帳號:guest(18.216.3.63)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭雅文
作者(外文):Xiao, Ya-Wen
論文名稱(中文):應用於鋰離子電池散熱模擬之電熱耦合模型
論文名稱(外文):A Coupled Electro-Thermal Model for Simulating Li-Ion Cells in a Battery Thermal Management System
指導教授(中文):王訓忠
指導教授(外文):Wong, Shwin-Chung
口試委員(中文):李明蒼
陳金銘
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:110033505
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:64
中文關鍵詞:電池熱管理系統鋰離子電池均溫性電熱耦合模型電動車
外文關鍵詞:Battery thermal management systemLithium-ion batteryTemperature uniformityElectro-thermal coupled modelElectric vehicle
相關次數:
  • 推薦推薦:0
  • 點閱點閱:176
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
電池熱管理系統(Battery Thermal Management System, BTMS)的工作為確保電動車中鋰離子電池模組的輸出效率、循環壽命、安全性等,而要達到這些目標需有良好的散熱性能,滿足對電池模組操作溫度的限制和均溫性的要求。然而大部分研究在評估BTMS的散熱性能時,僅考慮電池的表面溫度,未考量到電池中心溫度較高,和強烈熱對流係數可能造成電池中心和表面溫度有顯著溫差,且討論範疇皆為電池在某放電率之發熱量,如欲討論不同放電情況時須另外透過實驗測量以計算發熱量,然而電動車實際行使過程中的電流負載並不會如此單一,因此建構能夠預測電池電性和電池中心及表面溫度的電池仿真模型,協助評估電池在不同操作情況下,BTMS的散熱設計是否能滿足散熱、均溫等性能要求,有其必要性。本研究採用等效電路和集總熱模型來建構電池之電熱耦合模型,最終模型適用範圍為電池操作溫度18~53 ℃,且電池持續溫升速度不超過0.33 ℃/min之電流負載;於HPPC動態負載下預測之電池響應電壓和溫升其均方根誤差在操作溫度18/25/34/41 ℃下皆小於20 mV和0.4 ℃,最大預測溫度誤差小於1.5 ℃。值得注意的是該模型應用於有顯著動態變化之循環負載的預測相當準確,然而較不適合應用於持續高負載、電池溫升顯著的情況,這是因為電池電性變化速度相較於溫升緩慢。
另外考量到電池在軸向有良好的熱傳導係數,建構了考量電池異向性的三維模型,討論由電極端散熱的可行性和其對電池均溫性的影響,並嘗試以實驗對電極端進行水冷散熱,結果發現由兩電極端散熱,有助於改善均溫性,但在實際應用上主要瓶頸為電池與水冷板的接觸熱阻。
The Battery Thermal Management System (BTMS) in electric vehicles plays a crucial role in ensuring the efficiency, cycle life, and safety of lithium-ion battery modules. To achieve these objectives, effective heat dissipation is essential to meet temperature limits and uniformity requirements. However, existing studies often focus solely on the battery's surface temperature, overlooking the higher central temperatures and potential temperature differences between the center and surface due to strong heat convection. Additionally, prior discussions mainly revolve around heat generation at specific discharge rates, necessitating separate experiments to evaluate different discharge scenarios, which may not accurately represent real-world electric vehicle operations.
To address these challenges, this study adopts an equivalent circuit and lumped thermal model to construct a battery electro-thermal coupled model. The final model is applicable within the battery's operating temperature range of 18~53 ℃ and under continuous current loads with temperature rise rates not exceeding 0.33 ℃/min. HPPC loading at operating temperatures of 18/25/34/41 ℃, the RMSE of the predicted voltage and temperature of the model is less than 20 mV and 0.4 ℃, respectively, with the maximum predicted temperature error being less than 1.5 ℃. Notably, the model performs well when applied to cyclic loads with dynamic variations. However, it's less suitable for situations of sustained high loads and significant battery temperature rise due to the comparatively slow rate of battery characteristic changes compared to temperature rise.
Furthermore, considering the battery's favorable axial heat conduction coefficient, a three-dimensional model accounting for battery anisotropy is developed, and the experiment involving water cooling at tab is conducted as well. The feasibility of double-tab cooling and its impact on temperature uniformity are discussed. The results revealed that double-tab cooling contributes to improving temperature uniformity. However, in practical applications, the main obstacle lies in the contact thermal resistance.
摘要----------------------------i
Abstract-----------------------ii
誌謝---------------------------iv
目錄--------------------------vii
圖表目錄------------------------ix
符號表-------------------------xii
第一章 緒論----------------------1
1.1 研究背景---------------------1
1.2 文獻回顧---------------------2
1.2.1 電池熱管理系統--------------2
1.2.2 電池模型-------------------8
1.2.3 電池異相性與電極端散熱-----14
1.3 研究目的--------------------15
第二章 數值模型與理論方法---------17
2.1 等效電路模型-----------------17
2.1.1 等效電路模型中的參數--------17
2.1.2 等效電路模型參數化----------23
2.2 電熱耦合模型------------------27
2.2.1 熱生成量-------------------27
2.2.2 集總熱模型-----------------28
2.2.3 異相性熱模型---------------30
2.2.4 熱參數---------------------31
2.3 實驗方法---------------------35
2.3.1 實驗設備與架構--------------35
2.3.2 實驗流程與參數化------------36
2.3.3 電池模組實驗---------------41
第三章 結果與討論-----------------43
3.1 電池模型預測結果--------------43
3.1.1 等效電路模型----------------43
3.1.2 熱模型---------------------48
3.1.3 電熱耦合模型----------------49
3.2 電池異向性及電極散熱可行性-----53
3.3 電池模組實驗------------------54
第四章 結論-----------------------59
參考文獻--------------------------61
[1] 王芳, 夏軍, 電動汽車動力電池系統設計與制造技術, 科學出版社, 北京, 2017.8.
[2] M. Shahjalal, T. Shams, M.E. Islam, W. Alam, M. Modak, S.B. Hossain, V. Ramadesigan, M.R. Ahmed, H. Ahmed, A. Iqbal, A review of thermal management for Li-ion batteries: Prospects, challenges, and issues, Journal of Energy Storage 39 (2021) 102518.
[3] L.H. Saw, Y. Ye, A.A.O. Tay, W.T. Chong, S.H. Kuan, M.C. Yew, Computational fluid dynamic and thermal analysis of lithium-ion battery pack with air cooling, Applied Energy 177 (2016) 783-792.
[4] S. Hong, X. Zhang, K. Chen, S. Wang, Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent, International Journal of Heat and Mass Transfer 116 (2018) 1204-1212.
[5] T. Wang, K.J. Tseng, J. Zhao, Z. Wei, Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies, Applied Energy 134 (2014) 229-238.
[6] T. Wang, K.J. Tseng, J. Zhao, Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model, Applied Thermal Engineering 90 (2015) 521-529.
[7] R. Mahamud, C. Park, Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity, Journal of Power Sources 196(13) (2011) 5685-5696.
[8] X. Zhang, Z. Li, L. Luo, Y. Fan, Z. Du, A review on thermal management of lithium-ion batteries for electric vehicles, Energy 238 (2022) 121652.
[9] R. Mahamud, C. Park, Theory and practices of Li-ion battery thermal management for electric and hybrid electric vehicles, Energies 15(11) (2022) 103930.)
[10] Z. Ling, F. Wang, X. Fang, X. Gao, Z. Zhang, A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling, Applied Energy 148 (2015) 403-409.
[11] D. Kong, R. Peng, P. Ping, J. Du, G. Chen, J. Wen, A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures, Energy Conversion and Management 204 (2020) 112280.
[12] W. Li, L. Li, W. Cui, M. Guo, Thermal performance of vapour chamber in different tilting configurations for battery liquid cooling system, Journal of Physics: Conference Series 1877(1) (2021) 012029.
[13] W. Liu, Z. Jia, Y. Luo, W. Xie, T. Deng, Experimental investigation on thermal management of cylindrical Li-ion battery pack based on vapor chamber combined with fin structure, Applied Thermal Engineering 162 (2019) 114272.
[14] Y. Qian, W. Zhuge, Y. Zhang, C. Yao, H. Lian, W. Ren, Y. Wang, D. Dan, Experimental research on battery thermal management system based on vapor chamber technology, SCIENTIA SINICA Technologica 49(9) (2019) 1023-1030.
[15] Y. Luo, Y. Tang, X. Zhang, H. Wang, G. Zhou, P. Bai, A novel composite vapor chamber for battery thermal management system, Energy Conversion and Management 254 (2022).
[16] 林唯耕, 林唯耕教授詳解:電動車的四種熱管理方案. https://www.tglobalcorp.com/tw/blogs/classroom/electric-car-management-plan
[17] C. Zhao, A.C.M. Sousa, F. Jiang, Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow, International Journal of Heat and Mass Transfer 129 (2019) 660-670.
[18] H. Sun, R. Dixon, Development of cooling strategy for an air cooled lithium-ion battery pack, Journal of Power Sources 272 (2014) 404-414.
[19] X. Lin, H.E. Perez, S. Mohan, J.B. Siegel, A.G. Stefanopoulou, Y. Ding, M.P. Castanier, A lumped-parameter electro-thermal model for cylindrical batteries, Journal of Power Sources 257 (2014) 1-11.
[20] A.K. de Souza, G.L. Plett, M.S. Trimboli Lithium-Ion battery charging control using a coupled Electro-Thermal model and model predictive control, 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), 2020, pp. 3534-3539.
[21] F. Geifes, C. Bolsinger, P. Mielcarek, K.P. Birke, Determination of the entropic heat coefficient in a simple electro-thermal lithium-ion cell model with pulse relaxation measurements and least squares algorithm, Journal of Power Sources 419 (2019) 148-154.
[22] H. He, R. Xiong, H. Guo, S. Li, Comparison study on the battery models used for the energy management of batteries in electric vehicles, Energy Conversion and Management 64 (2012) 113-121.
[23] G.L. Plett, Battery Management Systems, Volume I: Battery Modeling, Artech House, 2015.
[24] S. Thanagasundram, R. Arunachala, K. Löffler, T. Teutsch, A. Jossen, A cell level model for battery simulation, European Electric Vehicle Conference, 2012.
[25] S. Ma, M. Jiang, P. Tao, C. Song, J. Wu, J. Wang, T. Deng, W. Shang, Temperature effect and thermal impact in lithium-ion batteries: A review, Progress in Natural Science: Materials International 28(6) (2018) 653-666.
[26] T.M. Bandhauer, S. Garimella, T.F. Fuller, A critical review of thermal issues in lithium-ion batteries, Journal of The Electrochemical Society 158(3) (2011) R1.
[27] K. Löffler, A lumped electro-thermal model for Li-Ion cells in electric vehicle application, Conference EVS28, 2015.
[28] C. Forgez, D. Vinh Do, G. Friedrich, M. Morcrette, C. Delacourt, Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery, Journal of Power Sources 195(9) (2010) 2961-2968.
[29] D. Bernardi, EM. Pawlikowski, JA. Newman, A general energy balance for battery systems, Journal of the Electrochemical Society 132(1) (1985) 5–12.
[30] T.S. Bryden, B. Dimitrov, G. Hilton, C. Ponce de León, P. Bugryniec, S. Brown, D. Cumming, A. Cruden, Methodology to determine the heat capacity of lithium-ion cells, Journal of Power Sources 395 (2018) 369-378.
[31] L. Wei, Z. Lu, F. Cao, L. Zhang, X. Yang, X. Yu, L. Jin, A comprehensive study on thermal conductivity of the lithium‐ion battery, International Journal of Energy Research 44(12) (2020) 9466-9478.
[32] S.J. Drake, D.A. Wetz, J.K. Ostanek, S.P. Miller, J.M. Heinzel, A. Jain, Measurement of anisotropic thermophysical properties of cylindrical Li-ion cells, Journal of Power Sources 252 (2014) 298-304.
[33] I.A. Hunt, Y. Zhao, Y. Patel, J. Offer, Surface Cooling Causes Accelerated Degradation Compared to Tab Cooling for Lithium-Ion Pouch Cells, Journal of The Electrochemical Society 163(9) (2016) A1846-A1852.
[34] G.L. Plett, Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs, Journal of Power Sources 134(2) (2004) 262-276.
[35] P. Jindal, R. Katiyar, J. Bhattacharya, Evaluation of accuracy for Bernardi equation in estimating heat generation rate for continuous and pulse-discharge protocols in LFP and NMC based Li-ion batteries, Applied Thermal Engineering 201 (2022).
[36] J. Fang, J. Cai, X. He, Experimental study on the vertical thermal runaway propagation in cylindrical Lithium-ion batteries: Effects of spacing and state of charge, Applied Thermal Engineering 197 (2021) 117399.
[37] L. Samsung SDI Co., Specification of Product (Model INR18650-35E), 2015. https://www.orbtronic.com/content/samsung-35e-datasheet-inr18650-35e.pdf.
[38] G. Pozzato, A. Allam, S. Onori, Lithium-ion battery aging dataset based on electric vehicle real-driving profiles, Data Brief 41 (2022) 107995.
[39] D. Worwood, Q. Kellner, M. Wojtala, W.D. Widanage, R. MGlen, D. Greenwood, J. Marco, A new approach to the internal thermal management of cylindrical battery cells for automotive applications, Journal of Power Sources, 346 (2017) 151-166.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *