帳號:guest(3.128.205.47)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王義雲
作者(外文):Wang, Yi-Yun
論文名稱(中文):應用圖形顯示卡叢集與晶格波茲曼法模擬液滴聚結現象
論文名稱(外文):Simulation of the Droplet Coalescence with Two-Phase Lattice Boltzmann Method on GPU Cluster
指導教授(中文):林昭安
指導教授(外文):Lin, Chao-An
口試委員(中文):陳明志
陳慶耀
口試委員(外文):Chern, Ming-Jyh
Chen, Cing-Yao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:110033502
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:61
中文關鍵詞:晶格波茲曼方法兩相流液滴聚結圖形顯示卡
外文關鍵詞:Lattice Boltzmann methodTwo-phase flowDroplet coalescenceGPU
相關次數:
  • 推薦推薦:0
  • 點閱點閱:127
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文使用單鬆弛晶格波茲曼法結合Cahn-Hilliard模型,來計算液滴碰撞過程中的能量變化,以及濃度對剪切流中的液滴對凝聚的影響。透過對能量變化的研究,我們發現直接使用耗散能公式無法完美捕捉號散能,這是因為在碰撞過程中,界面區域發生了快速且複雜的變化,只能透過能量守恆公式來間接獲得耗散能。在研究液滴濃度的影響時,將液滴濃度分為三個方向:x方向、y方向和z方向,分析只聚焦在x方向和y方向的濃度效應。對於給定的x方向的濃度,增加y方向的濃度會使液滴在x方向的速度增加,使它們更容易合併。相反地,對於給定的y方向濃度,增加x方向的濃度會導致液滴在x方向的速度減少,使得凝聚更具挑戰性。然而,當x方向的濃度超過0.8並且顯著降低液滴的水平速度時,液滴聚結現象實際上變得更容易發生。
In this thesis, the single-relaxation lattice Boltzmann method combined with the Cahn-Hilliard model is employed to calculate the energy evolution during droplet collisions and the influence of concentration on droplet coalescence under shear flow. Through our investigation of energy variations, we uncover the challenge of directly obtaining the complete dissipation energy using the dissipation energy formula. This difficulty arises due to rapid and complex changes in the interfacial region during the collision process, making it only possible to obtain the dissipation energy indirectly through the energy conservation. When investigating the impact of droplet concentration, the droplet concentration is divided into three directions: x-direction, y-direction, and z-direction. The analysis only focuses on the effects of concentration in the x-direction and y-direction. For a given x-direction concentration, an increase in y-direction concentration results in an increase in the droplet's velocity in the x-direction, making it easier for them to merge. Conversely, for a given y-direction concentration, an increase in x-direction concentration leads to a decrease in the droplet's velocity in the x-direction, making the coalescence more challenging. However, when the x-direction concentration exceeds 0.8 and significantly reduces the droplet's velocity, the coalescence actually becomes easier.
1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Lattice Boltzmann method . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Multiphase fluid systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Graphics processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Experiment about the droplet coalescence . . . . . . . . . . . . . . . . . 4
1.2.2 Numerical simulation about droplet coalescence . . . . . . . . . . . . . . 5
1.2.3 Energy evolution of droplet collision . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 GPU implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.5 Previous work in laboratory . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Objective and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Methodology 12
2.1 The Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 The BGK and low-Mach number approximation . . . . . . . . . . . . . . . . . . 13
2.3 Discretization of the Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Discretization of space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Discretization of time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Lattice Boltzmann model for multi-phase flow . . . . . . . . . . . . . . . . . . . 16
2.4.1 The free-energy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 The governing equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Discrete Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.4 Interface capturing equation . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Summary of lattice Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . 22
2.6 GPU implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Formulas of droplet energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3 Results and Discussion 28
3.1 Energy conservation testing of single droplet translation . . . . . . . . . . . . . . 28
3.2 Energy evolution for droplet collision . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Collision regime map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Energy budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Deformation testing of a single droplet under shear flow . . . . . . . . . . . . . . 36
3.4 Influence of droplet concentration on droplet coalescence in shear flow . . . . . . 37
3.4.1 Droplet concentration of x-direction . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Droplet concentration of y-direction . . . . . . . . . . . . . . . . . . . . . 39
3.4.3 Analysis of the influence of Ψx and Ψy . . . . . . . . . . . . . . . . . . . 40
4 Conclusion and Future Work 52
[1] Uriel Frisch, Brosl Hasslacher, and Yves Pomeau. Lattice-gas automata for the navierstokes equation. In Lattice Gas Methods for Partial Differential Equations, pages 11–18. CRC Press, 2019.
[2] Stephen Wolfram. Cellular automaton fluids 1: Basic theory. In Lattice Gas Methods for Partial Differential Equations, pages 19–74. CRC Press, 2019.
[3] S Succi, E Foti, and F Higuera. Three-dimensional flows in complex geometries with the lattice boltzmann method. EPL (Europhysics Letters), 10(5):433, 1989.
[4] F J Higuera and Javier Jim´enez. Boltzmann approach to lattice gas simulations. EPL (Europhysics Letters), 9(7):663, 1989.
[5] Prabhu Lal Bhatnagar, Eugene P Gross, and Max Krook. A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems. Physical review, 94(3):511, 1954.
[6] Stewart Harris. An introduction to the theory of the Boltzmann equation. Courier Corporation, 2004.
[7] Uriel Frisch, Dominique d’Humi`eres, Brosl Hasslacher, Pierre Lallemand, Yves Pomeau, and Jean-Pierre Rivet. Lattice gas hydrodynamics in two and three dimensions. In Lattice Gas Methods for Partial Differential Equations, pages 77–136. CRC Press, 2019.
[8] Danial O Martinez, William H Matthaeus, Shiyi Chen, and DC Montgomery. Comparison of spectral method and lattice boltzmann simulations of two-dimensional hydrodynamics. Physics of Fluids, 6(3):1285–1298, 1994.
[9] Ruben Scardovelli and St´ephane Zaleski. Direct numerical simulation of free-surface and interfacial flow. Annual review of fluid mechanics, 31(1):567–603, 1999.
[10] Stanley Osher and Ronald P Fedkiw. Level set methods: an overview and some recent results. Journal of Computational physics, 169(2):463–502, 2001.
[11] Daniel M Anderson, Geoffrey B McFadden, and Adam A Wheeler. Diffuse-interface methods in fluid mechanics. Annual review of fluid mechanics, 30(1):139–165, 1998.
[12] Thomas Y Hou, John S Lowengrub, and Michael J Shelley. Boundary integral methods for multicomponent fluids and multiphase materials. Journal of Computational Physics, 169(2):302–362, 2001.
[13] Pei-Yao Hong, Li-Min Huang, Li-Song Lin, and Chao-An Lin. Scalable multi-relaxationtime lattice boltzmann simulations on multi-gpu cluster. Computers & Fluids, 110:1–8, 2015.
[14] JR Adam, NR Lindblad, and CD Hendricks. The collision, coalescence, and disruption of water droplets. Journal of Applied Physics, 39(11):5173–5180, 1968.
[15] N Ashgriz and JY Poo. Coalescence and separation in binary collisions of liquid drops. Journal of Fluid Mechanics, 221:183–204, 1990.
[16] YJ Jiang, A Umemura, and CK Law. An experimental investigation on the collision behaviour of hydrocarbon droplets. Journal of Fluid Mechanics, 234:171–190, 1992.
[17] J Qian and Chung King Law. Regimes of coalescence and separation in droplet collision. Journal of fluid mechanics, 331:59–80, 1997.
[18] Keeney Willis and Melissa Orme. Binary droplet collisions in a vacuum environment: an experimental investigation of the role of viscosity. Experiments in fluids, 34(1):28–41, 2003.
[19] Dongju Chen, Ruth Cardinaels, and Paula Moldenaers. Effect of confinement on droplet coalescence in shear flow. Langmuir, 25(22):12885–12893, 2009.
[20] Pieter De Bruyn, Dongju Chen, Paula Moldenaers, and Ruth Cardinaels. The effects of geometrical confinement and viscosity ratio on the coalescence of droplet pairs in shear flow. Journal of Rheology, 58(6):1955–1980, 2014.
[21] MR Nobari, Y-J Jan, and G Tryggvason. Head-on collision of drops—a numerical investigation. Physics of Fluids, 8(1):29–42, 1996.
[22] MRH Nobari and Gretar Tryggvason. Numerical simulations of three-dimensional drop collisions. AIAA journal, 34(4):750–755, 1996.
[23] N Nikolopoulos, K-S Nikas, and G Bergeles. A numerical investigation of central binary collision of droplets. Computers & Fluids, 38(6):1191–1202, 2009.
[24] N Nikolopoulos, A Theodorakakos, and G Bergeles. Off-centre binary collision of droplets: A numerical investigation. International Journal of Heat and Mass Transfer, 52(1920):4160–4174, 2009.
[25] Kannan N Premnath and John Abraham. Simulations of binary drop collisions with a multiple-relaxation-time lattice-boltzmann model. Physics of Fluids, 17(12):122105, 2005.
[26] Xiaoyi He, Shiyi Chen, and Raoyang Zhang. A lattice boltzmann scheme for incompressible multiphase flow and its application in simulation of rayleigh–taylor instability. Journal of computational physics, 152(2):642–663, 1999.
[27] Takaji Inamuro, Tajima Ogata, S Tajima, and N Konishi. A lattice boltzmann method for incompressible two-phase flows with large density differences. Journal of Computational physics, 198(2):628–644, 2004.
[28] Ali Mazloomi Moqaddam, Shyam S Chikatamarla, and Ilya V Karlin. Simulation of binary droplet collisions with the entropic lattice boltzmann method. Physics of Fluids, 28(2):022106, 2016.
[29] Daniel Lycett-Brown, Kai H Luo, Ronghou Liu, and Pengmei Lv. Binary droplet collision simulations by a multiphase cascaded lattice boltzmann method. Physics of Fluids, 26(2):023303, 2014.
[30] Kai Sun, Ming Jia, and TianyouWang. Numerical investigation of head-on droplet collision with lattice boltzmann method. International Journal of Heat and Mass Transfer, 58(12):260–275, 2013.
[31] Taehun Lee and Lin Liu. Lattice boltzmann simulations of micron-scale drop impact on dry surfaces. Journal of Computational Physics, 229(20):8045–8063, 2010.
[32] Bingquan Huang, Hong Liang, and Jiangrong Xu. Lattice boltzmann simulation of binary three-dimensional droplet coalescence in a confined shear flow. Physics of Fluids, 34(3):032101, 2022.
[33] Orest Shardt, JJ Derksen, and Sushanta K Mitra. Simulations of droplet coalescence in simple shear flow. Langmuir, 29(21):6201–6212, 2013.
[34] Orest Shardt, Sushanta K Mitra, and JJ Derksen. The critical conditions for coalescence in phase field simulations of colliding droplets in shear. Langmuir, 30(48):14416–14426, 2014.
[35] Peter Ojo Olapade, Rajesh Kumar Singh, and Kausik Sarkar. Pairwise interactions between deformable drops in free shear at finite inertia. Physics of Fluids, 21(6):063302, 2009.
[36] Nilkamal Barai and Nibir Mandal. Breakup versus coalescence of closely packed fluid drops in simple shear flows. International Journal of Multiphase Flow, 111:1–15, 2019.
[37] Kuo-Long Pan, Chung K Law, and Biao Zhou. Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision. Journal of Applied Physics, 103(6):064901, 2008.
[38] AH Rajkotwala, H Mirsandi, EAJF Peters, MW Baltussen, CWM Van der Geld, JGM Kuerten, and JAM Kuipers. Extension of local front reconstruction method with controlled coalescence model. Physics of Fluids, 30(2):022102, 2018.
[39] Xiaodong Chen and Vigor Yang. Direct numerical simulation of multiscale flow physics of binary droplet collision. Physics of Fluids, 32(6):062103, 2020.
[40] Giulia Finotello, Johan T Padding, Niels G Deen, Alfred Jongsma, Fredrik Innings, and JAM Kuipers. Effect of viscosity on droplet-droplet collisional interaction. Physics of Fluids, 29(6):067102, 2017.
[41] Dave Steinkraus, Ian Buck, and PY Simard. Using gpus for machine learning algorithms. In Eighth International Conference on Document Analysis and Recognition (ICDAR’05), pages 1115–1120. IEEE, 2005.
[42] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schr¨oder. Sparse matrix solvers on the gpu: conjugate gradients and multigrid. ACM transactions on graphics (TOG), 22(3):917– 924, 2003.
[43] Fang-An Kuo, Matthew R Smith, Chih-Wei Hsieh, Chau-Yi Chou, and Jong-Shinn Wu. Gpu acceleration for general conservation equations and its application to several engineering problems. Computers & Fluids, 45(1):147–154, 2011.
[44] Jonas T¨olke. Implementation of a lattice boltzmann kernel using the compute unified device architecture developed by nvidia. computing and Visualization in Science, 13(1):29–39, 2010.
[45] Jonas T¨olke and Manfred Krafczyk. Teraflop computing on a desktop pc with gpus for 3d cfd. International Journal of Computational Fluid Dynamics, 22(7):443–456, 2008.
[46] Christian Obrecht, Fr´ed´eric Kuznik, Bernard Tourancheau, and Jean-Jacques Roux. A new approach to the lattice boltzmann method for graphics processing units. Computers & Mathematics with Applications, 61(12):3628–3638, 2011.
[47] Wang Xian and Aoki Takayuki. Multi-gpu performance of incompressible flow computation by lattice boltzmann method on gpu cluster. Parallel Computing, 37(9):521–535, 2011.
[48] Joe Myre, Stuart DC Walsh, D Lilja, and Martin O Saar. Performance analysis of singlephase, multiphase, and multicomponent lattice-boltzmann fluid flow simulations on gpu clusters. Concurrency and Computation: Practice and Experience, 23(4):332–350, 2011.
[49] Tzu-Chun Huang. Lattice boltzmann simulations of two-phase flow at high density ratio on multi-gpu cluster. Master’s thesis, National Tsing Hua University, July 2016.
[50] Chien-Yi Chang. Lattice boltzmann simulations of bubble rising dynamics on multi-gpu cluster. Master’s thesis, National Tsing Hua University, July 2017.
[51] Ching-Wen Yang. Numerical simulation of single droplet impact onto a liquid film using lattice boltzmann method on multi-gpu cluster. Master’s thesis, National Tsing Hua University, July 2018.
[52] Fang-Ting Lin. Lattice boltzmann simulation of two-phase flow on multi-gpu cluster. Master’s thesis, National Tsing Hua University, August 2019.
[53] Wei-Chen Huang. Numerical simulation of droplet collision with two-phase lattice boltzmann method on multi-gpu cluster. Master’s thesis, National Tsing Hua University, January 2021.
[54] De-Ming Wei. Simulations of rayleigh-taylor instability problems with lattice boltzmann method on multi-gpu cluster. Master’s thesis, National Tsing Hua University, July 2021.
[55] Hua Zhou and C Pozrikidis. The flow of suspensions in channels: single files of drops. Physics of Fluids A: Fluid Dynamics, 5(2):311–324, 1993.
[56] Xiaoyi He and Li-Shi Luo. Theory of the lattice boltzmann method: From the boltzmann equation to the lattice boltzmann equation. Physical review E, 56(6):6811, 1997.
[57] Yue-Hong Qian, Dominique d’Humi`eres, and Pierre Lallemand. Lattice bgk models for navier-stokes equation. EPL (Europhysics Letters), 17(6):479, 1992.
[58] Xiaoyi He and Li-Shi Luo. Lattice boltzmann model for the incompressible navier–stokes equation. Journal of statistical Physics, 88(3):927–944, 1997.
[59] Dieter A Wolf-Gladrow. Lattice-gas cellular automata and lattice Boltzmann models: an introduction. Springer, 2004.
[60] Taehun Lee. Effects of incompressibility on the elimination of parasitic currents in the lattice boltzmann equation method for binary fluids. Computers & Mathematics with Applications, 58(5):987–994, 2009.
[61] D Jamet, O Lebaigue, N Coutris, and JM Delhaye. The second gradient method for the direct numerical simulation of liquid–vapor flows with phase change. Journal of Computational Physics, 169(2):624–651, 2001.
[62] John Shipley Rowlinson and Benjamin Widom. Molecular theory of capillarity. Courier Corporation, 2013.
[63] Vivien M Kendon, Michael E Cates, Ignacio Pagonabarraga, J-C Desplat, and Peter Bladon. Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: a lattice boltzmann study. Journal of Fluid Mechanics, 440:147–203, 2001.
[64] AA Donaldson, DM Kirpalani, and A Macchi. Diffuse interface tracking of immiscible fluids: improving phase continuity through free energy density selection. International Journal of Multiphase Flow, 37(7):777–787, 2011.
[65] Junseok Kim. A continuous surface tension force formulation for diffuse-interface models. Journal of Computational Physics, 204(2):784–804, 2005.
[66] Pengtao Yue, Chunfeng Zhou, and James J Feng. Spontaneous shrinkage of drops and mass conservation in phase-field simulations. Journal of Computational Physics, 223(1):1– 9, 2007.
[67] Hung-Wen Chang, Pei-Yao Hong, Li-Song Lin, and Chao-An Lin. Simulations of flow instability in three dimensional deep cavities with multi relaxation time lattice boltzmann method on graphic processing units. Computers & Fluids, 88:866–871, 2013.
[68] Anthony JC Ladd. Numerical simulations of particulate suspensions via a discretized boltzmann equation. part 1. theoretical foundation. Journal of fluid mechanics, 271:285– 309, 1994.
[69] Kaustav Chaudhury, Shubhadeep Mandal, and Suman Chakraborty. Droplet migration characteristics in confined oscillatory microflows. Physical Review E, 93(2):023106, 2016.
[70] F Magaletti, Francesco Picano, M Chinappi, Luca Marino, and Carlo Massimo Casciola. The sharp-interface limit of the cahn–hilliard/navier–stokes model for binary fluids. Journal of Fluid Mechanics, 714:95–126, 2013.
[71] James J Feng, Chun Liu, Jie Shen, and Pengtao Yue. An energetic variational formulation with phase field methods for interfacial dynamics of complex fluids: advantages and challenges. In Modeling of soft matter, pages 1–26. Springer, 2005.
(此全文20280731後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *