帳號:guest(18.119.29.105)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊堡齊
作者(外文):Yang, Pao-Chi
論文名稱(中文):開發固體觸媒材料用以催化生成碳酸酯作為二氧化碳再利用之途徑
論文名稱(外文):Solid Catalyst Materials for CO2 Utilization via Carbonate Esters Formation
指導教授(中文):蔡德豪
指導教授(外文):Tsai, De-Hao
口試委員(中文):潘詠庭
李岱洲
口試委員(外文):Pan, Yung-Tin
Lee, Tai-Chou
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:110032581
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:102
中文關鍵詞:碳酸丙烯酯丙二醇氧化還原二氧化鈰羧化反應氧化羰基化反應
外文關鍵詞:propylene carbonatepropylene glycoloxidationreductioncopperceriacarboxylationoxidative carbonylation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:147
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究旨在開發出具高催化性之固體觸媒材料,以透過非均相催化方式來合成碳酸酯化合物。我們使用X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、比表面積與孔徑分析儀(BET)、高解析電子能譜儀(XPS)、以及化學吸附分析儀進行觸媒材料性質之相輔式鑑定。在第一部分中,我們使用二氧化鈰作為非均相觸媒,以催化丙二醇(PG)與二氧化碳(CO2)之羧化反應(carboxylation)來合成出環狀碳酸丙烯酯(PC)。為此我們分別以高壓反應釜(Autoclave)以及通入二氧化碳之常壓半批次(Semi-batch)反應器進行測試。並在不加入除水劑的情況下以雙溶劑系統進行測試,最終成功在合成出碳酸丙烯酯的同時維持其高選擇率(>99.9%)。同時,我們亦發現在沒有溶劑存在下,過量的觸媒(> 5%)將會促進副產物的二丙二醇的催化。
在第二部分中,我們以銅為基礎製備出多種固體觸媒,以催化醇類(甲醇、正丁醇、丙二醇)與一氧化碳(CO,可由CO2還原獲得)之氧化羰基化反應(oxidative carbonylation),同時選用高壓反應釜來研究觸媒在不同反應條件及觸媒製備條件下的反應性。我們透過共沉澱法及含浸法製備出多種的純銅觸媒及複合式銅/二氧化鈰觸媒,並系統性地探討了反應溫度、溶劑及共觸媒(醋酸鈉及碘化鉀)對純銅觸媒及銅/二氧化鈰觸媒之影響,以確定最佳的反應條件,即在100°C下使用2.0 g的丙二醇混合8.0 g的溶劑,同時加入0.02 g的醋酸鈉及0.02 g的碘化鉀。其中在以含浸法所製備的銅/二氧化鈰觸媒催化時反應展現出高達94.7%的碳酸丙烯酯選擇率。此項研究有助於未來在工業化規模上進行二氧化碳之再利用製程。
In this work, we aim to develop solid catalysts, and use heterogeneous catalytic route to synthesize carbonate ester. X-ray diffraction (XRD), scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), high resolution X-ray photoelectron spectroscometer (XPS), and gas adsorption analyzer were used for complementary characterization of catalyst material properties. In the first part, cerium dioxide was used as the solid catalysts to catalyze the carboxylation of propylene glycol (PG) with carbon dioxide (CO2) to propylene carbonate (PC). Reaction was conducted with the high-pressure autoclave and the semi-batch reactor with CO2 flow. Additionally, tests were carried out using a dual-solvent system without the addition of a dehydrating agent, successfully achieving a high selectivity (>99.9%) of PC.
In the second part, various copper-based solid catalysts were prepared to catalyze the oxidative carbonylation of alcohols (methanol, 1-butanol, and PG) with carbon monoxide (CO, can be produced from CO2 reduction). Additionally, we employed the autoclave to investigate the reactivity of the catalyst under different reaction conditions and catalyst preparation methods. Various types of copper and composite copper/ceria catalysts are prepared by coprecipitation or impregnation method. Reaction temperature and the roles of sodium acetate (SA) and potassium iodide (KI) additives are systematically studied with pure copper to map out the optimum reaction condition, i.e., a 100 °C-reaction using 2.0 g of PG mixed with 8.0 g of solvent with 0.02 g of SA and 0.02 g of KI additives. Using this optimized condition, the copper/ceria catalyst prepared by the impregnation method exhibited the highest selectivity of 94.7% towards PC. These findings in this study should pave way for the development of practical industrial scale CO2 utilization processes.
摘要--------------------I
Abstract--------------------II
目錄--------------------III
圖目錄--------------------V
表目錄--------------------VII
第一章 緒論--------------------1
1.1 前言--------------------1
1.1.1 碳的捕捉與封存技術--------------------2
1.1.2 碳的捕捉與再利用技術--------------------3
1.2 碳酸酯類的基本介紹與應用--------------------4
1.2.1 二烷基碳酸酯--------------------5
1.2.2 環狀碳酸酯--------------------6
1.3 透過可再生反應途徑合成碳酸酯--------------------7
1.3.1 透過羧化反應直接利用二氧化碳合成碳酸酯--------------------9
1.3.2 透過氧化羰基化反應間接利用二氧化碳合成碳酸酯--------------------11
1.4 透過固體觸媒以非均相催化合成碳酸酯--------------------12
1.4.1 羧化反應--------------------13
1.4.2 氧化羰基化反應--------------------14
1.5 研究目的--------------------15
第二章 實驗方法及儀器--------------------17
2.1 實驗藥品--------------------17
2.2 以共沉澱法製備金屬/金屬氧化物觸媒--------------------20
2.3 分析儀器介紹--------------------22
2.3.1 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM)--------------------22
2.3.2 X光繞射儀 (X-ray diffraction, XRD)--------------------23
2.3.3 比表面積與孔隙度分析儀 (Brunauer-Emmett-Teller, BET)--------------------24
2.3.4 氣相層析質譜儀 (Gas Chromatography-Mass Spectrometry, GC-MS)--------------------25
2.3.5 高解析電子能譜儀 (High resolution X-ray Photoelectron Spectrometer, HR-XPS)--------------------26
2.3.6 化學吸附分析儀 (Gas Sorption Analyzer)--------------------27
2.3.7 卡爾費雪水分測定儀 (Karl Fischer titrator, KF titrator)--------------------29
2.4 複合式固體觸媒活性與穩定性測試--------------------30
2.4.1 二氧化碳之羧化反應測試系統--------------------30
2.4.2 氧化羰基化反應測試系統--------------------33
2.4.3 產物分析與計算--------------------35
第三章 結果與討論--------------------41
3.1 以二氧化鈰為基礎之固體觸媒催化丙二醇進行羧化反應--------------------42
3.1.1 材料分析--------------------42
3.1.2 鹼度分析--------------------46
3.1.3 丙二醇的羧化反應之活性測試--------------------49
3.2 以銅為基礎之固體觸媒催化醇類進行氧化羰基化反應--------------------62
3.2.1 材料分析--------------------62
3.2.2 氧化羰基化反應之活性測試--------------------73
第四章 結論--------------------88
第五章 未來展望--------------------90
第六章 參考文獻--------------------92
[1] Horváth IT. Introduction: sustainable chemistry. Chemical Reviews. 2018;118:369-71.
[2] Marion P, Bernela B, Piccirilli A, Estrine B, Patouillard N, Guilbot J, et al. Sustainable chemistry: how to produce better and more from less? Green Chemistry. 2017;19(21):4973-89.
[3] Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, et al. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy & Environmental Science. 2012;5(6):7281-305.
[4] Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, et al. Carbon capture and storage update. Energy & Environmental Science. 2014;7(1):130-89.
[5] Cuéllar-Franca RM, Azapagic A. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. Journal of CO2 Utilization. 2015;9:82-102.
[6] Lu L, Huang Z, Rau GH, Ren ZJ. Microbial electrolytic carbon capture for carbon negative and energy positive wastewater treatment. Environmental Science & Technology. 2015;49(13):8193-201.
[7] Akrami E, Khalilarya S, Rocco MV. Techno-economic evaluation of a novel bio-energy system integrated with carbon capture and utilization technology in greenhouses. Journal of the Taiwan Institute of Chemical Engineers. 2023:104729.
[8] Baena-Moreno FM, Rodríguez-Galán M, Vega F, Alonso-Fariñas B, Vilches Arenas LF, Navarrete B. Carbon capture and utilization technologies: a literature review and recent advances. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2019;41(12):1403-33.
[9] Al‐Mamoori A, Krishnamurthy A, Rownaghi AA, Rezaei F. Carbon capture and utilization update. Energy Technology. 2017;5(6):834-49.
[10] De Ras K, Van de Vijver R, Galvita VV, Marin GB, Van Geem KM. Carbon capture and utilization in the steel industry: challenges and opportunities for chemical engineering. Current Opinion in Chemical Engineering. 2019;26:81-7.
[11] Huang SY, Yan B, Wang SP, Ma XB. Recent advances in dialkyl carbonates synthesis and applications. Chemical Society Reviews. 2015;44(10):3079-116.
[12] Saada R, Kellici S, Heil T, Morgan D, Saha B. Greener synthesis of dimethyl carbonate using a novel ceria–zirconia oxide/graphene nanocomposite catalyst. Applied Catalysis B: Environmental. 2015;168-169:353-62.
[13] Tundo P, Selva M. The chemistry of dimethyl carbonate. Accounts of Chemical Research. 2002;35(9):706-16.
[14] Schäffner B, Schäffner F, Verevkin SP, Börner A. Organic carbonates as solvents in synthesis and catalysis. Chemical Reviews. 2010;110(8):4554-81.
[15] Leino E, Mäki-Arvela P, Eta V, Murzin DY, Salmi T, Mikkola JP. Conventional synthesis methods of short-chain dialkylcarbonates and novel production technology via direct route from alcohol and waste CO2. Applied Catalysis A: General. 2010;383(1):1-13.
[16] Arteconi A, Mazzarini A, Di Nicola G. Emissions from ethers and organic carbonate fuel additives: A review. Water, Air, & Soil Pollution. 2011;221(1):405.
[17] Rounce P, Tsolakis A, Leung P, York APE. A comparison of diesel and biodiesel emissions using dimethyl carbonate as an oxygenated additive. Energy & Fuels. 2010;24(9):4812-9.
[18] Pacheco MA, Marshall CL. Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy & Fuels. 1997;11(1):2-29.
[19] Ouyang F, Wang ZZ, Zhou Y, Cheng Z, Lu ZH, Yang Z, et al. Highly efficient and selective synthesis of dibutyl carbonate via the synergistic dual activation catalysis of tetraethylammonium prolinate ionic liquids. Applied Catalysis A: General. 2015;492:177-83.
[20] Cotarca L, Geller T, Répási Jz. Bis (trichloromethyl) carbonate (BTC, triphosgene): a safer alternative to phosgene? Organic Process Research & Development. 2017;21(9):1439-46.
[21] Gong JL, Ma XB, Wang SP. Phosgene-free approaches to catalytic synthesis of diphenyl carbonate and its intermediates. Applied Catalysis A: General. 2007;316(1):1-21.
[22] Nederberg F, Lohmeijer BG, Leibfarth F, Pratt RC, Choi J, Dove AP, et al. Organocatalytic ring opening polymerization of trimethylene carbonate. Biomacromolecules. 2007;8(1):153-60.
[23] Parrish JP, Salvatore RN, Jung KW. Perspectives on alkyl carbonates in organic synthesis. Tetrahedron. 2000;56(42):8207-38.
[24] Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science. 2011;4(9):3243-62.
[25] Morales-Delarosa S, Campos-Martin J. Catalytic processes and catalyst development in biorefining. Advances in Biorefineries: Elsevier; 2014. p. 152-98.
[26] Sonnati MO, Amigoni S, de Givenchy EPT, Darmanin T, Choulet O, Guittard F. Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications. Green Chemistry. 2013;15(2):283-306.
[27] Bayardon J, Holz J, Schäffner B, Andrushko V, Verevkin S, Preetz A, et al. Propylene carbonate as a solvent for asymmetric hydrogenations. Angewandte Chemie International Edition. 2007;46(31):5971-4.
[28] Ono Y. Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Applied Catalysis A: General. 1997;155(2):133-66.
[29] Shaikh A-AG, Sivaram S. Organic carbonates. Chemical Reviews. 1996;96(3):951-76.
[30] Romano U, Tesel R, Mauri MM, Rebora P. Synthesis of dimethyl carbonate from methanol, carbon monoxide, and oxygen catalyzed by copper compounds. Industrial & Engineering Chemistry Product Research and Development. 1980;19(3):396-403.
[31] Yamamoto Y. Vapor phase carbonylation reactions using methyl nitrite over Pd catalysts. Catalysis Surveys from Asia. 2010;14(3):103-10.
[32] Bhanage BM, Fujita S, He Y, Ikushima Y, Shirai M, Torii K, et al. Concurrent synthesis of dimethyl carbonate and ethylene glycol via transesterification of ethylene carbonate and methanol using smectite catalysts containing Mg and/or Ni. Catalysis Letters. 2002;83(3):137-41.
[33] Yang ZZ, He LN, Dou XY, Chanfreau S. Dimethyl carbonate synthesis catalyzed by DABCO-derived basic ionic liquids via transesterification of ethylene carbonate with methanol. Tetrahedron Letters. 2010;51(21):2931-4.
[34] Keller N, Rebmann G, Keller V. Catalysts, mechanisms and industrial processes for the dimethylcarbonate synthesis. Journal of Molecular Catalysis A: Chemical. 2010;317(1):1-18.
[35] Aresta M, Galatola M. Life cycle analysis applied to the assessment of the environmental impact of alternative synthetic processes. The dimethylcarbonate case: part 1. Journal of Cleaner Production. 1999;7(3):181-93.
[36] Santos BA, Silva VM, Loureiro JM, Rodrigues AE. Review for the direct synthesis of dimethyl carbonate. Chemical Engineering Reviews. 2014;1(5):214-29.
[37] Sakakura T, Choi J-C, Yasuda H. Transformation of Carbon Dioxide. Chemical Reviews. 2007;107(6):2365-87.
[38] Yamazaki K, Moteki T, Ogura M. Carbonate synthesis from carbon dioxide and cyclic ethers over methylated nitrogen-substituted mesoporous silica. Molecular Catalysis. 2018;454:38-43.
[39] Delavari M, Zadehahmadi F, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor‐Baltork I, et al. Catalytic synthesis of cyclic carbonates from epoxides and carbon dioxide by magnetic UiO‐66 under mild conditions. Applied Organometallic Chemistry. 2017;31(7):e3656.
[40] Lopes EJ, Ribeiro AP, Martins LM. New trends in the conversion of CO2 to cyclic carbonates. Catalysts. 2020;10(5):479.
[41] Anderson SA, Root TW. Kinetic studies of carbonylation of methanol to dimethyl carbonate over Cu+ X zeolite catalyst. Journal of Catalysis. 2003;217(2):396-405.
[42] Tamura M, Honda M, Nakagawa Y, Tomishige K. Direct conversion of CO2 with diols, aminoalcohols and diamines to cyclic carbonates, cyclic carbamates and cyclic ureas using heterogeneous catalysts. Journal of Chemical Technology & Biotechnology. 2014;89(1):19-33.
[43] Da Silva E, Dayoub W, Mignani G, Raoul Y, Lemaire M. Propylene carbonate synthesis from propylene glycol, carbon dioxide and benzonitrile by alkali carbonate catalysts. Catalysis Communications. 2012;29:58-62.
[44] Gu Y, Tamura M, Nakagawa Y, Nakao K, Suzuki K, Tomishige K. Direct synthesis of polycarbonate diols from atmospheric flow CO2 and diols without using dehydrating agents. Green Chemistry. 2021;23(16):5786-96.
[45] Hsueh YA, Chuah YC, Lin CH, Tsai DH. Aerosol-assisted synthesis of metal–organic framework-derived hybrid nanomaterials for reverse water–gas shift reaction. ACS Applied Nano Materials. 2022;5(7):8883-93.
[46] Huang H, Samsun RC, Peters R, Stolten D. Greener production of dimethyl carbonate by the Power-to-Fuel concept: a comparative techno-economic analysis. Green Chemistry. 2021;23(4):1734-47.
[47] George J, Patel Y, Pillai SM, Munshi P. Methanol assisted selective formation of 1,2-glycerol carbonate from glycerol and carbon dioxide using nBu2SnO as a catalyst. Journal of Molecular Catalysis A: Chemical. 2009;304(1):1-7.
[48] Tomishige K, Yasuda H, Yoshida Y, Nurunnabi M, Li B, Kunimori K. Catalytic performance and properties of ceria based catalysts for cyclic carbonate synthesis from glycol and carbon dioxide. Green Chemistry. 2004;6(4):206-14.
[49] Si R, Flytzani‐Stephanopoulos M. Shape and crystal‐plane effects of nanoscale ceria on the activity of Au‐CeO2 catalysts for the water–gas shift reaction. Angewandte Chemie International Edition. 2008;120(15):2926-9.
[50] Celardo I, Pedersen JZ, Traversa E, Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale. 2011;3(4):1411-20.
[51] Karakoti A, Singh S, Dowding JM, Seal S, Self WT. Redox-active radical scavenging nanomaterials. Chemical Society Reviews. 2010;39(11):4422-32.
[52] Patil S, Seal S, Guo Y, Schulte A, Norwood J. Role of trivalent La and Nd dopants in lattice distortion and oxygen vacancy generation in cerium oxide nanoparticles. Applied Physics Letters. 2006;88(24):243110.
[53] Stojmenović M, Žunić M, Gulicovski J, Bajuk-Bogdanović D, Holclajtner-Antunović I, Dodevski V, et al. Structural, morphological, and electrical properties of doped ceria as a solid electrolyte for intermediate-temperature solid oxide fuel cells. Journal of Materials Science. 2015;50(10):3781-94.
[54] Dell’Agli G, Spiridigliozzi L, Marocco A, Accardo G, Frattini D, Kwon Y, et al. Morphological and crystalline evolution of Sm-(20 mol%)–doped ceria nanopowders prepared by a combined co-precipitation/hydrothermal synthesis for solid oxide fuel cell applications. Ceramics International. 2017;43(15):12799-808.
[55] Tsai DH, Huang TJ. Activity behavior of samaria-doped ceria-supported copper oxide catalyst and effect of heat treatments of support on carbon monoxide oxidation. Applied Catalysis A: General. 2002;223(1):1-9.
[56] Wang SP, Zhao LF, Wang W, Zhao YJ, Zhang GL, Ma XB, et al. Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol. Nanoscale. 2013;5(12):5582-8.
[57] Al-Darwish J, Senter M, Lawson S, Rezaei F, Rownaghi AA. Ceria nanostructured catalysts for conversion of methanol and carbon dioxide to dimethyl carbonate. Catalysis Today. 2020;350:120-6.
[58] Kumar P, With P, Srivastava VC, Gläser R, Mishra IM. Efficient ceria-zirconium oxide catalyst for carbon dioxide conversions: characterization, catalytic activity and thermodynamic study. Journal of Alloys and Compounds. 2017;696:718-26.
[59] Wang SP, Zhou JJ, Zhao SY, Zhao YJ, Ma XB. Enhancements of dimethyl carbonate synthesis from methanol and carbon dioxide: The in situ hydrolysis of 2-cyanopyridine and crystal face effect of ceria. Chinese Chemical Letters. 2015;26(9):1096-100.
[60] Honda M, Tamura M, Nakao K, Suzuki K, Nakagawa Y, Tomishige K. Direct cyclic carbonate Synthesis from CO2 and diol over carboxylation/hydration cascade catalyst of CeO2 with 2-cyanopyridine. ACS Catalysis. 2014;4(6):1893-6.
[61] Tomishige K, Yasuda H, Yoshida Y, Nurunnabi M, Li B, Kunimori K. Novel route to propylene carbonate: selective synthesis from propylene glycol and carbon dioxide. Catalysis letters. 2004;95:45-9.
[62] Wu XF, Neumann H, Beller M. Palladium‐catalyzed oxidative carbonylation reactions. ChemSusChem. 2013;6(2):229-41.
[63] Hosokawa T, Ohta T, Kanayama S, Murahashi S. Palladium (II)-catalyzed acetalization of terminal olefins bearing electron-withdrawing substituents with optically active diols. The Journal of Organic Chemistry. 1987;52(9):1758-64.
[64] Tam W. Carbonylation of beta-aminoethanols, diols, and diolamines. The Journal of Organic Chemistry. 1986;51(15):2977-81.
[65] Sato Y, Kagotani M, Souma Y. A new type of support bipyridine containing aromatic polyamide' to CuCl2 for synthesis of dimethyl carbonate (DMC) by oxidative carbonylation of methanol. Journal of Molecular Catalysis A: Chemical. 2000;151(1):79-85.
[66] Sato Y, Kagotani M, Souma Y. Synthesis of dimethyl carbonate (DMC) by oxidative carbonylation of methanol using polymer-supported CuCl2 catalyst. Journal of The Japan Petroleum Institute. 2000;43(1):75-9.
[67] Raab V, Merz M, Sundermeyer J. Ligand effects in the copper catalyzed aerobic oxidative carbonylation of methanol to dimethyl carbonate (DMC). Journal of Molecular Catalysis A: Chemical. 2001;175(1):51-63.
[68] Ren J, Guo CJ, Yang LL, Li Z. Synthesis of dimethyl carbonate over starch-based Carbon-supported Cu nanoparticles catalysts. Chinese Journal of Catalysis. 2013;34(9):1734-44.
[69] Zhang Y, Bell AT. The mechanism of dimethyl carbonate synthesis on Cu-exchanged zeolite Y. Journal of Catalysis. 2008;255(2):153-61.
[70] Ren J, Wang W, Wang DL, Zuo ZJ, Lin JY, Li Z. A theoretical investigation on the mechanism of dimethyl carbonate formation on Cu/AC catalyst. Applied Catalysis A: General. 2014;472:47-52.
[71] Chavan SP, Bhanage BM. Pd/C: an efficient and heterogeneous protocol for oxidative carbonylation of diols to cyclic carbonate. Tetrahedron Letters. 2014;55(6):1199-202.
[72] Chang CY, Chen YF, Tsai YT, Huang CF, Pan YT, Tsai DH. Sustainable synthesis of epoxides from halohydrin cyclization by composite solid-based catalysts. Industrial & Engineering Chemistry Research. 2022;61(28):9970-80.
[73] Wang RY, Li Z, Zheng HY, Xie KC. Preparation of chlorine-free Cu/AC catalyst and its catalytic properties for vapor phase oxidative carbonylation of methanol. Chinese Journal of Catalysis. 2010;31(7):851.
[74] Han MS, Lee BG, Suh I, Kim HS, Ahn BS, Hong SI. Synthesis of dimethyl carbonate by vapor phase oxidative carbonylation of methanol over Cu-based catalysts. Journal of Molecular Catalysis A: Chemical. 2001;170(1):225-34.
[75] Tomishige K, Sakaihori T, Sakai SI, Fujimoto K. Dimethyl carbonate synthesis by oxidative carbonylation on activated carbon supported CuCl2 catalysts: catalytic properties and structural change. Applied Catalysis A: General. 1999;181(1):95-102.
[76] He DD, Hao HS, Chen DK, Liu JP, Yu J, Lu JC, et al. Synthesis and application of rare-earth elements (Gd, Sm, and Nd) doped ceria-based solid solutions for methyl mercaptan catalytic decomposition. Catalysis Today. 2017;281:559-65.
[77] Zagaynov IV, Fedorov SV, Konovalov AA, Antonova OS. Perspective ceria-based solid solutions GdxBi0.2−xCe0.8O2. Materials Letters. 2017;203:9-12.
[78] Yang XJ, Liu Y, Li J, Zhang YL. Effects of calcination temperature on morphology and structure of CeO2 nanofibers and their photocatalytic activity. Materials Letters. 2019;241:76-9.
[79] Kuntaiah K, Sudarsanam P, Reddy BM, Vinu A. Nanocrystalline Ce1−xSmxO2−δ (x= 0.4) solid solutions: structural characterization versus CO oxidation. RSC Advances. 2013;3(21):7953-62.
[80] Tok A, Du S, Boey F, Chong W. Hydrothermal synthesis and characterization of rare earth doped ceria nanoparticles. Materials Science and Engineering: A. 2007;466(1-2):223-9.
[81] Schweke D, Zalkind S, Attia S, Bloch J. The interaction of CO2 with CeO2 powder explored by correlating adsorption and thermal desorption analyses. The Journal of Physical Chemistry C. 2018;122(18):9947-57.
[82] Gong ZJ, Li YR, Wu HL, Lin SD, Yu WY. Direct copolymerization of carbon dioxide and 1, 4-butanediol enhanced by ceria nanorod catalyst. Applied Catalysis B: Environmental. 2020;265:118524.
[83] Liu B, Li C, Zhang G, Yao X, Chuang SS, Li Z. Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods. ACS Catalysis. 2018;8(11):10446-56.
[84] Tomishige K, Gu Y, Nakagawa Y, Tamura M. Reaction of CO2 with alcohols to linear-, cyclic-, and poly-carbonates using CeO2-based catalysts. Frontiers in Energy Research. 2020;8:30.
[85] Honda M, Tamura M, Nakagawa Y, Nakao K, Suzuki K, Tomishige K. Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine: Scope and mechanistic studies. Journal of Catalysis. 2014;318:95-107.
[86] Meda L, Cerofolini G. A decomposition procedure for the determination of copper oxidation states in Cu‐zeolites by XPS. Surface and Interface Analysis. 2004;36(8):756-9.
[87] Khattak G, Mekki A, Gondal M. Effect of laser irradiation on the structure and valence states of copper in Cu-phosphate glass by XPS studies. Applied Surface Science. 2010;256(11):3630-5.
[88] Yan B, Huang SY, Wang SP, Ma X. Catalytic oxidative carbonylation over Cu2O nanoclusters supported on carbon materials: the role of the carbon support. ChemCatChem. 2014;6(9):2671-9.
[89] Liu BT, Hsieh CC. Enhanced selective catalytic wet oxidation of H2S to S over Ce–Fe/MgO catalysts at ambient temperature. Journal of the Taiwan Institute of Chemical Engineers. 2018;89:113-8.
[90] Zhu D, Mei F, Chen L, Mo W, Li T, Li G. An efficient catalyst CO (salophen) for synthesis of diethyl carbonate by oxidative carbonylation of ethanol. Fuel. 2011;90(6):2098-102.
[91] Wang YC, Liu ZR, Tan C, Sun H, Li Z. The influence of iron group promoters on the synthesis of dimethyl carbonate over CuY catalysts prepared via modified vapor impregnation method. Russian Journal of Physical Chemistry A. 2021;95:705-12.
[92] Ji Y. Recent development of heterogeneous catalysis in the transesterification of glycerol to glycerol carbonate. Catalysts. 2019;9(7):581.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *