帳號:guest(3.145.176.231)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃怡綸
作者(外文):Huang, Yi-Lun
論文名稱(中文):建構電刺激裝置並應用於中樞神經系統再生模型
論文名稱(外文):Development of Central Nervous System Regeneration Model and Device with Electrical Stimulation
指導教授(中文):王潔
指導教授(外文):Wang, Jane
口試委員(中文):黃振煌
王勝仕
口試委員(外文):Huang, Jen-Huang
Wang, Sheng-Shih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:110032541
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:67
中文關鍵詞:神經再生寡樹突膠細胞生物可降解聚癸二酸甘油酯3D列印共培養
外文關鍵詞:nerve regenerationoligodendrocytebiodegradablePGSA3D-printingco-culture
相關次數:
  • 推薦推薦:0
  • 點閱點閱:253
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
髓鞘作為神經系統的重要組成成分之一,包裹於神經元的軸突外,具有絕緣作用並提高神經衝動的傳導速度,還可為神經纖維提供營養和能量,髓鞘的破壞可能會導致運動和認知功能的喪失,大腦和脊髓中的幹細胞可通過髓鞘再生修復受損的髓鞘,然而內源性髓鞘再生過於緩慢,因此有必要設計合適的體外神經系統模型研究神經元與寡樹突膠細胞的交互作用。
本研究開發出具有高生物降解性和光聚合的材料聚癸二酸甘油酯(PGSA),參雜導電性的高分子材料聚乙烯吡咯烷酮(PVP)成為高分子複合材料,配合3D列印技術建構出神經再生支架,並引入電刺激加速細胞再生。為了模擬細胞培養狀態,對複合材料的機械性質和3D列印成果在乾燥狀態和 DMEM浸泡狀態下進行比較,結果顯示在DMEM浸泡狀態下,殘留的乙醇會降低PGSA-PVP (10 wt.%)複合材料的相容性,而與PGSA支架相比,在PGSA-PVP (10 wt.%)複合材料支架發現較嚴重收縮,因為PVP 是比 PGSA 更親水的聚合物。此外,為了篩選出最佳塗層材料,在具有各種塗層材料的PGSA膜進行細胞黏附測試,發現PLO塗層可促進細胞增殖和分化。最後在PGSA-PVP (10 wt.%)複合材料支架建立共培養系統並外加電刺激,顯示在微結構與電刺激的協同作用下能產生明顯的神經突觸增生與誘導現象。這些結果都顯示3D列印建構的PGSA-PVP (10 wt.%)複合材料支架藉由微結構和電刺激作用在神經再生領域的可能性。
Damage to oligodendrocytes or the myelin sheath in injury and disease often leads to serious consequences on neural function. Therefore, remyelination plays a critical therapeutic strategy in the regenerative process of the central nervous system (CNS). Due to the lack of appropriate in vitro models for investigating neuron-oligodendrocyte interactions, it is necessary to develop an in vitro CNS regeneration model to allow detailed understanding. With advancements in the development and applications of biomaterials toward tissue engineering, there are various strategies to enhance remyelination in the CNS.
In this work, a biodegradable and conductive polymer composite scaffold was designed and 3D-printed. The scaffold incorporated polyvinylpyrrolidone (PVP) as a conductive material within the poly (glycerol sebacate) acrylate (PGSA) matrix. The co-cultured system of rat pheochromocytoma cells (PC12) and rat glioma cells (C6) sequential seeding on the microstructured scaffold was constructed to study neuron-oligodendrocyte interactions in vitro and examine neurite outgrowth.
Tensile tests of PGSA and PGSA-PVP (10 wt.%) were conducted and compared in both dried and DMEM-soaked states. The addition of PVP increased the compatibility of the composites, although the residual ethanol in the DMEM-soaked state reduced this property. Then, PC12 and C6 cell adhesion tests cultured on PGSA films with various coating materials were carried out respectively to identify the optimal coating materials. Among the coatings, the PLO-coated group demonstrated advantages for the co-culture of PC12 and C6 cells, enhancing both cell proliferation and differentiation.
To confirm the dimension accuracy as well as to simulate the cell culture state, the comparison of PGSA and PGSA-PVP (10 wt.%) scaffolds in both dried and DMEM-soaked states was investigated. The results showed that severe shrinkage of PGSA-PVP (10 wt.%) scaffolds could be observed in the DMEM-soaked state as PVP is a more hydrophilic polymer than PGSA.
Finally, PC12 and C6 cells were sequentially co-cultured on the microstructured scaffolds to assess the effectiveness of the compartmentalized device with electrical stimulation. PGSA-PVP (10 wt.%) microstructured scaffolds with electrical stimulation exhibited oriented stretching and neurite outgrowth of cells. As a result, the proposed device can be used as a promising tool to study neuron-oligodendrocyte interactions and show great potential in nerve regeneration.
摘要 i
Abstract ii
謝誌 iv
Table of Content vi
List of Figures viii
List of Tables xi
Chapter 1 Introduction 1
1.1 Central Nervous System and Disease 1
1.1.1 Oligodendrocytes 1
1.1.2 Demyelinating Disease 1
1.2 Central Neural System Regeneration 2
1.2.1 Mechanism of Remyelination 2
1.2.2 Oligodendrocytes in Developmental Myelination 4
1.2.3 Electrical Stimulation to Remyelination 6
1.3 Contact Guidance 7
1.4 CNS Tissue Engineering Scaffolds 8
1.5 Additive Manufacturing 8
1.6 Materials for Tissue Regeneration 10
1.6.1 Poly(Glycerol Sebacate) (PGS) 10
1.6.2 Poly(Glycerol Sebacate) Acrylate (PGSA) 11
1.6.3 Poly(VinylPyrrolidone) (PVP) 12
1.7 Motivation and Purpose 13
Chapter 2 Experimental Methods and Materials 15
2.1 Research Framework 15
2.2 Materials and Equipment 17
2.3 Synthesis of Materials 19
2.3.1 Synthesis of PGS 19
2.3.2 Synthesis of PGSA 19
2.4 Central Neural System Regeneration Scaffolds 20
2.4.1 DLP-AM Fabrication of Scaffolds 20
2.4.2 Observation of Scaffolds 21
2.5 Tensile Test of PGSA and PGSA-PVP (10 wt.%) Composite Films 22
2.6 Cell Culture of Neural Cells 22
2.7 Coating Effects on PGSA Films of PC12 and C6 cells 23
2.7.1 The Fabrication of PGSA Films 23
2.7.2 Cell Seeding on PGSA Films 24
2.7.3 Cell Viability and Morphology 24
2.7.4 Fluorescence Staining of the Films 25
2.8 PC12 and C6 cells Sequential Co-culture and Procedure 26
2.9 Electrical Stimulation to Cells 27
2.10 Immunofluorescence Staining of the Scaffolds 28
Chapter 3 Result and Discussion 29
3.2 Tensile Test of PGSA and PGSA-PVP (10 wt.%) 29
3.2 Coating Effect of PC12 cells on PGSA Films 31
3.3 Cell Culture of C6 cells in a Flask and Coating Effect of C6 cells on PGSA Films 34
3.4 Design of Scaffolds 38
3.5 Scaffolds Measurement 42
3.6 PC12 and C6 cells Sequential Co-culture on Microstructured Scaffolds with Electrical Stimulation 46
Chapter 4 Conclusion 57
Chapter 5 Future Work 59
5.1 The Co-Culture System of DRGs & OPCs with Electrical Stimulation for Myelination 59
5.2 Compartmentalized Microfluidic Platforms with Electrical Stimulation for Myelination Analysis 60
Chapter 6 Reference 62
1. Barateiro, A.; Fernandes, A., Temporal oligodendrocyte lineage progression: in vitro models of proliferation, differentiation and myelination. Biochim Biophys Acta 2014, 1843 (9), 1917-29.
2. Nashmi, R., & Fehlings, M. G. (2001). Mechanisms of axonal dysfunction after spinal cord injury: with an emphasis on the role of voltage-gated potassium channels. Brain research. Brain research reviews, 38(1-2), 165–191. .
3. Nave, K. A., Myelination and the trophic support of long axons. Nat Rev Neurosci 2010, 11 (4), 275-83.
4. Huntemer-Silveira, A.; Patil, N.; Brickner, M. A.; Parr, A. M., Strategies for Oligodendrocyte and Myelin Repair in Traumatic CNS Injury. Front Cell Neurosci 2020, 14, 619707.
5. Franklin, R. J. M.; Ffrench-Constant, C., Regenerating CNS myelin - from mechanisms to experimental medicines. Nat Rev Neurosci 2017, 18 (12), 753-769.
6. National Multiple Sclerosis Society. https://www.nationalmssociety.org/.
7. Hachem, L. D.; Ahuja, C. S.; Fehlings, M. G., Assessment and management of acute spinal cord injury: From point of injury to rehabilitation. J Spinal Cord Med 2017, 40 (6), 665-675.
8. Franklin, R. J.; Goldman, S. A., Glia Disease and Repair-Remyelination. Cold Spring Harb Perspect Biol 2015, 7 (7), a020594.
9. Pan, Y.; Monje, M., Activity Shapes Neural Circuit Form and Function: A Historical Perspective. J Neurosci 2020, 40 (5), 944-954.
10. Chari, D. M., Remyelination In Multiple Sclerosis. In The Neurobiology of Multiple Sclerosis, 2007; pp 589-620.
11. Gibco-neurobiology-protocol-handbook. https://www.thermofisher.com/tw/zt/home/references/protocols/neurobiology/neurobiology-protocols/isolation-culture-and-characterization-of-cortical-and-hippocampal-neurons.html?cid=fl-we17941.
12. Yang, I. H.; Gary, D.; Malone, M.; Dria, S.; Houdayer, T.; Belegu, V.; McDonald, J. W.; Thakor, N., Axon myelination and electrical stimulation in a microfluidic, compartmentalized cell culture platform. Neuromolecular Med 2012, 14 (2), 112-8.
13. Lee, H. U.; Blasiak, A.; Agrawal, D. R.; Loong, D. T. B.; Thakor, N. V.; All, A. H.; Ho, J. S.; Yang, I. H., Subcellular electrical stimulation of neurons enhances the myelination of axons by oligodendrocytes. PLoS One 2017, 12 (7), e0179642.
14. Liu, R.; Huang, X.; Wang, X.; Peng, X.; Zhang, S.; Liu, Y.; Yang, D.; Min, Y., Electrical stimulation mediated the neurite outgrowth of PC-12 cells on the conductive polylactic acid/reduced graphene oxide/polypyrrole composite nanofibers. Applied Surface Science 2021, 560.
15. Buskermolen, A. B. C.; Ristori, T.; Mostert, D.; van Turnhout, M. C.; Shishvan, S. S.; Loerakker, S.; Kurniawan, N. A.; Deshpande, V. S.; Bouten, C. V. C., Cellular Contact Guidance Emerges from Gap Avoidance. Cell Reports Physical Science 2020, 1 (5), 100055.
16. Leclech, C.; Villard, C., Cellular and Subcellular Contact Guidance on Microfabricated Substrates. Frontiers in Bioengineering and Biotechnology 2020, 8.
17. Thrivikraman, G.; Jagiełło, A.; Lai, V. K.; Johnson, S. L.; Keating, M.; Nelson, A.; Schultz, B.; Wang, C. M.; Levine, A. J.; Botvinick, E. L.; Tranquillo, R. T., Cell contact guidance via sensing anisotropy of network mechanical resistance. Proceedings of the National Academy of Sciences 2021, 118 (29), e2024942118.
18. Werner, M.; Kurniawan, N. A.; Bouten, C. V. C., Cellular Geometry Sensing at Different Length Scales and its Implications for Scaffold Design. Materials 2020, 13 (4), 963.
19. Shafiee, A.; Ahmadi, H.; Taheri, B.; Hosseinzadeh, S.; Fatahi, Y.; Soleimani, M.; Atyabi, F.; Dinarvand, R., Appropriate Scaffold Selection for CNS Tissue Engineering. Avicenna J Med Biotechnol 2020, 12 (4), 203-220.
20. Li, Y.; Kilian, K. A., Bridging the Gap: From 2D Cell Culture to 3D Microengineered Extracellular Matrices. Advanced Healthcare Materials 2015, 4 (18), 2780-2796.
21. Subramanian, A.; Krishnan, U. M.; Sethuraman, S., Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. Journal of Biomedical Science 2009, 16 (1), 108.
22. Chaudhary, R.; Fabbri, P.; Leoni, E.; Mazzanti, F.; Akbari, R.; Antonini, C., Additive manufacturing by digital light processing: a review. Progress in Additive Manufacturing 2022.
23. Agashe, K.; Sachdeva, A.; Chavan, S., 3D Printing And Advance Material Technology. International Journal of Grid and Distributed Computing 2020, 13, 1899-1936.
24. Patel, D. K.; Sakhaei, A. H.; Layani, M.; Zhang, B.; Ge, Q.; Magdassi, S., Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing. Advanced Materials 2017, 29 (15), 1606000.
25. Wang, P.; Berry, D. B.; Song, Z.; Kiratitanaporn, W.; Schimelman, J.; Moran, A.; He, F.; Xi, B.; Cai, S.; Chen, S., 3D printing of a biocompatible double network elastomer with digital control of mechanical properties. Adv Funct Mater 2020, 30 (14).
26. Wang, Y.; Ameer, G. A.; Sheppard, B. J.; Langer, R., A tough biodegradable elastomer. Nature Biotechnology 2002, 20 (6), 602-606.
27. Rai, R.; Tallawi, M.; Grigore, A.; Boccaccini, A. R., Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Progress in Polymer Science 2012, 37 (8), 1051-1078.
28. Nijst, C. L. E.; Bruggeman, J. P.; Karp, J. M.; Ferreira, L.; Zumbuehl, A.; Bettinger, C. J.; Langer, R., Synthesis and Characterization of Photocurable Elastomers from Poly(glycerol-co-sebacate). Biomacromolecules 2007, 8 (10), 3067-3073.
29. S I Salih1, A. R. J. a. T. M., The Effect of PVP Addition on the Mechanical Properties of Ternary Polymer Blends 2018.
30. Khalil, A. M.; Hassan, M. L.; Ward, A. A., Novel nanofibrillated cellulose/polyvinylpyrrolidone/silver nanoparticles films with electrical conductivity properties. Carbohydr Polym 2017, 157, 503-511.
31. Salih, S. I.; Jabur, A. R.; Mohammed, T. A., The Effect of PVP Addition on the Mechanical Properties of Ternary Polymer Blends. IOP Conference Series: Materials Science and Engineering 2018, 433, 012071.
32. Huang, W.-J.; Wang, J., Development of 3D-Printed, Biodegradable, Conductive PGSA Composites for Nerve Tissue Regeneration. Macromolecular Bioscience 2023, 23 (3), 2200470.
33. Westerink, R.; Ewing, A., The PC12 cell as model for neurosecretion. Acta physiologica (Oxford, England) 2008, 192, 273-85.
34. Yung, H.; Lai, K. H.; Chow, K. B. S.; Ip, N. Y.; Wong, Y. H.; Wu, Z.; Wise, H., Nerve Growth Factor-Induced Differentiation of PC12 Cells Is Accompanied by Elevated Adenylyl Cyclase Activity. Neuro-Signals 2010, 18, 32-42.
35. Leisewitz, A. V.; Urrutia, C. R.; Martinez, G. R.; Loyola, G.; Bronfman, M., A PPARs cross-talk concertedly commits C6 glioma cells to oligodendrocytes and induces enzymes involved in myelin synthesis. Journal of Cellular Physiology 2008, 217 (2), 367-376.
36. Maltese, W. A.; Volpe, J. J., Induction of an oligodendroglial enzyme in C-6 glioma cells maintained at high density or in serum-free medium. Journal of Cellular Physiology 1979, 101 (3), 459-469.
37. William A. Maltese, J. J. V., Induction of an oligodendroglial enzyme in C-6 glioma cells maintained at high density or in serum-free medium. J. Cell. Physiol., 101: 459-469. 1979.
38. Kanoh, M.; Ye, P.; Zhu, W.; Wiggins, R. C.; Konat, G., Effect of culture conditions on PLP and MAG gene expression in rat glioma C6 cells. Metabolic Brain Disease 1991, 6 (3), 133-143.
39. GM., C. Cell Proliferation in Development and Differentiation. https://www.ncbi.nlm.nih.gov/books/NBK9906/.
40. Ge, H.; Yu, A.; Chen, J.; Yuan, J.; Yin, Y.; Duanmu, W.; Tan, L.; Yang, Y.; Lan, C.; Chen, W.; Feng, H.; Hu, R., Poly-L-ornithine enhances migration of neural stem/progenitor cells via promoting alpha-Actinin 4 binding to actin filaments. Sci Rep 2016, 6, 37681.
41. Ge, H.; Tan, L.; Wu, P.; Yin, Y.; Liu, X.; Meng, H.; Cui, G.; Wu, N.; Lin, J.; Hu, R.; Feng, H., Poly-L-ornithine promotes preferred differentiation of neural stem/progenitor cells via ERK signalling pathway. Sci Rep 2015, 5, 15535.
42. Ristola, M.; Sukki, L.; Azevedo, M. M.; Seixas, A. I.; Relvas, J. B.; Narkilahti, S.; Kallio, P., A compartmentalized neuron-oligodendrocyte co-culture device for myelin research: design, fabrication and functionality testing. Journal of Micromechanics and Microengineering 2019, 29 (6), 065009.
43. Piaton, G.; Gould, R.; Lubetzki, C., Axon-oligodendrocyte interactions during developmental myelination, demyelination and repair. Journal of neurochemistry 2010, 114, 1243-60.
44. Pease-Raissi, S. E.; Chan, J. R., Building a (w)rapport between neurons and oligodendroglia: Reciprocal interactions underlying adaptive myelination. Neuron 2021, 109 (8), 1258-1273.
45. Duncan, G. J.; Simkins, T. J.; Emery, B., Neuron-Oligodendrocyte Interactions in the Structure and Integrity of Axons. Frontiers in Cell and Developmental Biology 2021, 9.
46. Park, J.; Koito, H.; Li, J.; Han, A., Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomedical Microdevices 2009, 11 (6), 1145-1153.
47. Voronova, M.; Rubleva, N.; Kochkina, N.; Afineevskii, A.; Zakharov, A.; Surov, O., Preparation and Characterization of Polyvinylpyrrolidone/Cellulose Nanocrystals Composites. Nanomaterials (Basel) 2018, 8 (12).
48. Taylor, A. M.; Blurton-Jones, M.; Rhee, S. W.; Cribbs, D. H.; Cotman, C. W.; Jeon, N. L., A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nature Methods 2005, 2 (8), 599-605.
49. Kerman, B. E.; Kim, H. J.; Padmanabhan, K.; Mei, A.; Georges, S.; Joens, M. S.; Fitzpatrick, J. A. J.; Jappelli, R.; Chandross, K.; August, P. R.; Gage, F. H., In vitro myelin formation using embryonic stem cells. Development 2015, 142, 2213 - 2225.
50. Park, J.; Koito, H.; Li, J.; Han, A., Multi-compartment neuron-glia co-culture platform for localized CNS axon-glia interaction study. Lab Chip 2012, 12 (18), 3296-304.
51. Lee, J. Y.; Bashur, C.; Goldstein, A.; Schmidt, C., Polypyrrole-Coated Electrospun PLGA Nanofibers for Neural Tissue Applications. Biomaterials 2009, 30, 4325-4335.
52. Yan, L.; Zhao, B.; Liu, X.; Li, X.; Zeng, C.; Shi, H.; Xu, X.; Lin, T.; Dai, L.; Liu, Y., Aligned Nanofibers from Polypyrrole/Graphene as Electrodes for Regeneration of Optic Nerve via Electrical Stimulation. ACS Applied Materials and Interfaces 2016, 8, 6834-6840.
53. Zou, Y.; Qin, J.; Huang, Z.; Yin, G.; Pu, X.; He, D., Fabrication of Aligned Conducting PPy-PLLA Fiber Films and Their Electrically Controlled Guidance and Orientation for Neurites. ACS Applied Materials & Interfaces 2016, 8 (20), 12576-12582.
54. Jing, W.; Zhang, Y.; Cai, Q.; Chen, G.; Wang, L.; Yang, X.; Zhong, W., Study of Electrical Stimulation with Different Electric-Field Intensities in the Regulation of the Differentiation of PC12 Cells. ACS Chemical Neuroscience 2019, 10 (1), 348-357.
55. Wang, Z.; Colognato, H.; Ffrench-Constant, C., Contrasting effects of mitogenic growth factors on myelination in neuron–oligodendrocyte co-cultures. Glia 2007, 55 (5), 537-545.
56. Schnädelbach, O.; Özen, Í.; Blaschuk, O. W.; Gour, B. J.; Meyer, R. L.; Fawcett, J. W., N-Cadherin Is Involved in Axon-Oligodendrocyte Contact and Myelination. Molecular and Cellular Neuroscience 2001, 17 (6), 1084-1093.
57. Wood, P. M.; Okada, E.; Bunge, R. P., The use of networks of dissociated rat dorsal root ganglion neurons to induce myelination by oligodendrocytes in culture. Brain Research 1980, 196, 247-252.
58. Malheiro, A.; Morgan, F.; Baker, M.; Moroni, L.; Wieringa, P., A three-dimensional biomimetic peripheral nerve model for drug testing and disease modelling. Biomaterials 2020, 257, 120230.
59. Malone, M.; Gary, D.; Yang, I. H.; Miglioretti, A.; Houdayer, T.; Thakor, N.; McDonald, J., Neuronal activity promotes myelination via a cAMP pathway. Glia 2013, 61 (6), 843-854.
60. Taylor, A.; Jeon, N., Microfluidic and Compartmentalized Platforms for Neurobiological Research. Critical reviews in biomedical engineering 2011, 39, 185-200.
61. Ready-to-use rat glial precursor cells with superior purity. https://tools.thermofisher.com/content/sfs/brochures/Rat_GPC_Collateral.pdf.
62. Rat_glial_precursor_cells_user guide. https://assets.fishersci.com/TFS-Assets/LSG/manuals/rat_glial_precursor_cells_man.pdf?_ga=2.62921775.1894035628.1665126180-794757771.1665126180.
63. Poly-L-Ornithine coating. https://www.neuvitro.com/poly-l-ornithine-coating.
64. Milky, B.; Zabolocki, M.; Al-Bataineh, S. A.; van den Hurk, M.; Greenberg, Z.; Turner, L.; Mazzachi, P.; Williams, A.; Illeperuma, I.; Adams, R.; Stringer, B. W.; Ormsby, R.; Poonnoose, S.; Smith, L. E.; Krasowska, M.; Whittle, J. D.; Simula, A.; Bardy, C., Long-term adherence of human brain cells in vitro is enhanced by charged amine-based plasma polymer coatings. Stem Cell Reports 2022, 17 (3), 489-506.
65. Suzuki, N.; Sekimoto, K.; Hayashi, C.; Mabuchi, Y.; Nakamura, T.; Akazawa, C., Differentiation of Oligodendrocyte Precursor Cells from Sox10-Venus Mice to Oligodendrocytes and Astrocytes. Sci Rep 2017, 7 (1), 14133.
66. Chen, J. Y.; Hwang, J. V.; Ao-Ieong, W. S.; Lin, Y. C.; Hsieh, Y. K.; Cheng, Y. L.; Wang, J., Study of Physical and Degradation Properties of 3D-Printed Biodegradable, Photocurable Copolymers, PGSA-co-PEGDA and PGSA-co-PCLDA. Polymers (Basel) 2018, 10 (11).
67. Liu, D.; Pavathuparambil Abdul Manaph, N.; Al-Hawwas, M.; Bobrovskaya, L.; Xiong, L. L.; Zhou, X. F., Coating Materials for Neural Stem/Progenitor Cell Culture and Differentiation. Stem Cells Dev 2020, 29 (8), 463-474.
68. Barateiro, A.; Fernandes, A., Temporal oligodendrocyte lineage progression: In vitro models of proliferation, differentiation and myelination. Biochimica Et Biophysica Acta-Molecular Cell Research 2014, 1843 (9), 1917-1929.

(此全文20280726後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *