帳號:guest(18.119.103.132)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴冠棻
作者(外文):Lai, Guan-Fen
論文名稱(中文):含咔唑之環狀共軛分子的高分子合成及特性分析
論文名稱(外文):Synthesis, characterization, and polymerization of carbazole-containing cyclic conjugated molecules
指導教授(中文):堀江正樹
指導教授(外文):Horie, Masaki
口試委員(中文):游進陽
井手智仁
口試委員(外文):Yu, Chin-Yang
Tomohito, Ide
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:110032527
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:77
中文關鍵詞:咔唑環狀共軛分子開環聚合麥克默里反應
外文關鍵詞:carbazolecyclic conjugated moleculesROMPMcMurry reaction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:12
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
咔唑衍生物由於其富電子的特性,化學穩定性高以及含有延伸之共軛結構特性,在有機光電元件的應用領域上,受到研究並已行之有年。咔唑同時也已其擁有的光學特性以及可調整之電化學特性為特色。
在本研究中,我們藉由鈴木反應、烏耳曼反應及麥克默里反應合成了一環型共軛結構,此結構由二噻吩基乙烯連接咔唑之3號位及9號位所形成。我們亦透過X光單晶繞射儀來定性此分子結構,藉由儀器也看出了此分子排列時的結構:接在咔唑三號位的噻吩基和咔唑形成共平面,接在咔唑九號位的噻吩基則垂直此平面。除此之外,在單晶狀態下也觀測分子呈現波型排列,分子之間亦擁有π-π 電子作用力(π-π interaction)和S···S電子作用力(S···S interaction)。同時也透過1H-NMR光譜和場解析質譜來為分子進行定性分析。在光學特性方面,此分子也因環張力產生了176奈米的斯托克斯位移(Stokes shift)。為了增進聚合後的溶解性,我們用開環聚合(ROMP)的方式,將我們的單體和聚降冰片烯組成了嵌段共聚物。此外,另一個由二噻吩醛基連接咔唑之3號位及9號位組成的分子,雖作為環型共軛分子的前驅物,也展現了其溶液致螢光色變的特性。
Carbazole derivatives have been applied in the field of organic optoelectronics due to their unique properties such as electron-donor, planar structure, extended π-system, facile synthesis and modification, tunable optical and electrochemical properties, and high chemical stability.
In this work, a 3,9-linked dithienyl-carbazole cyclic conjugated molecules have been synthesized by Suzuki coupling, Ullmann condensation, and McMurry coupling. The molecules are characterized by single-crystal X-ray crystallography showing specific structures; planar form between 3-carbazole and 2-thiophene groups but perpendicular form between 9-carbazole and 2’-thiophene groups. In addition, the packing structure showed wavelike arrangement, and intermolecular π-π interaction, intermolecular S···S interaction were observed in the single crystal state. These molecules are also characterized by 1H-NMR and field desorption mass spectroscopy. The optical property of the molecule performed Stokes shifting up to 176 nm due to the ring strain. In addition, a sequence of block polymers of poly(norbonene-block-dithenylcarbazole) are synthesized via ROMP to improve the solubility of the polymers. Moreover, I find that the precursor of cyclic dimer, which is a carbazole with 3,9-substituded thiophenecarboxaldehye, showed fluorescent solvatochromism.
Table of contents
Abstract ----------I
Chapter1 Introduction ----------1
1-1 Introduction to carbazole ----------1
1-1-1 Basic property of carbazole ----------1
1-1-2 Advanced applications of carbazole unit fluorescent properties ----------2
1-2 Conjugated polymers ----------8
1-2-1 Introduction to conjugated polymers ----------8
1-2-2 optoelectronic applications of carbazole-containing polymers. ----------9
1-3 Introduction to synthesis methods ----------16
1-3-1 Suzuki-Miyaura coupling reaction ----------16
1-3-2 Ullmann coupling reaction ----------18
1-3-3 McMurry reaction ----------20
1-3-4 Ring-Opening Metathesis Polymerization (ROMP) ----------21
1-4 Aim of work ----------26
Chapter 2 Synthesis, characterization, and spectroscopic properties of cyclic conjugated molecules and polymers ----------28
2-1 Synthesis and characterization of dithienyl carbazole-containing molecules. ----------28
2-1-1 Synthesis of 3,9-bis(2-thiophenyl) carbazole molecules ----------28
2-1-2 X-ray crystallography of 3,9-bis(2-thiophenyl) carbazole molecules ----------33
2-2 Synthesis and characterization of dithienyl carbazole-containing polymer ----------45
2-3 Spectroscopic properties of dithienyl carbazole-containing molecules in solution. ----------49
2-3-1 UV-vis spectra of dithienyl carbazole-containing molecules and polymer. ----------49
2-3-2 Photoluminescence spectra and photoluminescence quantum yield (PLQY) of dithienyl carbazole-containing molecules and polymer. ----------51
2-4 Spectroscopic properties of dithienyl carbazole-containing molecules and polymers in solid state. ----------54
2-5 Cyclic Voltammetry and energy diagrams of dithienyl carbazole-containing molecules and polymers ----------58
2-7 Fluorescence solvatochromism of dithienyl carbazole-containing molecules ----------61
Chapter 3 Conclusion ----------64
Chapter 4 Future Perspective ----------65
Chapter 5 Experiment section ----------66
5-1 General methods ----------66
5-2 Synthesis of 3,9-bis(2-thiophenyl) carbazole molecules 2-1 and 2-2 ----------67
5-2-1 Synthesis of 5-(9H-carbazol-3-yl)- 2-Thiophenecarboxaldehyde (M1) ----------67
5-2-2 Synthesis of 5-(3,9-9H-carbazole)-2-dithiophenecarboxaldehyde (M2) ----------68
5-2-3 Synthesis of 3,9-bis (2-thiopheyl)carbazole molecules ----------69
5-2-4 Synthesis of carbazole-containing polymer P1 (ROMP) ----------70
5-3 NMR spectra and CV curves of ferrocene ----------71
5-4 Additional Work (Ring opening reaction of 2-1) ----------73
References ----------75

References
1. S.-I. Kato, S. Shimizu, A. Kobayashi, T. Yoshihara, S. Tobita and Y. Nakamura, JOC, 2014, 79, 618-629.
2. N. Venkatesan, V. Singh, P. Rajakumar and A. kumar Mishra, RSC Adv., 2014, 4, 53484-53489.
3. J. Yin, Y. Ma, G. Li, M. Peng and W. Lin, Coord. Chem. Rev., 2020, 412, 213257.
4. Lakowicz, J. R. (2006). In Principles of fluorescence spectroscopy.
essay, Springer. pp.208
5. P. Wen, Z. Gao, R. Zhang, A. Li, F. Zhang, J. Li, J. Xie, Y. Wu, M. Wu and K. Guo, J. Mater. Chem. C, 2017, 5, 6136-6143.
6. X. Lu, Q. Feng, T. Lan, G. Zhou and Z.-S. Wang, Chem. Mater., 2012, 24, 3179-3187.
7. T. L. Stott and M. O. Wolf, Coord. Chem. Rev., 2003, 246, 89-101.
8. S.-H. Hsiao and S.-W. Lin, Polym. Chem., 2016, 7, 198-211.
9. C. K. Chiang, C. Fincher Jr, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau and A. G. MacDiarmid, Phys. Rev. Lett., 1977, 39, 1098.
10. R. Partridge, Polymer, 1983, 24, 748-754.
11. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913-915.
12. J. F. Morin, M. Leclerc, D. Ades and A. Siove, Macromol. Rapid Commun., 2005, 26, 761-778.
13. H. N. Tsao, D. M. Cho, I. Park, M. R. Hansen, A. Mavrinskiy, D. Y. Yoon, R. Graf, W. Pisula, H. W. Spiess and K. Müllen, J. Am. Chem. Soc. , 2011, 133, 2605-2612.
14. Y. Zou, D. Gendron, R. Badrou-Aich, A. Najari, Y. Tao and M. Leclerc, Macromolecules, 2009, 42, 2891-2894.
15. J. Grazulevicius, P. Strohriegl, J. Pielichowski and K. Pielichowski, Prog. Polym. Sci., 2003, 28, 1297-1353.
16. P.-L. T. Boudreault, N. Blouin and M. Leclerc, Polyfluorenes, 2008, 99-124.
17. A. Iraqi and I. Wataru, J. Polym. Sci., Part A: Polym. Chem., 2004, 42, 6041-6051.
18. H. Hoegl, The Journal of Physical Chemistry, 1965, 69, 755-766.
19. Y. Zhang, Y. Cui and P. N. Prasad, Physical Review B, 1992, 46, 9900.
20. A. van Dijken, J. J. Bastiaansen, N. M. Kiggen, B. M. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stössel and K. Brunner, J. Am. Chem. Soc. , 2004, 126, 7718-7727.
21. J. F. Ambrose and R. F. Nelson, J. Electrochem. Soc., 1968, 115, 1159.
22. J. F. Ambrose, L. L. Carpenter and R. F. Nelson, J. Electrochem. Soc., 1975, 122, 876.
23. T. Michinobu, H. Kumazawa, E. Otsuki, H. Usui and K. Shigehara, J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 3880-3891.
24. S. G. Hahm, T. J. Lee, D. M. Kim, W. Kwon, Y.-G. Ko, T. Michinobu and M. Ree, The Journal of Physical Chemistry C, 2011, 115, 21954-21962.
25. T. Michinobu, H. Osako and K. Shigehara, Macromol. Rapid Commun., 2008, 29, 111-116.
26. T. Michinobu, H. Osako and K. Shigehara, Macromolecules, 2009, 42, 8172-8180.
27. J. Kimpel, Y. Yoshitake and T. Michinobu, Bull. Chem. Soc. Jpn., 2020, 93, 1361-1365.
28. A. J. Lennox and G. C. Lloyd‐Jones, Angew. Chem. Int. Ed., 2013, 52, 7362-7370.
29. M. I. López, D. Esquivel, C. Jiménez-Sanchidrián, P. Van Der Voort and F. J. Romero-Salguero, Materials, 2020, 13, 623.
30. B. H. Lipshutz, T. B. Petersen and A. R. Abela, Org. Lett., 2008, 10, 1333-1336.
31. C. Len, S. Bruniaux, F. Delbecq and V. S. Parmar, Catalysts, 2017, 7, 146.
32. F. Monnier and M. Taillefer, Angew. Chem. Int. Ed., 2009, 48, 6954-6971.
33. J.-P. Corbet and G. Mignani, Chem. Rev., 2006, 106, 2651-2710.
34. E. Buck, Z. J. Song, D. Tschaen, P. G. Dormer, R. Volante and P. J. Reider, Org. Lett., 2002, 4, 1623-1626.
35. G. Dyker and A. Kellner, J. Organomet. Chem., 1998, 555, 141-144.
36. D. Ma, Q. Cai and H. Zhang, Org. Lett., 2003, 5, 2453-2455.
37. X.-F. Duan, J. Zeng, J.-W. Lü and Z.-B. Zhang, JOC, 2006, 71, 9873-9876.
38. J. E. McMurry and M. P. Fleming, J. Am. Chem. Soc. , 1974, 96, 4708-4709.
39. T. J. Katz, in Adv. Organomet. Chem., Elsevier, 1977, vol. 16, pp. 283-317.
40. S. Varlas, S. B. Lawrenson, L. A. Arkinstall, R. K. O’Reilly and J. C. Foster, Prog. Polym. Sci., 2020, 107, 101278.
41. C. Y. Yu, S. H. Wen, S. H. Yu and C. C. Wang, J. Polym. Sci., Part A: Polym. Chem., 2018, 56, 67-74.
42. V. Komanduri, D. J. Tate, R. Marcial-Hernandez, D. R. Kumar and M. L. Turner, Macromolecules, 2019, 52, 7137-7144.
43. D. Astruc, New J. Chem., 2005, 29, 42-56.
44. C. W. Bielawski and R. H. Grubbs, Prog. Polym. Sci., 2007, 32, 1-29.
45. M. Szwarc, Nature, 1956, 178, 1168-1169.
46. E. Fischer and A. Maasböl, Angew. Chem., 1964, 76, 645-645.
47. R. R. Schrock, J. Am. Chem. Soc., 1974, 96, 6796-6797.
48. T. M. Trnka and R. H. Grubbs, Acc. Chem. Res., 2001, 34, 18-29.
49. D. Bourissou, O. Guerret, F. P. Gabbaï and G. Bertrand, Chem. Rev., 2000, 100, 39-92.
50. R. Bu, G. Liu, K. Zhong, R. Wang, Y. Xiong and C. Zhang, Cryst. Growth Des. , 2021, 21, 6847-6861.
51. P. Hudhomme, S. Le Moustarder, C. Durand, N. Gallego‐Planas, N. Mercier, P. Blanchard, E. Levillain, M. Allain, A. Gorgues and A. Riou, Eur. J. Chem , 2001, 7, 5070-5083.

(此全文20280725後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *