帳號:guest(3.144.102.156)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡博文
作者(外文):Chien, Po-Wen
論文名稱(中文):金屬磷三硫族化物奈米片作為高性能鉀離子存儲裝置陽極之應用
論文名稱(外文):Metal phosphorus trichalcogenide nanosheets as anodes for high-performance potassium ion storage devices
指導教授(中文):段興宇
指導教授(外文):Tuan, Hsing-Yu
口試委員(中文):曾院介
呂明諺
口試委員(外文):Tseng, Yuan-Chieh
Lu, Ming-Yen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:110032554
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:72
中文關鍵詞:鉀離子高熵二維材料電池混合電容器
外文關鍵詞:Potassium ionHigh-entropy2D materialBatteryHybrid capacitor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:322
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
我們研究了構型熵對二維金屬磷三硫化物 (MPS3) 在鉀離子器件中用作陽極時的循環性能的影響。通過真空固相法合成了厚度範圍為 6 至 10 nm 的高產率二維高熵 CoVMnFeZnPS3 (HEPS3)。由於各種金屬離子對 K+ 結合能的相互作用產生的高熵效應,HEPS3能夠在電極界面處實現高效的鉀離子傳輸和嵌入。HEPS3 鉀離子陽極的性能優於它們的中熵(CoMnFePS3(ME3PS3)和 CoMnFeZnPS3(ME4PS3))、CoFePS3(LE2PS3)和 FePS3(LEPS3)對應物,表現出524 mAh g-1的高可逆容量,令人印象深刻的高倍率容量高達 10 A g-1,以及超過1000次循環的出色循環穩定性。我們的研究結果表明,HEPS3在循環過程中的電化學重構對於實現高性能鉀離子電池至關重要。原位形成的金屬合金層充當催化劑,不僅提供合適的吸附能以防止穿梭效應,而且促進多硫化物的完全轉化。此外,均勻分散在二維平面上的陽離子產生“晶格畸變效應”,賦予結構高機械穩定性,並允許在 K+ 插入/提取過程中電極中產生的內應力均勻分佈,從而抑制電極粉化 並防止 MPCh3 層的聚合。這項工作提出了一種通過高熵層狀金屬磷化物的電化學活化顯著提高鉀離子存儲性能的新策略,從而開闢了儲能設備中二維材料設計原理的新視野。
We investigate the influence of configurational entropy on the cycling performance of 2D metal phosphorus trichalcogenides (MPS3) when utilized as anodes in potassium-ion devices. High yield, two-dimensional high-entropy CoVMnFeZnPS3 (HEPS3) with thickness ranging from 6 to 10 nm was synthesized via a vacuum solid-state method. HEPS3 enables efficient potassium-ion transport and intercalation at the interface of electrodes, thanks to the high-entropy effects arising from the interaction of various metal ions on the K+ binding energy. HEPS3 potassium-ion anodes outperform their medium-entropy (CoMnFePS3 (ME3PS3) and CoMnFeZnPS3 (ME4PS3)), CoFePS3 (LE2PS3), and FePS3 (LEPS3) counterparts, exhibiting a high reversible capacity of 524 mAh g-1, impressive high-rate capability up to 10 A g-1, and exceptional cycling stability over 1000 cycles. Our findings indicate that the electrochemical reconstruction of HEPS3 during cycling is crucial for achieving high-performance potassium-ion batteries. In situ-formed metal alloy layers act as catalysts, offering not only suitable adsorption energy to prevent the shuttle effect but also promoting the complete conversion of polysulfides. Furthermore, cations uniformly dispersed across the 2D plane create a "lattice distortion effect," imparting the structure with high mechanical stability and allowing for even distribution of internal stress generated in the electrode during the K+ insertion/extraction process, which in turn suppresses electrode pulverization and prevents the aggregation of MPCh3 layers. This work proposes a novel strategy for significantly enhancing potassium-ion storage performance through the electrochemical activation of high-entropy layered metal phosphides, thus opening a new horizon of 2D material design principle in energy storage devices.
Table of Contents

中文摘要 i
Abstract ii
Table of contents iii
List of Tables vi
List of Figures vii
List of Supporting Figures ix
Chapter 1. High-entropy metal phosphorus trichalcogenide nanosheets boost high-performance potassium ion storage devices via electrochemical reconstruction 1
1.1 Introduction 1
1.2 Experimental Section . 5
1.2.1 Materials 5
1.2.2 Synthesis of Bulk CoVMnFeZnPS3 5
1.2.3 Synthesis of MPCH3 NS with different entropy 5
1.2.4 Synthesis of HEPS3@G composites 6
1.2.5 Synthesis of MPCH3@G composites with different entropy 6
1.2.6 Synthesis of Prussian blue (PB) 6
1.2.7 Materials Characterizations 6
1.2.8 Electrochemical Measurements 7
1.2.9 Calculation Details 8
1.2.10 Potassium-ion full cell of HEPS3@G//PB 9
1.2.11 Potassium-ion hybrid capacitor of HEPS3@G//AC 9
1.3 Result and discussion. 10
1.4 Conclusion 47
Chapter 2. Bimetallic 2D thiophosphate nanosheets as anode material for high-performance potassium ion storage devices
2.1 Introduction 48
2.2 Experimental Section. 50
2.2.1 Materials 50
2.2.2 Synthesis of CIPS 50
2.2.3 Synthesis of CIPS@G composites 51
2.2.4 Materials Characterizations 51
2.2.5 Electrochemical Measurements 52
2.2.6 Potassium-ion hybrid capacitor of CIPS@G//AC 52
2.3 Result and discussion. 53
2.4 Conclusion 66
Reference 67

Reference
1. Sun, L.; Li, G.; Zhang, S.; Liu, S.; Yuwono, J.; Mao, J.; Guo, Z., Practical assessment of the energy density of potassium-ion batteries. Sci. China Chem. 2022, 1-9.
2. Yu, X.; Ren, X.; Yuan, Z.; Hou, X.; Yang, T.; Wang, M., Ni3S2–Ni Hybrid Nanospheres with Intra‐Core Void Structure Encapsulated in N‐Doped Carbon Shells for Efficient and Stable K‐ion Storage. Adv. Sci. 2023, 2205556.
3. Qin, K.; Holguin, K.; Huang, J.; Mohammadiroudbari, M.; Chen, F.; Yang, Z.; Xu, G. L.; Luo, C., A Fast‐Charging and High‐Temperature All‐Organic Rechargeable Potassium Battery. Adv. Sci. 2022, 9 (34), 2106116.
4. Liao, J.; Chen, C.; Hu, Q.; Du, Y.; He, Y.; Xu, Y.; Zhang, Z.; Zhou, X., A low‐strain phosphate cathode for high‐rate and ultralong cycle‐life potassium‐ion batteries. Angew. Chem. 2021, 133 (48), 25779-25786.
5. Wei, C.; Tao, Y.; Fei, H.; An, Y.; Tian, Y.; Feng, J.; Qian, Y., Recent advances and perspectives in stable and dendrite-free potassium metal anodes. Energy Stor. Mater. 2020, 30, 206-227.
6. Shen, M.; Ding, H.; Fan, L.; Rao, A. M.; Zhou, J.; Lu, B., Neuromorphic Carbon for Fast and Durable Potassium Storage. Adv. Funct. Mater. 2023, 2213362.
7. Ma, C.; Tang, X.; Jiang, J.; Ma, Z.; Li, H.; Ben, H.; Yuan, X.-Z., Constructing sulfur and nitrogen codoped porous carbon with optimized defect-sites and electronic structure promises high performance potassium-ion storage. Chem. Eng. J. 2023, 454, 140116.
8. Chen, K.-T.; Chong, S.; Yuan, L.; Yang, Y.-C.; Tuan, H.-Y., Conversion-alloying dual mechanism anode: Nitrogen-doped carbon-coated Bi2Se3 wrapped with graphene for superior potassium-ion storage. Energy Stor. Mater. 2021, 39, 239-249.
9. Xiong, P.; Wu, J.; Zhou, M.; Xu, Y., Bismuth–antimony alloy nanoparticle@ porous carbon nanosheet composite anode for high-performance potassium-ion batteries. ACS Nano 2019, 14 (1), 1018-1026.
10. Li, D.; Ren, X.; Ai, Q.; Sun, Q.; Zhu, L.; Liu, Y.; Liang, Z.; Peng, R.; Si, P.; Lou, J., Facile fabrication of nitrogen‐doped porous carbon as superior anode material for potassium‐ion batteries. Adv. Energy Mater. 2018, 8 (34), 1802386.
11. Hsieh, Y.-Y.; Chen, K.-T.; Tuan, H.-Y., A synergetic SnSb-amorphous carbon composites prepared from polyesterification process as an ultrastable potassium-ion battery anode. Chem. Eng. J. 2021, 420, 130451.
12. Zhang, D.; Lu, J.; Pei, C.; Ni, S., Electrochemical activation, sintering, and reconstruction in energy‐storage technologies: origin, development, and prospects. Adv. Energy Mater. 2022, 12 (19), 2103689.
13. Wang, F.; Yu, H.-C.; Chen, M.-H.; Wu, L.; Pereira, N.; Thornton, K.; Van der Ven, A.; Zhu, Y.; Amatucci, G. G.; Graetz, J., Tracking lithium transport and electrochemical reactions in nanoparticles. Nat. Commun. 2012, 3 (1), 1201.
14. Wu, M.; Zheng, W.; Hu, X.; Zhan, F.; He, Q.; Wang, H.; Zhang, Q.; Chen, L., Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Strategies, and Applications for Monovalent and Multivalent Metal‐Ion Hybrid Capacitors. Small 2022, 2205101.
15. Wan, J.; Lacey, S. D.; Dai, J.; Bao, W.; Fuhrer, M. S.; Hu, L., Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chem. Soc. Rev. 2016, 45 (24), 6742-6765.
16. Kandambeth, S.; Kale, V. S.; Shekhah, O.; Alshareef, H. N.; Eddaoudi, M., 2D covalent‐organic framework electrodes for supercapacitors and rechargeable metal‐ion batteries. Adv. Energy Mater. 2022, 12 (4), 2100177.
17. Yang, X.; Luo, Y.; Li, J.; Wang, H.; Song, Y.; Li, J.; Guo, Z., Tuning Mixed Electronic/Ionic Conductivity of 2D CdPS3 Nanosheets as an Anode Material by Synergistic Intercalation and Vacancy Engineering. Adv. Funct. Mater. 2022, 32 (18), 2112169.
18. Yun, Q.; Ge, Y.; Chen, B.; Li, L.; Wa, Q.; Long, H.; Zhang, H., Hybridization of 2D nanomaterials with 3D graphene architectures for electrochemical energy storage and conversion. Adv. Funct. Mater. 2022, 32 (42), 2202319.
19. Zhu, Y.; Peng, L.; Fang, Z.; Yan, C.; Zhang, X.; Yu, G., Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv. Mater. 2018, 30 (15), 1706347.
20. Anand, G.; Gray, J.; Siemsen, E., Decay, shock, and renewal: Operational routines and process entropy in the pharmaceutical industry. Organ. Sci. 2012, 23 (6), 1700-1716.
21. Mori, K.; Hashimoto, N.; Kamiuchi, N.; Yoshida, H.; Kobayashi, H.; Yamashita, H., Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation. Nat. Commun. 2021, 12 (1), 3884.
22. Jiang, B.; Yu, Y.; Cui, J.; Liu, X.; Xie, L.; Liao, J.; Zhang, Q.; Huang, Y.; Ning, S.; Jia, B., High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 2021, 371 (6531), 830-834.
23. Su, L.; Ren, J.; Lu, T.; Chen, K.; Ouyang, J.; Zhang, Y.; Zhu, X.; Wang, L.; Min, H.; Luo, W., Deciphering Structural Origins of Highly Reversible Lithium Storage in High Entropy Oxides with In Situ Transmission Electron Microscopy. Adv. Mater. 2023, 2205751.
24. Ma, Y.; Ma, Y.; Wang, Q.; Schweidler, S.; Botros, M.; Fu, T.; Hahn, H.; Brezesinski, T.; Breitung, B., High-entropy energy materials: challenges and new opportunities. Energy Environ. Sci. 2021, 14 (5), 2883-2905.
25. Wang, R.; Huang, J.; Zhang, X.; Han, J.; Zhang, Z.; Gao, T.; Xu, L.; Liu, S.; Xu, P.; Song, B., Two-dimensional high-entropy metal phosphorus trichalcogenides for enhanced hydrogen evolution reaction. ACS Nano 2022, 16 (3), 3593-3603.
26. Xiao, B.; Wu, G.; Wang, T.; Wei, Z.; Sui, Y.; Shen, B.; Qi, J.; Wei, F.; Zheng, J., High-entropy oxides as advanced anode materials for long-life lithium-ion Batteries. Nano Energy 2022, 95, 106962.
27. Zhao, J.; Zhang, Y.; Chen, X.; Sun, G.; Yang, X.; Zeng, Y.; Tian, R.; Du, F., Entropy‐Change Driven Highly Reversible Sodium Storage for Conversion‐Type Sulfide. Adv. Funct. Mater. 2022, 32 (45), 2206531.
28. Yi, Z.; Xu, J.; Xu, Z.; Zhang, M.; He, Y.; Bao, J.; Zhou, X., Ultrafine SnSSe/multilayer graphene nanosheet nanocomposite as a high-performance anode material for potassium-ion half/full batteries. J. Energy Chem. 2021, 60, 241-248.
29. Ren, L.; Liu, J.; Zhao, Y.; Wang, Y.; Lu, X.; Zhou, M.; Zhang, G.; Liu, W.; Xu, H.; Sun, X., Regulating Electronic Structure of Fe–N4 Single Atomic Catalyst via Neighboring Sulfur Doping for High Performance Lithium–Sulfur Batteries. Adv. Funct. Mater. 2023, 2210509.
30. Yuan, F.; Zhang, D.; Li, Z.; Sun, H.; Yu, Q.; Wang, Q.; Zhang, J.; Wu, Y.; Xi, K.; Wang, B., Unraveling the intercorrelation between micro/mesopores and K migration behavior in hard carbon. Small 2022, 18 (12), 2107113.
31. Ma, Y.; Hu, Y.; Pramudya, Y.; Diemant, T.; Wang, Q.; Goonetilleke, D.; Tang, Y.; Zhou, B.; Hahn, H.; Wenzel, W., Resolving the Role of Configurational Entropy in Improving Cycling Performance of Multicomponent Hexacyanoferrate Cathodes for Sodium‐Ion Batteries. Adv. Funct. Mater. 2022, 32 (34), 2202372.
32. Tang, J.; Wang, C.-Y.; Xiu, F.; Hong, A. J.; Chen, S.; Wang, M.; Zeng, C.; Yang, H.-J.; Tuan, H.-Y.; Tsai, C.-J., Single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure transistors. Nanotechnology 2010, 21 (50), 505704.
33. Yuan, F.-W.; Yang, H.-J.; Tuan, H.-Y., Seeded silicon nanowire growth catalyzed by commercially available bulk metals: broad selection of metal catalysts, superior field emission performance, and versatile nanowire/metal architectures. J. Mater. Chem. 2011, 21 (36), 13793-13800.
34. Yang, H.-J.; Chen, C.-Y.; Yuan, F.-W.; Tuan, H.-Y., Designed synthesis of solid and hollow Cu2–x Te nanocrystals with tunable near-infrared localized surface plasmon resonance. J. Phys. Chem. C 2013, 117 (42), 21955-21964.
35. Ma, Y.; Lian, X.; Xu, N.; Jiang, H.; Li, L.; Zhang, D.; Hu, G.; Peng, S., Rational design of few-layer FePS3 nanosheets@ N-doped carbon composites as anodes for sodium-ion batteries. Chem. Eng. J. 2022, 427, 130882.
36. Chen, W. Y.; Yermembetova, A.; Washer, B. M.; Jiang, X.; Shuvo, S. N.; Peroulis, D.; Wei, A.; Stanciu, L. A., Selective detection of ethylene by MoS2–carbon nanotube networks coated with Cu (I)–pincer complexes. ACS Sens. 2020, 5 (6), 1699-1706.
37. Xu, X.; Guo, Y.; Bloom, B. P.; Wei, J.; Li, H.; Li, H.; Du, Y.; Zeng, Z.; Li, L.; Waldeck, D. H., Elemental core level shift in high entropy alloy nanoparticles via X-ray photoelectron spectroscopy analysis and first-principles calculation. ACS Nano 2020, 14 (12), 17704-17712.
38. Tsai, C.-Y.; Chang, C.-H.; Kao, T.-L.; Chen, K.-T.; Tuan, H.-Y., Shape matters: SnP0. 94 teardrop nanorods with boosted performance for potassium ion storage. Chem. Eng. J. 2021, 417, 128552.
39. Nguyen, T. X.; Tsai, C.-C.; Patra, J.; Clemens, O.; Chang, J.-K.; Ting, J.-M., Co-free high entropy spinel oxide anode with controlled morphology and crystallinity for outstanding charge/discharge performance in Lithium-ion batteries. Chem. Eng. J. 2022, 430, 132658.
40. Lin, L.; Wang, K.; Sarkar, A.; Njel, C.; Karkera, G.; Wang, Q.; Azmi, R.; Fichtner, M.; Hahn, H.; Schweidler, S., High‐Entropy Sulfides as Electrode Materials for Li‐Ion Batteries. Adv. Energy Mater. 2022, 12 (8), 2103090.
41. Yuan, F.; Li, Z.; Zhang, D.; Wang, Q.; Wang, H.; Sun, H.; Yu, Q.; Wang, W.; Wang, B., Fundamental Understanding and Research Progress on the Interfacial Behaviors for Potassium‐Ion Battery Anode. Adv. Sci. 2022, 9 (20), 2200683.
42. Wang, B.; Zhang, Z.; Yuan, F.; Zhang, D.; Wang, Q.; Li, W.; Li, Z.; Wu, Y. A.; Wang, W., An insight into the initial Coulombic efficiency of carbon-based anode materials for potassium-ion batteries. Chem. Eng. J. 2022, 428, 131093.
43. Tan, W.; Yang, F.; Yi, T.; Liu, G.; Wei, X.; Long, Q.; Liu, Y.; Li, Y.; Guo, C.; Liu, K., Fullerene-like elastic carbon coatings on silicon nanoparticles by solvent controlled association of natural polyaromatic molecules as high-performance lithium-ion battery anodes. Energy Stor. Mater. 2022, 45, 412-421.
44. Choi, C.; Ashby, D.; Rao, Y.; Anber, E.; Hart, J. L.; Butts, D.; Wilson, C.; Levin, E.; Taheri, M.; Ghazisaeidi, M., Mechanistic Insight and Local Structure Evolution of NiPS3 upon Electrochemical Lithiation. ACS Appl. Mater. Interfaces 2022, 14 (3), 3980-3990.
45. Haghighat-Shishavan, S.; Nazarian-Samani, M.; Nazarian-Samani, M.; Kim, K.-B., Electrolyte modulation of BiPS4 concurrently suppressing the Bi coarsening and polysulfide shuttle effect in K-ion batteries. Energy Stor. Mater. 2021, 39, 96-107.
46. Cabrera‐German, D.; Molar‐Velázquez, G.; Gómez‐Sosa, G.; De la Cruz, W.; Herrera‐Gomez, A., Detailed peak fitting analysis of the Zn 2p photoemission spectrum for metallic films and its initial oxidation stages. Surf. Interface Anal. 2017, 49 (11), 1078-1087.
47. Wang, N.; Wang, Y.; Bai, Z.; Fang, Z.; Zhang, X.; Xu, Z.; Ding, Y.; Xu, X.; Du, Y.; Dou, S., High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion. Energy Environ. Sci. 2020, 13 (2), 562-570.
48. Zhao, Z.; Yi, Z.; Li, H.; Pathak, R.; Yang, Z.; Wang, X.; Qiao, Q., Synergetic effect of spatially separated dual co-catalyst for accelerating multiple conversion reaction in advanced lithium sulfur batteries. Nano Energy 2021, 81, 105621.
49. Wang, P.; Xi, B.; Huang, M.; Chen, W.; Feng, J.; Xiong, S., Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv. Energy Mater. 2021, 11 (7), 2002893.
50. Yang, X.; Wang, C.; Yan, P.; Jiao, T.; Hao, J.; Jiang, Y.; Ren, F.; Zhang, W.; Zheng, J.; Cheng, Y., Pushing Lithium Cobalt Oxides to 4.7 V by Lattice‐Matched Interfacial Engineering. Adv. Energy Mater. 2022, 12 (23), 2200197.
51. Yoo, G.; Koo, B.-R., Nano-sized split V2O5 with H2O-intercalated interfaces as a stable cathode for zinc ion batteries without an aging process. Chem. Eng. J. 2022, 434, 134738.
52. Zhang, S.; Zhang, Y.; Zhang, Z.; Wang, H.; Cao, Y.; Zhang, B.; Liu, X.; Mao, C.; Han, X.; Gong, H., Bi Works as a Li Reservoir for Promoting the Fast‐Charging Performance of Phosphorus Anode for Li‐Ion Batteries. Adv. Energy Mater. 2022, 12 (19), 2103888.
53. Ou, X.; Liu, T.; Zhong, W.; Fan, X.; Guo, X.; Huang, X.; Cao, L.; Hu, J.; Zhang, B.; Chu, Y. S., Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy. Nat. Commun. 2022, 13 (1), 2319.
54. Lu, Y.; Zhu, T.; McShane, E.; McCloskey, B. D.; Chen, G., Single‐crystal LiNixMnyCo1− x− yO2 cathodes for extreme fast charging. Small 2022, 18 (12), 2105833.
55. Zhao, W.; Zou, L.; Zhang, L.; Fan, X.; Zhang, H.; Pagani, F.; Brack, E.; Seidl, L.; Ou, X.; Egorov, K., Assessing long‐term cycling stability of single‐crystal versus polycrystalline nickel‐rich NCM in pouch cells with 6 mAh cm− 2 electrodes. Small 2022, 18 (14), 2107357.
56. Chang, C.-H.; Chen, K.-T.; Hsieh, Y.-Y.; Chang, C.-B.; Tuan, H.-Y., Crystal facet and architecture engineering of metal oxide nanonetwork anodes for high-performance potassium ion batteries and hybrid capacitors. ACS Nano 2022, 16 (1), 1486-1501.
57. Ho, S.-F.; Tuan, H.-Y., Cu3PS4: a sulfur-rich metal phosphosulfide with superior ionic diffusion channel for high-performance potassium ion batteries/hybrid capacitors. Chem. Eng. J. 2023, 452, 139199.
58. Zong, W.; Chui, N.; Tian, Z.; Li, Y.; Yang, C.; Rao, D.; Wang, W.; Huang, J.; Wang, J.; Lai, F., Ultrafine MoP nanoparticle splotched nitrogen‐doped carbon nanosheets enabling high‐performance 3D‐printed potassium‐ion hybrid capacitors. Adv. Sci. 2021, 8 (7), 2004142.
59. Wang, Y.; Zhang, Z.; Wang, G.; Yang, X.; Sui, Y.; Du, F.; Zou, B., Ultrafine Co 2 P nanorods wrapped by graphene enable a long cycle life performance for a hybrid potassium-ion capacitor. Nanoscale Horiz. 2019, 4 (6), 1394-1401.
60. Chang, C.-B.; Chen, K.-T.; Tuan, H.-Y., Large-scale synthesis of few-layered copper antimony sulfide nanosheets as electrode materials for high-rate potassium-ion storage. J. Colloid Interface Sci. 2022, 608, 984-994.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *