimating heat generation rate for continuous and pulse-discharge protocols in LFP and NMC based Li-ion batteries, Applied Thermal Engineering 201 (2022). [36] J. Fang, J. Cai, X. He, Experimental study on the vertical thermal runaway propagation in cylindrical Lithium-ion batteries: Effects of spacing and state of charge, Applied Thermal Engineering 197 (2021) 117399. [37] L. Samsung SDI Co., Specification of Product (Model INR18650-35E), 2015. https://www.orbtronic.com/content/samsung-35e-datasheet-inr18650-35e.pdf. [38] G. Pozzato, A. Allam, S. Onori, Lithium-ion battery aging dataset based on electric vehicle real-driving profiles, Data Brief 41 (2022) 107995. [39] D. Worwood, Q. Kellner, M. Wojtala, W.D. Widanage, R. MGlen, D. Greenwood, J. Marco, A new approach to the internal thermal management of cylindrical battery cells for automotive applications, Journal of Power Sources, 346 (2017) 151-166.
|