|
1. Barateiro, A.; Fernandes, A., Temporal oligodendrocyte lineage progression: in vitro models of proliferation, differentiation and myelination. Biochim Biophys Acta 2014, 1843 (9), 1917-29. 2. Nashmi, R., & Fehlings, M. G. (2001). Mechanisms of axonal dysfunction after spinal cord injury: with an emphasis on the role of voltage-gated potassium channels. Brain research. Brain research reviews, 38(1-2), 165–191. . 3. Nave, K. A., Myelination and the trophic support of long axons. Nat Rev Neurosci 2010, 11 (4), 275-83. 4. Huntemer-Silveira, A.; Patil, N.; Brickner, M. A.; Parr, A. M., Strategies for Oligodendrocyte and Myelin Repair in Traumatic CNS Injury. Front Cell Neurosci 2020, 14, 619707. 5. Franklin, R. J. M.; Ffrench-Constant, C., Regenerating CNS myelin - from mechanisms to experimental medicines. Nat Rev Neurosci 2017, 18 (12), 753-769. 6. National Multiple Sclerosis Society. https://www.nationalmssociety.org/. 7. Hachem, L. D.; Ahuja, C. S.; Fehlings, M. G., Assessment and management of acute spinal cord injury: From point of injury to rehabilitation. J Spinal Cord Med 2017, 40 (6), 665-675. 8. Franklin, R. J.; Goldman, S. A., Glia Disease and Repair-Remyelination. Cold Spring Harb Perspect Biol 2015, 7 (7), a020594. 9. Pan, Y.; Monje, M., Activity Shapes Neural Circuit Form and Function: A Historical Perspective. J Neurosci 2020, 40 (5), 944-954. 10. Chari, D. M., Remyelination In Multiple Sclerosis. In The Neurobiology of Multiple Sclerosis, 2007; pp 589-620. 11. Gibco-neurobiology-protocol-handbook. https://www.thermofisher.com/tw/zt/home/references/protocols/neurobiology/neurobiology-protocols/isolation-culture-and-characterization-of-cortical-and-hippocampal-neurons.html?cid=fl-we17941. 12. Yang, I. H.; Gary, D.; Malone, M.; Dria, S.; Houdayer, T.; Belegu, V.; McDonald, J. W.; Thakor, N., Axon myelination and electrical stimulation in a microfluidic, compartmentalized cell culture platform. Neuromolecular Med 2012, 14 (2), 112-8. 13. Lee, H. U.; Blasiak, A.; Agrawal, D. R.; Loong, D. T. B.; Thakor, N. V.; All, A. H.; Ho, J. S.; Yang, I. H., Subcellular electrical stimulation of neurons enhances the myelination of axons by oligodendrocytes. PLoS One 2017, 12 (7), e0179642. 14. Liu, R.; Huang, X.; Wang, X.; Peng, X.; Zhang, S.; Liu, Y.; Yang, D.; Min, Y., Electrical stimulation mediated the neurite outgrowth of PC-12 cells on the conductive polylactic acid/reduced graphene oxide/polypyrrole composite nanofibers. Applied Surface Science 2021, 560. 15. Buskermolen, A. B. C.; Ristori, T.; Mostert, D.; van Turnhout, M. C.; Shishvan, S. S.; Loerakker, S.; Kurniawan, N. A.; Deshpande, V. S.; Bouten, C. V. C., Cellular Contact Guidance Emerges from Gap Avoidance. Cell Reports Physical Science 2020, 1 (5), 100055. 16. Leclech, C.; Villard, C., Cellular and Subcellular Contact Guidance on Microfabricated Substrates. Frontiers in Bioengineering and Biotechnology 2020, 8. 17. Thrivikraman, G.; Jagiełło, A.; Lai, V. K.; Johnson, S. L.; Keating, M.; Nelson, A.; Schultz, B.; Wang, C. M.; Levine, A. J.; Botvinick, E. L.; Tranquillo, R. T., Cell contact guidance via sensing anisotropy of network mechanical resistance. Proceedings of the National Academy of Sciences 2021, 118 (29), e2024942118. 18. Werner, M.; Kurniawan, N. A.; Bouten, C. V. C., Cellular Geometry Sensing at Different Length Scales and its Implications for Scaffold Design. Materials 2020, 13 (4), 963. 19. Shafiee, A.; Ahmadi, H.; Taheri, B.; Hosseinzadeh, S.; Fatahi, Y.; Soleimani, M.; Atyabi, F.; Dinarvand, R., Appropriate Scaffold Selection for CNS Tissue Engineering. Avicenna J Med Biotechnol 2020, 12 (4), 203-220. 20. Li, Y.; Kilian, K. A., Bridging the Gap: From 2D Cell Culture to 3D Microengineered Extracellular Matrices. Advanced Healthcare Materials 2015, 4 (18), 2780-2796. 21. Subramanian, A.; Krishnan, U. M.; Sethuraman, S., Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. Journal of Biomedical Science 2009, 16 (1), 108. 22. Chaudhary, R.; Fabbri, P.; Leoni, E.; Mazzanti, F.; Akbari, R.; Antonini, C., Additive manufacturing by digital light processing: a review. Progress in Additive Manufacturing 2022. 23. Agashe, K.; Sachdeva, A.; Chavan, S., 3D Printing And Advance Material Technology. International Journal of Grid and Distributed Computing 2020, 13, 1899-1936. 24. Patel, D. K.; Sakhaei, A. H.; Layani, M.; Zhang, B.; Ge, Q.; Magdassi, S., Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing. Advanced Materials 2017, 29 (15), 1606000. 25. Wang, P.; Berry, D. B.; Song, Z.; Kiratitanaporn, W.; Schimelman, J.; Moran, A.; He, F.; Xi, B.; Cai, S.; Chen, S., 3D printing of a biocompatible double network elastomer with digital control of mechanical properties. Adv Funct Mater 2020, 30 (14). 26. Wang, Y.; Ameer, G. A.; Sheppard, B. J.; Langer, R., A tough biodegradable elastomer. Nature Biotechnology 2002, 20 (6), 602-606. 27. Rai, R.; Tallawi, M.; Grigore, A.; Boccaccini, A. R., Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Progress in Polymer Science 2012, 37 (8), 1051-1078. 28. Nijst, C. L. E.; Bruggeman, J. P.; Karp, J. M.; Ferreira, L.; Zumbuehl, A.; Bettinger, C. J.; Langer, R., Synthesis and Characterization of Photocurable Elastomers from Poly(glycerol-co-sebacate). Biomacromolecules 2007, 8 (10), 3067-3073. 29. S I Salih1, A. R. J. a. T. M., The Effect of PVP Addition on the Mechanical Properties of Ternary Polymer Blends 2018. 30. Khalil, A. M.; Hassan, M. L.; Ward, A. A., Novel nanofibrillated cellulose/polyvinylpyrrolidone/silver nanoparticles films with electrical conductivity properties. Carbohydr Polym 2017, 157, 503-511. 31. Salih, S. I.; Jabur, A. R.; Mohammed, T. A., The Effect of PVP Addition on the Mechanical Properties of Ternary Polymer Blends. IOP Conference Series: Materials Science and Engineering 2018, 433, 012071. 32. Huang, W.-J.; Wang, J., Development of 3D-Printed, Biodegradable, Conductive PGSA Composites for Nerve Tissue Regeneration. Macromolecular Bioscience 2023, 23 (3), 2200470. 33. Westerink, R.; Ewing, A., The PC12 cell as model for neurosecretion. Acta physiologica (Oxford, England) 2008, 192, 273-85. 34. Yung, H.; Lai, K. H.; Chow, K. B. S.; Ip, N. Y.; Wong, Y. H.; Wu, Z.; Wise, H., Nerve Growth Factor-Induced Differentiation of PC12 Cells Is Accompanied by Elevated Adenylyl Cyclase Activity. Neuro-Signals 2010, 18, 32-42. 35. Leisewitz, A. V.; Urrutia, C. R.; Martinez, G. R.; Loyola, G.; Bronfman, M., A PPARs cross-talk concertedly commits C6 glioma cells to oligodendrocytes and induces enzymes involved in myelin synthesis. Journal of Cellular Physiology 2008, 217 (2), 367-376. 36. Maltese, W. A.; Volpe, J. J., Induction of an oligodendroglial enzyme in C-6 glioma cells maintained at high density or in serum-free medium. Journal of Cellular Physiology 1979, 101 (3), 459-469. 37. William A. Maltese, J. J. V., Induction of an oligodendroglial enzyme in C-6 glioma cells maintained at high density or in serum-free medium. J. Cell. Physiol., 101: 459-469. 1979. 38. Kanoh, M.; Ye, P.; Zhu, W.; Wiggins, R. C.; Konat, G., Effect of culture conditions on PLP and MAG gene expression in rat glioma C6 cells. Metabolic Brain Disease 1991, 6 (3), 133-143. 39. GM., C. Cell Proliferation in Development and Differentiation. https://www.ncbi.nlm.nih.gov/books/NBK9906/. 40. Ge, H.; Yu, A.; Chen, J.; Yuan, J.; Yin, Y.; Duanmu, W.; Tan, L.; Yang, Y.; Lan, C.; Chen, W.; Feng, H.; Hu, R., Poly-L-ornithine enhances migration of neural stem/progenitor cells via promoting alpha-Actinin 4 binding to actin filaments. Sci Rep 2016, 6, 37681. 41. Ge, H.; Tan, L.; Wu, P.; Yin, Y.; Liu, X.; Meng, H.; Cui, G.; Wu, N.; Lin, J.; Hu, R.; Feng, H., Poly-L-ornithine promotes preferred differentiation of neural stem/progenitor cells via ERK signalling pathway. Sci Rep 2015, 5, 15535. 42. Ristola, M.; Sukki, L.; Azevedo, M. M.; Seixas, A. I.; Relvas, J. B.; Narkilahti, S.; Kallio, P., A compartmentalized neuron-oligodendrocyte co-culture device for myelin research: design, fabrication and functionality testing. Journal of Micromechanics and Microengineering 2019, 29 (6), 065009. 43. Piaton, G.; Gould, R.; Lubetzki, C., Axon-oligodendrocyte interactions during developmental myelination, demyelination and repair. Journal of neurochemistry 2010, 114, 1243-60. 44. Pease-Raissi, S. E.; Chan, J. R., Building a (w)rapport between neurons and oligodendroglia: Reciprocal interactions underlying adaptive myelination. Neuron 2021, 109 (8), 1258-1273. 45. Duncan, G. J.; Simkins, T. J.; Emery, B., Neuron-Oligodendrocyte Interactions in the Structure and Integrity of Axons. Frontiers in Cell and Developmental Biology 2021, 9. 46. Park, J.; Koito, H.; Li, J.; Han, A., Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomedical Microdevices 2009, 11 (6), 1145-1153. 47. Voronova, M.; Rubleva, N.; Kochkina, N.; Afineevskii, A.; Zakharov, A.; Surov, O., Preparation and Characterization of Polyvinylpyrrolidone/Cellulose Nanocrystals Composites. Nanomaterials (Basel) 2018, 8 (12). 48. Taylor, A. M.; Blurton-Jones, M.; Rhee, S. W.; Cribbs, D. H.; Cotman, C. W.; Jeon, N. L., A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nature Methods 2005, 2 (8), 599-605. 49. Kerman, B. E.; Kim, H. J.; Padmanabhan, K.; Mei, A.; Georges, S.; Joens, M. S.; Fitzpatrick, J. A. J.; Jappelli, R.; Chandross, K.; August, P. R.; Gage, F. H., In vitro myelin formation using embryonic stem cells. Development 2015, 142, 2213 - 2225. 50. Park, J.; Koito, H.; Li, J.; Han, A., Multi-compartment neuron-glia co-culture platform for localized CNS axon-glia interaction study. Lab Chip 2012, 12 (18), 3296-304. 51. Lee, J. Y.; Bashur, C.; Goldstein, A.; Schmidt, C., Polypyrrole-Coated Electrospun PLGA Nanofibers for Neural Tissue Applications. Biomaterials 2009, 30, 4325-4335. 52. Yan, L.; Zhao, B.; Liu, X.; Li, X.; Zeng, C.; Shi, H.; Xu, X.; Lin, T.; Dai, L.; Liu, Y., Aligned Nanofibers from Polypyrrole/Graphene as Electrodes for Regeneration of Optic Nerve via Electrical Stimulation. ACS Applied Materials and Interfaces 2016, 8, 6834-6840. 53. Zou, Y.; Qin, J.; Huang, Z.; Yin, G.; Pu, X.; He, D., Fabrication of Aligned Conducting PPy-PLLA Fiber Films and Their Electrically Controlled Guidance and Orientation for Neurites. ACS Applied Materials & Interfaces 2016, 8 (20), 12576-12582. 54. Jing, W.; Zhang, Y.; Cai, Q.; Chen, G.; Wang, L.; Yang, X.; Zhong, W., Study of Electrical Stimulation with Different Electric-Field Intensities in the Regulation of the Differentiation of PC12 Cells. ACS Chemical Neuroscience 2019, 10 (1), 348-357. 55. Wang, Z.; Colognato, H.; Ffrench-Constant, C., Contrasting effects of mitogenic growth factors on myelination in neuron–oligodendrocyte co-cultures. Glia 2007, 55 (5), 537-545. 56. Schnädelbach, O.; Özen, Í.; Blaschuk, O. W.; Gour, B. J.; Meyer, R. L.; Fawcett, J. W., N-Cadherin Is Involved in Axon-Oligodendrocyte Contact and Myelination. Molecular and Cellular Neuroscience 2001, 17 (6), 1084-1093. 57. Wood, P. M.; Okada, E.; Bunge, R. P., The use of networks of dissociated rat dorsal root ganglion neurons to induce myelination by oligodendrocytes in culture. Brain Research 1980, 196, 247-252. 58. Malheiro, A.; Morgan, F.; Baker, M.; Moroni, L.; Wieringa, P., A three-dimensional biomimetic peripheral nerve model for drug testing and disease modelling. Biomaterials 2020, 257, 120230. 59. Malone, M.; Gary, D.; Yang, I. H.; Miglioretti, A.; Houdayer, T.; Thakor, N.; McDonald, J., Neuronal activity promotes myelination via a cAMP pathway. Glia 2013, 61 (6), 843-854. 60. Taylor, A.; Jeon, N., Microfluidic and Compartmentalized Platforms for Neurobiological Research. Critical reviews in biomedical engineering 2011, 39, 185-200. 61. Ready-to-use rat glial precursor cells with superior purity. https://tools.thermofisher.com/content/sfs/brochures/Rat_GPC_Collateral.pdf. 62. Rat_glial_precursor_cells_user guide. https://assets.fishersci.com/TFS-Assets/LSG/manuals/rat_glial_precursor_cells_man.pdf?_ga=2.62921775.1894035628.1665126180-794757771.1665126180. 63. Poly-L-Ornithine coating. https://www.neuvitro.com/poly-l-ornithine-coating. 64. Milky, B.; Zabolocki, M.; Al-Bataineh, S. A.; van den Hurk, M.; Greenberg, Z.; Turner, L.; Mazzachi, P.; Williams, A.; Illeperuma, I.; Adams, R.; Stringer, B. W.; Ormsby, R.; Poonnoose, S.; Smith, L. E.; Krasowska, M.; Whittle, J. D.; Simula, A.; Bardy, C., Long-term adherence of human brain cells in vitro is enhanced by charged amine-based plasma polymer coatings. Stem Cell Reports 2022, 17 (3), 489-506. 65. Suzuki, N.; Sekimoto, K.; Hayashi, C.; Mabuchi, Y.; Nakamura, T.; Akazawa, C., Differentiation of Oligodendrocyte Precursor Cells from Sox10-Venus Mice to Oligodendrocytes and Astrocytes. Sci Rep 2017, 7 (1), 14133. 66. Chen, J. Y.; Hwang, J. V.; Ao-Ieong, W. S.; Lin, Y. C.; Hsieh, Y. K.; Cheng, Y. L.; Wang, J., Study of Physical and Degradation Properties of 3D-Printed Biodegradable, Photocurable Copolymers, PGSA-co-PEGDA and PGSA-co-PCLDA. Polymers (Basel) 2018, 10 (11). 67. Liu, D.; Pavathuparambil Abdul Manaph, N.; Al-Hawwas, M.; Bobrovskaya, L.; Xiong, L. L.; Zhou, X. F., Coating Materials for Neural Stem/Progenitor Cell Culture and Differentiation. Stem Cells Dev 2020, 29 (8), 463-474. 68. Barateiro, A.; Fernandes, A., Temporal oligodendrocyte lineage progression: In vitro models of proliferation, differentiation and myelination. Biochimica Et Biophysica Acta-Molecular Cell Research 2014, 1843 (9), 1917-1929.
|