|
Reference 1. Sun, L.; Li, G.; Zhang, S.; Liu, S.; Yuwono, J.; Mao, J.; Guo, Z., Practical assessment of the energy density of potassium-ion batteries. Sci. China Chem. 2022, 1-9. 2. Yu, X.; Ren, X.; Yuan, Z.; Hou, X.; Yang, T.; Wang, M., Ni3S2–Ni Hybrid Nanospheres with Intra‐Core Void Structure Encapsulated in N‐Doped Carbon Shells for Efficient and Stable K‐ion Storage. Adv. Sci. 2023, 2205556. 3. Qin, K.; Holguin, K.; Huang, J.; Mohammadiroudbari, M.; Chen, F.; Yang, Z.; Xu, G. L.; Luo, C., A Fast‐Charging and High‐Temperature All‐Organic Rechargeable Potassium Battery. Adv. Sci. 2022, 9 (34), 2106116. 4. Liao, J.; Chen, C.; Hu, Q.; Du, Y.; He, Y.; Xu, Y.; Zhang, Z.; Zhou, X., A low‐strain phosphate cathode for high‐rate and ultralong cycle‐life potassium‐ion batteries. Angew. Chem. 2021, 133 (48), 25779-25786. 5. Wei, C.; Tao, Y.; Fei, H.; An, Y.; Tian, Y.; Feng, J.; Qian, Y., Recent advances and perspectives in stable and dendrite-free potassium metal anodes. Energy Stor. Mater. 2020, 30, 206-227. 6. Shen, M.; Ding, H.; Fan, L.; Rao, A. M.; Zhou, J.; Lu, B., Neuromorphic Carbon for Fast and Durable Potassium Storage. Adv. Funct. Mater. 2023, 2213362. 7. Ma, C.; Tang, X.; Jiang, J.; Ma, Z.; Li, H.; Ben, H.; Yuan, X.-Z., Constructing sulfur and nitrogen codoped porous carbon with optimized defect-sites and electronic structure promises high performance potassium-ion storage. Chem. Eng. J. 2023, 454, 140116. 8. Chen, K.-T.; Chong, S.; Yuan, L.; Yang, Y.-C.; Tuan, H.-Y., Conversion-alloying dual mechanism anode: Nitrogen-doped carbon-coated Bi2Se3 wrapped with graphene for superior potassium-ion storage. Energy Stor. Mater. 2021, 39, 239-249. 9. Xiong, P.; Wu, J.; Zhou, M.; Xu, Y., Bismuth–antimony alloy nanoparticle@ porous carbon nanosheet composite anode for high-performance potassium-ion batteries. ACS Nano 2019, 14 (1), 1018-1026. 10. Li, D.; Ren, X.; Ai, Q.; Sun, Q.; Zhu, L.; Liu, Y.; Liang, Z.; Peng, R.; Si, P.; Lou, J., Facile fabrication of nitrogen‐doped porous carbon as superior anode material for potassium‐ion batteries. Adv. Energy Mater. 2018, 8 (34), 1802386. 11. Hsieh, Y.-Y.; Chen, K.-T.; Tuan, H.-Y., A synergetic SnSb-amorphous carbon composites prepared from polyesterification process as an ultrastable potassium-ion battery anode. Chem. Eng. J. 2021, 420, 130451. 12. Zhang, D.; Lu, J.; Pei, C.; Ni, S., Electrochemical activation, sintering, and reconstruction in energy‐storage technologies: origin, development, and prospects. Adv. Energy Mater. 2022, 12 (19), 2103689. 13. Wang, F.; Yu, H.-C.; Chen, M.-H.; Wu, L.; Pereira, N.; Thornton, K.; Van der Ven, A.; Zhu, Y.; Amatucci, G. G.; Graetz, J., Tracking lithium transport and electrochemical reactions in nanoparticles. Nat. Commun. 2012, 3 (1), 1201. 14. Wu, M.; Zheng, W.; Hu, X.; Zhan, F.; He, Q.; Wang, H.; Zhang, Q.; Chen, L., Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Strategies, and Applications for Monovalent and Multivalent Metal‐Ion Hybrid Capacitors. Small 2022, 2205101. 15. Wan, J.; Lacey, S. D.; Dai, J.; Bao, W.; Fuhrer, M. S.; Hu, L., Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chem. Soc. Rev. 2016, 45 (24), 6742-6765. 16. Kandambeth, S.; Kale, V. S.; Shekhah, O.; Alshareef, H. N.; Eddaoudi, M., 2D covalent‐organic framework electrodes for supercapacitors and rechargeable metal‐ion batteries. Adv. Energy Mater. 2022, 12 (4), 2100177. 17. Yang, X.; Luo, Y.; Li, J.; Wang, H.; Song, Y.; Li, J.; Guo, Z., Tuning Mixed Electronic/Ionic Conductivity of 2D CdPS3 Nanosheets as an Anode Material by Synergistic Intercalation and Vacancy Engineering. Adv. Funct. Mater. 2022, 32 (18), 2112169. 18. Yun, Q.; Ge, Y.; Chen, B.; Li, L.; Wa, Q.; Long, H.; Zhang, H., Hybridization of 2D nanomaterials with 3D graphene architectures for electrochemical energy storage and conversion. Adv. Funct. Mater. 2022, 32 (42), 2202319. 19. Zhu, Y.; Peng, L.; Fang, Z.; Yan, C.; Zhang, X.; Yu, G., Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv. Mater. 2018, 30 (15), 1706347. 20. Anand, G.; Gray, J.; Siemsen, E., Decay, shock, and renewal: Operational routines and process entropy in the pharmaceutical industry. Organ. Sci. 2012, 23 (6), 1700-1716. 21. Mori, K.; Hashimoto, N.; Kamiuchi, N.; Yoshida, H.; Kobayashi, H.; Yamashita, H., Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation. Nat. Commun. 2021, 12 (1), 3884. 22. Jiang, B.; Yu, Y.; Cui, J.; Liu, X.; Xie, L.; Liao, J.; Zhang, Q.; Huang, Y.; Ning, S.; Jia, B., High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 2021, 371 (6531), 830-834. 23. Su, L.; Ren, J.; Lu, T.; Chen, K.; Ouyang, J.; Zhang, Y.; Zhu, X.; Wang, L.; Min, H.; Luo, W., Deciphering Structural Origins of Highly Reversible Lithium Storage in High Entropy Oxides with In Situ Transmission Electron Microscopy. Adv. Mater. 2023, 2205751. 24. Ma, Y.; Ma, Y.; Wang, Q.; Schweidler, S.; Botros, M.; Fu, T.; Hahn, H.; Brezesinski, T.; Breitung, B., High-entropy energy materials: challenges and new opportunities. Energy Environ. Sci. 2021, 14 (5), 2883-2905. 25. Wang, R.; Huang, J.; Zhang, X.; Han, J.; Zhang, Z.; Gao, T.; Xu, L.; Liu, S.; Xu, P.; Song, B., Two-dimensional high-entropy metal phosphorus trichalcogenides for enhanced hydrogen evolution reaction. ACS Nano 2022, 16 (3), 3593-3603. 26. Xiao, B.; Wu, G.; Wang, T.; Wei, Z.; Sui, Y.; Shen, B.; Qi, J.; Wei, F.; Zheng, J., High-entropy oxides as advanced anode materials for long-life lithium-ion Batteries. Nano Energy 2022, 95, 106962. 27. Zhao, J.; Zhang, Y.; Chen, X.; Sun, G.; Yang, X.; Zeng, Y.; Tian, R.; Du, F., Entropy‐Change Driven Highly Reversible Sodium Storage for Conversion‐Type Sulfide. Adv. Funct. Mater. 2022, 32 (45), 2206531. 28. Yi, Z.; Xu, J.; Xu, Z.; Zhang, M.; He, Y.; Bao, J.; Zhou, X., Ultrafine SnSSe/multilayer graphene nanosheet nanocomposite as a high-performance anode material for potassium-ion half/full batteries. J. Energy Chem. 2021, 60, 241-248. 29. Ren, L.; Liu, J.; Zhao, Y.; Wang, Y.; Lu, X.; Zhou, M.; Zhang, G.; Liu, W.; Xu, H.; Sun, X., Regulating Electronic Structure of Fe–N4 Single Atomic Catalyst via Neighboring Sulfur Doping for High Performance Lithium–Sulfur Batteries. Adv. Funct. Mater. 2023, 2210509. 30. Yuan, F.; Zhang, D.; Li, Z.; Sun, H.; Yu, Q.; Wang, Q.; Zhang, J.; Wu, Y.; Xi, K.; Wang, B., Unraveling the intercorrelation between micro/mesopores and K migration behavior in hard carbon. Small 2022, 18 (12), 2107113. 31. Ma, Y.; Hu, Y.; Pramudya, Y.; Diemant, T.; Wang, Q.; Goonetilleke, D.; Tang, Y.; Zhou, B.; Hahn, H.; Wenzel, W., Resolving the Role of Configurational Entropy in Improving Cycling Performance of Multicomponent Hexacyanoferrate Cathodes for Sodium‐Ion Batteries. Adv. Funct. Mater. 2022, 32 (34), 2202372. 32. Tang, J.; Wang, C.-Y.; Xiu, F.; Hong, A. J.; Chen, S.; Wang, M.; Zeng, C.; Yang, H.-J.; Tuan, H.-Y.; Tsai, C.-J., Single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure transistors. Nanotechnology 2010, 21 (50), 505704. 33. Yuan, F.-W.; Yang, H.-J.; Tuan, H.-Y., Seeded silicon nanowire growth catalyzed by commercially available bulk metals: broad selection of metal catalysts, superior field emission performance, and versatile nanowire/metal architectures. J. Mater. Chem. 2011, 21 (36), 13793-13800. 34. Yang, H.-J.; Chen, C.-Y.; Yuan, F.-W.; Tuan, H.-Y., Designed synthesis of solid and hollow Cu2–x Te nanocrystals with tunable near-infrared localized surface plasmon resonance. J. Phys. Chem. C 2013, 117 (42), 21955-21964. 35. Ma, Y.; Lian, X.; Xu, N.; Jiang, H.; Li, L.; Zhang, D.; Hu, G.; Peng, S., Rational design of few-layer FePS3 nanosheets@ N-doped carbon composites as anodes for sodium-ion batteries. Chem. Eng. J. 2022, 427, 130882. 36. Chen, W. Y.; Yermembetova, A.; Washer, B. M.; Jiang, X.; Shuvo, S. N.; Peroulis, D.; Wei, A.; Stanciu, L. A., Selective detection of ethylene by MoS2–carbon nanotube networks coated with Cu (I)–pincer complexes. ACS Sens. 2020, 5 (6), 1699-1706. 37. Xu, X.; Guo, Y.; Bloom, B. P.; Wei, J.; Li, H.; Li, H.; Du, Y.; Zeng, Z.; Li, L.; Waldeck, D. H., Elemental core level shift in high entropy alloy nanoparticles via X-ray photoelectron spectroscopy analysis and first-principles calculation. ACS Nano 2020, 14 (12), 17704-17712. 38. Tsai, C.-Y.; Chang, C.-H.; Kao, T.-L.; Chen, K.-T.; Tuan, H.-Y., Shape matters: SnP0. 94 teardrop nanorods with boosted performance for potassium ion storage. Chem. Eng. J. 2021, 417, 128552. 39. Nguyen, T. X.; Tsai, C.-C.; Patra, J.; Clemens, O.; Chang, J.-K.; Ting, J.-M., Co-free high entropy spinel oxide anode with controlled morphology and crystallinity for outstanding charge/discharge performance in Lithium-ion batteries. Chem. Eng. J. 2022, 430, 132658. 40. Lin, L.; Wang, K.; Sarkar, A.; Njel, C.; Karkera, G.; Wang, Q.; Azmi, R.; Fichtner, M.; Hahn, H.; Schweidler, S., High‐Entropy Sulfides as Electrode Materials for Li‐Ion Batteries. Adv. Energy Mater. 2022, 12 (8), 2103090. 41. Yuan, F.; Li, Z.; Zhang, D.; Wang, Q.; Wang, H.; Sun, H.; Yu, Q.; Wang, W.; Wang, B., Fundamental Understanding and Research Progress on the Interfacial Behaviors for Potassium‐Ion Battery Anode. Adv. Sci. 2022, 9 (20), 2200683. 42. Wang, B.; Zhang, Z.; Yuan, F.; Zhang, D.; Wang, Q.; Li, W.; Li, Z.; Wu, Y. A.; Wang, W., An insight into the initial Coulombic efficiency of carbon-based anode materials for potassium-ion batteries. Chem. Eng. J. 2022, 428, 131093. 43. Tan, W.; Yang, F.; Yi, T.; Liu, G.; Wei, X.; Long, Q.; Liu, Y.; Li, Y.; Guo, C.; Liu, K., Fullerene-like elastic carbon coatings on silicon nanoparticles by solvent controlled association of natural polyaromatic molecules as high-performance lithium-ion battery anodes. Energy Stor. Mater. 2022, 45, 412-421. 44. Choi, C.; Ashby, D.; Rao, Y.; Anber, E.; Hart, J. L.; Butts, D.; Wilson, C.; Levin, E.; Taheri, M.; Ghazisaeidi, M., Mechanistic Insight and Local Structure Evolution of NiPS3 upon Electrochemical Lithiation. ACS Appl. Mater. Interfaces 2022, 14 (3), 3980-3990. 45. Haghighat-Shishavan, S.; Nazarian-Samani, M.; Nazarian-Samani, M.; Kim, K.-B., Electrolyte modulation of BiPS4 concurrently suppressing the Bi coarsening and polysulfide shuttle effect in K-ion batteries. Energy Stor. Mater. 2021, 39, 96-107. 46. Cabrera‐German, D.; Molar‐Velázquez, G.; Gómez‐Sosa, G.; De la Cruz, W.; Herrera‐Gomez, A., Detailed peak fitting analysis of the Zn 2p photoemission spectrum for metallic films and its initial oxidation stages. Surf. Interface Anal. 2017, 49 (11), 1078-1087. 47. Wang, N.; Wang, Y.; Bai, Z.; Fang, Z.; Zhang, X.; Xu, Z.; Ding, Y.; Xu, X.; Du, Y.; Dou, S., High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion. Energy Environ. Sci. 2020, 13 (2), 562-570. 48. Zhao, Z.; Yi, Z.; Li, H.; Pathak, R.; Yang, Z.; Wang, X.; Qiao, Q., Synergetic effect of spatially separated dual co-catalyst for accelerating multiple conversion reaction in advanced lithium sulfur batteries. Nano Energy 2021, 81, 105621. 49. Wang, P.; Xi, B.; Huang, M.; Chen, W.; Feng, J.; Xiong, S., Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv. Energy Mater. 2021, 11 (7), 2002893. 50. Yang, X.; Wang, C.; Yan, P.; Jiao, T.; Hao, J.; Jiang, Y.; Ren, F.; Zhang, W.; Zheng, J.; Cheng, Y., Pushing Lithium Cobalt Oxides to 4.7 V by Lattice‐Matched Interfacial Engineering. Adv. Energy Mater. 2022, 12 (23), 2200197. 51. Yoo, G.; Koo, B.-R., Nano-sized split V2O5 with H2O-intercalated interfaces as a stable cathode for zinc ion batteries without an aging process. Chem. Eng. J. 2022, 434, 134738. 52. Zhang, S.; Zhang, Y.; Zhang, Z.; Wang, H.; Cao, Y.; Zhang, B.; Liu, X.; Mao, C.; Han, X.; Gong, H., Bi Works as a Li Reservoir for Promoting the Fast‐Charging Performance of Phosphorus Anode for Li‐Ion Batteries. Adv. Energy Mater. 2022, 12 (19), 2103888. 53. Ou, X.; Liu, T.; Zhong, W.; Fan, X.; Guo, X.; Huang, X.; Cao, L.; Hu, J.; Zhang, B.; Chu, Y. S., Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy. Nat. Commun. 2022, 13 (1), 2319. 54. Lu, Y.; Zhu, T.; McShane, E.; McCloskey, B. D.; Chen, G., Single‐crystal LiNixMnyCo1− x− yO2 cathodes for extreme fast charging. Small 2022, 18 (12), 2105833. 55. Zhao, W.; Zou, L.; Zhang, L.; Fan, X.; Zhang, H.; Pagani, F.; Brack, E.; Seidl, L.; Ou, X.; Egorov, K., Assessing long‐term cycling stability of single‐crystal versus polycrystalline nickel‐rich NCM in pouch cells with 6 mAh cm− 2 electrodes. Small 2022, 18 (14), 2107357. 56. Chang, C.-H.; Chen, K.-T.; Hsieh, Y.-Y.; Chang, C.-B.; Tuan, H.-Y., Crystal facet and architecture engineering of metal oxide nanonetwork anodes for high-performance potassium ion batteries and hybrid capacitors. ACS Nano 2022, 16 (1), 1486-1501. 57. Ho, S.-F.; Tuan, H.-Y., Cu3PS4: a sulfur-rich metal phosphosulfide with superior ionic diffusion channel for high-performance potassium ion batteries/hybrid capacitors. Chem. Eng. J. 2023, 452, 139199. 58. Zong, W.; Chui, N.; Tian, Z.; Li, Y.; Yang, C.; Rao, D.; Wang, W.; Huang, J.; Wang, J.; Lai, F., Ultrafine MoP nanoparticle splotched nitrogen‐doped carbon nanosheets enabling high‐performance 3D‐printed potassium‐ion hybrid capacitors. Adv. Sci. 2021, 8 (7), 2004142. 59. Wang, Y.; Zhang, Z.; Wang, G.; Yang, X.; Sui, Y.; Du, F.; Zou, B., Ultrafine Co 2 P nanorods wrapped by graphene enable a long cycle life performance for a hybrid potassium-ion capacitor. Nanoscale Horiz. 2019, 4 (6), 1394-1401. 60. Chang, C.-B.; Chen, K.-T.; Tuan, H.-Y., Large-scale synthesis of few-layered copper antimony sulfide nanosheets as electrode materials for high-rate potassium-ion storage. J. Colloid Interface Sci. 2022, 608, 984-994.
|