帳號:guest(18.223.213.148)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李怡安
作者(外文):Lee, Yi-An
論文名稱(中文):錫-銀-銅-鉍四元系統中液固相變化溫度
論文名稱(外文):Solid-liquid phase transformation temperatures in the Sn-Ag-Cu-Bi quaternary system
指導教授(中文):陳信文
指導教授(外文):Chen, Sinn-Wen
口試委員(中文):王朝弘
陳志銘
林昆翰
口試委員(外文):Wang, Chao-Hong
Chen, Chih-Ming
Lin, Kun-Han
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:110032525
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:97
中文關鍵詞:無鉛銲料熱分析Calphad相圖計算錫-銀-銅-鉍相轉變溫度液化溫度共晶溫度
外文關鍵詞:Lead-free solderThermal analysisCalphadSn-Ag-Cu-BiPhase transformation temperaturesLiquidus temperaturesEutectic temperatures
相關次數:
  • 推薦推薦:0
  • 點閱點閱:22
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
錫基合金是電子產品中最主要的軟銲材料,對電子產品的可靠度影響至於巨大。錫-銀、錫-銅、錫-鉍等二元合金以及由其組成的三元或四元合金,是最主要的錫基無鉛銲料合金。銲料的液相線溫度與固相線溫度,是銲料合金很重要的性質。上述這些合金都已被大量使用在工業中,也已有Calphad方法建立的相圖資料庫。只是在使用了四種不同的相圖資料庫(NIST的公開資料庫、NIMS的公開資料庫、CompuTherm的(市售)資料庫,以及文獻中相關論文的資料庫)進行計算後,很意外地發現上述二元錫基合金或三元錫基合金,其計算所得的液相線溫度皆存在頗顯著的差異。
本研究擬以實驗的方法,精確的量測錫-銀-銅-鉍四元系統液固相變化溫度,以作為修改相關的Calphad熱力學資料庫的依據。所量測的式樣,將包括富錫端的二元合金(錫-銀、錫-銅、錫-鉍)、三元合金(錫-銀-鉍、錫-銀-銅)與四元合金(錫-銀-銅-鉍)。本研究特別強調精確的原因,在於錫基合金的過冷情形嚴重,精確的液相線溫度並不易量測。而且唯有精確的數據,才能夠釐清目前各種不同計算結果,甚至是實驗量測中的不一致。本研究擬用的實驗方法包括使用熱分析(Thermal Analysis)與進行持溫-淬冷(Holding-Quenching)的實驗。
針對熱分析,本研究先以不同升溫速率進行純元素熱分析實驗,以作為樣品測量結果的校正。對液相線溫度不明顯的合金,藉由合金在液化溫度前後具有明顯的微結構差異之特點,以垂直式管型爐進行持溫-淬冷實驗,並以光學顯微鏡觀察所得之金相結構,根據合金於水淬冷前是否已有固相的存在,得到合金由固、液兩相相變至均勻液相的溫度範圍。如此,便能以熱分析測量結果搭配持溫-淬冷的實驗結果,決定合金的液化溫度。
本研究透過計算相圖證明了熱力學資料庫修改之必要性,並以實驗的方式提供Sn-Bi二元系統、Sn-Ag二元系統、Sn-Cu二元系統、Sn-Ag-Cu三元系統、Sn-Ag-Bi三元系統與Sn-Ag-Cu-Bi四元系統錫基合金之相變溫度,作為相關系統熱力學模型優化的參考依據。
Tin-based alloys are the most important soldering materials in electronic products, and have a huge impact on the reliability of electronic products. Binary alloys such as tin-silver, tin-copper, tin-indium, tin-bismuth, and ternary or quaternary alloys composed of them are the most important tin-based lead-free solder alloys. The liquidus temperature and solidus temperature of solder are very important properties of solder alloys. The above alloys have been widely used in the industry, and there are also phase diagram databases established by the Calphad method. After calculation using four different phase diagram databases (NIST public database, NIMS public database, CompuTherm (commercially available) database, and a database of related papers in the literature), it was found unexpectedly that the calculated liquidus temperatures among binary tin-based alloy and ternary tin-based alloys are quite different.
This study intends to measure the solid/liquid phase transformation temperature of the tin-based alloys in the constituent systems of Sn-Ag-Cu-Bi quaternary system accurately by means of experiments, as a basis for modifying the relevant Calphad thermodynamic database. The samples measured include tin-rich binary alloys (Sn-Bi, Sn-Ag, Sn-Cu), tin-rich ternary alloys (Sn-Ag-Cu, Sn-Ag-Bi), and tin-rich quaternary alloys (Sn-Ag-Cu-Bi). In this study, the precise reason is particularly emphasized, because the supercooling of tin-based alloys is serious, and the precise liquidus temperature is not easy to measure. Moreover, only accurate data can clarify the current various calculation results and even the inconsistencies in the experimental measurements. The experimental methods to be used in this study include the use of thermal analysis and holding-quenching experiments.
For thermal analysis, pure elements were used to perform experiments, and different heating rates were used to correct the experimental results. For alloys whose liquidus temperature is not obvious, the holding-quench experiment is carried out in a vertical tube furnace due to the obvious structural difference of the alloy before and after the liquidus temperature, and the obtained metallographic structure is observed with a microscope. After ensuring whether there is a solid phase during the temperature-holding process, the temperature range in which the alloy changes from a solid phase to a homogeneous liquid phase is obtained. The liquidus temperature of the alloy is determined by thermal analysis measurements and experimental results of holding-quenching method.
This study provides the accurate phase transformation temperatures of tin-based alloys in Sn-Ag-Cu-Bi constituent systems, which is required for Calphad modeling modification.
摘要 I
Abstract III
致謝 V
圖目錄 VIII
表目錄 XII
第一章 前言 1
第二章 文獻回顧 4
2-1 相圖 4
2-1-1 實驗相圖 4
2-1-2 相圖計算 9
2-2 熱分析 10
2-3 凝固與析出 14
2-3-1 過冷 14
2-3-2 合金的凝固 15
2-4 Bi-Sn二元子系統 19
2-5 Ag-Sn二元子系統 23
2-6 Cu-Sn二元子系統 25
2-7 Sn-Ag-Cu三元子系統 29
2-8 Sn-Ag-Bi三元子系統 32
2-9 Sn-Bi-Cu三元子系統 35
2-10 Sn-Ag-Bi-Cu四元系統 38
第三章 研究方法 42
3-1 合金之製備 42
3-2 熱分析 42
3-2-1 同步式熱重熱示差分析儀(Simultaneous Thermal Analyzer, STA) 42
3-2-2 相變溫度量測 43
3-2-3 標記實驗 43
3-3 相圖計算 44
3-4 持溫-淬冷(Holding-quench)實驗 44
3-5 金相分析 44
第四章 結果與討論 46
4-1 純元素校正曲線 46
4-2 Bi-Sn合金 49
4-3 Ag-Sn合金 56
4-4 Cu-Sn合金 62
4-5 Sn-Ag-Cu合金 68
4-6 Sn-Ag-Bi合金 76
4-7 Sn-Ag-Cu-Bi合金 85
第五章 結論 89
第六章 參考文獻 91

[1] 陳信文、陳立軒、林永森、陳志銘, 電子構裝技術與材料, 新北市: 高立, (2014).
[2] S. Cheng, C.-M. Huang, &M. Pecht, "A review of lead-free solders for electronics applications", Microelectronics Reliability, 75, p. 77-95, (2017).
[3] A. El-Daly, A. El-Taher, &S. Gouda, "Development of new multicomponent Sn–Ag–Cu–Bi lead-free solders for low-cost commercial electronic assembly", Journal of Alloys and Compounds, 627, p. 268-275, (2015).
[4] K.-W. Moon, W. J. Boettinger, U. R. Kattner, C. A. Handwerker, et al., "The effect of Pb contamination on the solidification behavior of Sn-Bi solders", Journal of electronic materials, 30, p. 45-52, (2001).
[5] R. Sayyadi and H. Naffakh-Moosavy, "Physical and mechanical properties of synthesized low Ag/lead-free Sn-Ag-Cu-xBi (x= 0, 1, 2.5, 5 wt%) solders", Materials Science and Engineering: A, 735, p. 367-377, (2018).
[6] K. Subramanian, S.-W. Chen, C.-H. Wang, S.-K. Lin, et al., "Phase diagrams of Pb-free solders and their related materials systems", Lead-Free Electronic Solders: A Special Issue of the Journal of Materials Science: Materials in Electronics, p. 19-37, (2007).
[7] C. E. White, Phase diagrams of indium alloys and their engineering applications: Asm International, (1992).
[8] J. Zhao, L. Qi, X.-M. Wang, &L. Wang, "Influence of Bi on microstructures evolution and mechanical properties in Sn–Ag–Cu lead-free solder", Journal of Alloys and Compounds, 375(1-2), p. 196-201, (2004).
[9] Computherm, CompuTherm. Available from: https://computherm.com/.
[10] NIST-solder.tdb, Phase Diagrams & Computational Thermodynamics: Solder systems, Materials Science and Engineering Division, NIST, (2017). Available from: https://www.metallurgy.nist.gov/phase/solder/solder.html.
[11] Material database, Computational Phase Diagram Database (CPDDB), NIMS, (2013). Available from: https://cpddb.nims.go.jp/cpddb/sn-elem/sn_index.htm.
[12] W. Gierlotka, "Thermodynamic description of the quaternary Ag-Bi-Cu-Sn system", Journal of Electronic Materials, 47(1), p. 212-224, (2018).
[13] J.-C. Zhao, Methods for phase diagram determination: elsevier, (2011).
[14] W. D. Callister and D. G. Rethwisch, Materials science and engineering, Vol. 9, New York: Wiley, (2018).
[15] H. Okamoto and H. Okamoto, Phase diagrams for binary alloys, Vol. 44: ASM international Materials Park, OH, (2000).
[16] 荊承濬, Bi-Sb-Se-Te四元系統相平衡: 實驗量測與Calphad計算, in 化學工程學系. 2022, 國立清華大學: 新竹市. p. 225.
[17] 劉君翔, 錫-銀-銅-銦-鉍五元合金銲料相平衡及凝固, in 化學工程學系. 2021, 國立清華大學: 新竹市. p. 159.
[18] 郭燿德, Co-Fe-Ge三元系統相平衡:實驗量測與Calphad計算, in 化學工程學系. 2022, 國立清華大學: 新竹市. p. 133.
[19] 劉禹辰, 楊智涵, 顏紹宇, &林士剛, "計算相圖(CALPHAD)在材料製程上的應用", 67(6), (2020).
[20] M. B. Djurdjevic, "Application of thermal analysis in ferrous and nonferrous foundries", Metallurgical and Materials Engineering, 27(4), p. 457-471, (2021).
[21] S.-W. Chen, C.-C. Huang, &J.-C. Lin, "The relationship between the peak shape of a DTA curve and the shape of a phase diagram", Chemical engineering science, 50(3), p. 417-431, (1995).
[22] S.-W. Chen, C.-C. Lin, &C. Chen, "Determination of the melting and solidification characteristics of solders using differential scanning calorimetry", Metallurgical and Materials Transactions A, 29, p. 1965-1972, (1998).
[23] W. J. Boettinger, U. R. Kattner, K.-W. Moon, &J. H. Perepezko, DTA and heat-flux DSC measurements of alloy melting and freezing, in Methods for phase diagram determination. 2007, Elsevier. p. 151-221.
[24] A. Gray, "Analytical Calorimetry", Ed.: RS Porter and JF Johnson, p. 209-218, (1968).
[25] 第二章 純金屬的凝固, 太平洋化工資源網, (2016). Available from: http://www.pacificcrn.com/index.php?m=Home&c=List&a=show&id=337.
[26] Dendritic Growth, University of Cambridge. Available from: https://www.doitpoms.ac.uk/tlplib/solidification_alloys/dendritic.php.
[27] T. Sparks, Why do dendrites form in metal alloys?, Youtube, (2020). Available from: https://youtu.be/OU95QN7HwCY.
[28] N.-N. Iitm, Dendritic growth in alloys, Youtube, (2020). Available from: https://youtu.be/VUUCWADvFks.
[29] H. Ohtani and K. Ishida, "A thermodynamic study of the phase equilibria in the Bi-Sn-Sb system", Journal of electronic materials, 23, p. 747-755, (1994).
[30] M. Braga, J. Vizdal, A. Kroupa, J. Ferreira, et al., "The experimental study of the Bi–Sn, Bi–Zn and Bi–Sn–Zn systems", Calphad, 31(4), p. 468-478, (2007).
[31] M. Ribas, A. Kumar, D. Kosuri, R. R. Rangaraju, et al. Low temperature soldering using Sn-Bi alloys. in Proceedings of SMTA International. 2017.
[32] S. Belyakov and C. Gourlay, "Recommended values for the βSn solidus line in Sn-Bi alloys", Thermochimica Acta, 654, p. 65-69, (2017).
[33] T. Massalski, H. Okamoto, &P. Subramanian, L. Kacpr zak: Binary Alloy Phase Diagrams. 1990, American Soci ety for Metals, Metals Park, OH.
[34] W. Hume-Rothery and P. W. Reynolds, "The accurate determination of the freezing-points of alloys, and a study of valency effects in certain alloys of silver", Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 160(901), p. 282-303, (1937).
[35] P. Fima and A. Gazda, "Thermal analysis of selected Sn–Ag–Cu alloys", Journal of thermal analysis and calorimetry, 112, p. 731-737, (2013).
[36] D. Manasijević, L. Balanović, I. Marković, M. Gorgievski, et al., "Structural and thermal properties of Sn–Ag alloys", Solid State Sciences, 119, p. 106685, (2021).
[37] J. Shen, Y. C. Chan, &S. Liu, "Growth mechanism of bulk Ag3Sn intermetallic compounds in Sn–Ag solder during solidification", Intermetallics, 16(9), p. 1142-1148, (2008).
[38] I. Karakaya and W. Thompson, "The Ag-Sn (silver-tin) system", Bulletin of Alloy Phase Diagrams, 8(4), p. 340-347, (1987).
[39] N. Saunders and A. Miodownik, "The Cu-Sn (copper-tin) system", Bulletin of Alloy Phase Diagrams, 11(3), p. 278-287, (1990).
[40] W. Zhai, W. Wang, D. Geng, &B. Wei, "A DSC analysis of thermodynamic properties and solidification characteristics for binary Cu–Sn alloys", Acta Materialia, 60(19), p. 6518-6527, (2012).
[41] W. Zhai and B. Wei, "Direct nucleation and growth of peritectic phase induced by substantial undercooling condition", Materials Letters, 108, p. 145-148, (2013).
[42] C. M. Miller, I. E. Anderson, &J. F. Smith, "A viable tin-lead solder substitute: Sn-Ag-Cu", Journal of electronic materials, 23, p. 595-601, (1994).
[43] M. Loomans and M. Fine, "Tin-silver-copper eutectic temperature and composition", Metallurgical and Materials Transactions A, 31, p. 1155-1162, (2000).
[44] K.-W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, et al., "Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys", Journal of electronic materials, 29, p. 1122-1136, (2000).
[45] M. Reid, J. Punch, M. Collins, &C. Ryan, "Effect of Ag content on the microstructure of Sn‐Ag‐Cu based solder alloys", Soldering & Surface Mount Technology, 20(4), p. 3-8, (2008).
[46] U. R. Kattner and W. J. Boettinger, "On the Sn-Bi-Ag ternary phase diagram", Journal of Electronic Materials, 23, p. 603-610, (1994).
[47] H. Ohtani, I. Satoh, M. Miyashita, &K. Ishida, "Thermodynamic analysis of the Sn-Ag-Bi ternary phase diagram", Materials transactions, 42(5), p. 722-731, (2001).
[48] D. Živković, I. Katayama, D. Manasijević, H. Yamashita, et al., "Thermodynamics and phase diagram calculation of some sections in the Ag-Bi-Sn system", Journal of the Serbian Chemical Society, 72(8-9), p. 901-909, (2007).
[49] D. Manasijević, L. Balanović, I. Marković, M. Gorgievski, et al., "Microstructural analysis and thermal conductivity of the Ag–Bi–Sn alloys", Thermochimica Acta, 717, p. 179344, (2022).
[50] K. Doi, H. Ohtani, &M. Hasebe, "Thermodynamic study of the phase equilibria in the Sn-Ag-Bi-Cu quaternary system", Materials Transactions, 45(2), p. 380-383, (2004).
[51] D. Živković, D. Minić, D. Manasijević, N. Talijan, et al., "Thermodynamic analysis and characterization of Bi–Cu–Sn alloys as advanced lead-free solder materials for high temperature application", Journal of Materials Science: Materials in Electronics, 22, p. 1130-1135, (2011).
[52] T. Yang, Y. Chen, K. You, Z. Dong, et al., "Effect of Bi, Sb, and Ti on Microstructure and Mechanical Properties of SAC105 Alloys", Materials, 15(14), p. 4727, (2022).
[53] J. Zhao, L. Qi, &L. Wang. Effect of Bi on the kinetics of intermetallics growth in Sn-3Ag-0.5 Cu/Cu solder joint. in Conference on High Density Microsystem Design and Packaging and Component Failure Analysis, 2006. HDP'06. 2006. IEEE.
[54] Royal Society of Chemistry, Periodic Table, Indium, (2023). Available from: https://www.rsc.org/periodic-table/element/49/indium.
(此全文20250726後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *