帳號:guest(3.148.103.93)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡鳴辰
作者(外文):Chien, Ming-Chen
論文名稱(中文):開發自我複製核酸系統用於癌症整合療法
論文名稱(外文):Development of self-amplifying RNA (saRNA) system for Combination Cancer Therapy
指導教授(中文):胡育誠
指導教授(外文):Hu, Yu-Chen
口試委員(中文):王慧菁
林美薇
口試委員(外文):Wang, Hui-Ching
Lin, Mei-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:110032524
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:54
中文關鍵詞:自我複製核酸奧沙利鉑癌症療法
外文關鍵詞:self-amplifying RNA (saRNA)OxaliplatinCancer therapy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:272
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在新冠病毒大流行期間,mRNA疫苗的成功不僅讓人們認識到了mRNA應用的潛力,還加速了未來的普及。自我複製RNA(saRNA)是mRNA研究的一個新焦點。saRNA可以表達RNA複製酶,實現自我複製並大量表現攜帶目標基因的mRNA。這一特性延長了RNA的存在的時間,同時保持基因的表達。使用化療誘導免疫原性細胞死亡(ICD),然後引發抗癌免疫反應是一種治療癌症的方法。奧沙利鉑(oxaliplatin, OXA)是美國食品藥物管理局(FDA)批准用於大腸癌治療的藥物之一,可以觸發ICD。然而,OXA單獨治療大腸癌的療效可能受到腫瘤微環境免疫抑制的限制。為了解決這個問題,我們可以透過saRNA表達更多免疫促進蛋白如OX40L和IL-12,以加強免疫反應並改善癌症治療。在本研究中,我們開發了saRNA系統先表達螢光蛋白ZsGreen,並將該系統通過TT3脂質奈米粒子(TT3-LNP)遞送到CT26細胞中。我們確認螢光蛋白可以持續表現至少28天。隨後,將螢光基因替換成OX40L和IL-12的基因後,我們也觀察到蛋白的表現可持續至少21天,且表現的蛋白是具有功能的。最後通過動物實驗,我們驗證OXA與saRNA的整合療法的療效優於OXA或saRNA的單一療法。
During the strike of the COVID-19 pandemic, the success of the mRNA vaccine not only let people understand the potential of mRNA applications but also accelerated the popularization of it in the future. Self-amplifying RNA (saRNA) is a new focus of mRNA research. SaRNA can express RNA replicase to achieve self-amplification and
replicate mRNA of the target gene it carries. This feature extends the life of RNA, leading to sustain gene expression at the same time. Using chemotherapy to induce immunogenic cell death (ICD) and then anti-cancer immune responses is one of the cancer treatments. Oxaliplatin (OXA), an FDA-approved drug for colon cancer treatment, is one of the drugs that can trigger ICD. However, the efficacy of OXA
monotherapy for colon cancer is limited probably due to immunosuppression in tumor microenvironments. To solve this problem, we can express more immunostimulatory proteins, OX40L and IL-12, by saRNA to strengthen immune responses and improve cancer treatment. At the beginning of this research, we developed the saRNA system
expressing fluorescence protein, ZsGreen, and delivered the system into CT26 via TT3 lipid nanoparticles (TT3-LNP). We confirmed the fluorescence can be sustained for at least 28 days. Later, after replacing the fluorescence gene with the genes of OX40L and
IL-12, we also observed the maintenance of functional protein expression for at least 21 days. Finally, through the in vivo study, we validated the therapeutic efficacy of OXA/saRNA combination therapy was better than that of OXA or saRNA monotherapy.
摘要...... I
Abstract ...... II
誌謝辭...... III
目錄 .......V
圖目錄 ...... VII
表目錄 ......VIII
第一章 文獻回顧 ...... 1
1-1 自我複製RNA (self-amplifying RNA, saRNA)作為基因表現系統用於疾病預防及治療...... 1
1-2 脂質奈米粒子 (Lipid nanoparticle, LNP) ...... 2
1-3 奧沙利鉑 (Oxaliplatin, OXA)的大腸癌治療 ...... 3
1-4 免疫促進蛋白....... 4
1-4-1 OX40 和OX40L ....... 4
1-4-2 介白素12 (interleukin 12, IL-12) ...... 4
1-5 研究動機 ...... 5
第二章 實驗材料與方法 ...... 10
2-1 細胞培養...... 10
2-2 質體建構 ...... 10
2-2-1 建構在細胞內表現saRNA 的質體 ...... 10
2-2-2 建構體外轉錄saRNA 所需的質體 ...... 12
2-3 DNA 引子黏合反應 (primer annealing) ...... 13
2-4 聚合酶連鎖反應 (polymerase chain reaction, PCR) ...... 15
2-5 Gibson Assembly ...... 16
2-6 DNA 連接 (Ligation) ...... 16
2-7 瓊脂凝膠萃取 DNA 片段......17
2-8 熱休克轉型反應 (Heat-shock transformation) 及菌落接種...... 17
2-9 質體萃取 ...... 18
2-10 大量質體萃取...... 18
2-11 RNA 體外轉錄 ...... 19
2-12 LNP 的製備...... 20
2-12-1 DlinDMA-LNP 製備...... 20
2-12-2 TT3-LNP 製備...... 20
2-13 LNP 特性分析...... 21
2-14 轉染策略...... 22
2-14-1 質體轉染...... 22
2-14-2 saRNA 轉染...... 22
2-15 體外蛋白質表現及活性測試...... 24
2-16 流式細胞儀分析 ...... 24
2-17 腫瘤模型建立與動物實驗 ...... 25
2-18 統計分析...... 25
第三章 實驗結果 ...... 26
3-1 建立saRNA 系統...... 26
3-1-1 建立與測試以質體表現的saRNA 系統 ...... 26
3-1-2 建立並測試體外轉錄的saRNA 系統 ...... 27
3-2 利用saRNA 系統表現目標基因OX40L 及IL-12 ...... 28
3-2-1 建構表現OX40L 及IL-12 的saRNA 與分析saRNA 的LNP 包覆......28
3-2-2 體外驗證saRNA 表現OX40L 及IL-12 的效果及蛋白功能...... 28
3-3 於腫瘤模型中驗證OXA 結合sa-OX12 的整合療法之療效...... 29
第四章 討論...... 42
第五章 結論與未來工作...... 46
第六章 參考資料...... 47
1. Polack, F.P., et al., Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New England Journal of Medicine, 2020. 383(27): p. 2603-2615.
2. Baden, L.R., et al., Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. New England Journal of Medicine, 2020. 384(5): p. 403-416.
3. Pourseif, M.M., et al., Self-amplifying mRNA vaccines: Mode of action,design, development and optimization. Drug Discov Today, 2022. 27(11): p.103341.
4. Rauch, S., et al., New Vaccine Technologies to Combat Outbreak Situations. Front Immunol, 2018. 9(1): p. 1963.
5. Krähling, V., et al., Self-amplifying RNA vaccine protects mice against lethal Ebola virus infection. Mol Ther, 2023. 31(2): p. 374-386.
6. Pardi, N., et al., mRNA vaccines — a new era in vaccinology. Nature Reviews Drug Discovery, 2018. 17(4): p. 261-279.
7. Barbier, A.J., et al., The clinical progress of mRNA vaccines and
immunotherapies. Nat Biotechnol, 2022. 40(6): p. 840-854.
8. Chaudhary, N., D. Weissman, and K.A. Whitehead, mRNA vaccines for
infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov, 2021. 20(11): p. 817-838.
9. Tews, B.A. and G. Meyers, Self-Replicating RNA. Methods Mol Biol, 2017. 1499: p. 15-35.
10. Lundstrom, K., Replicon RNA Viral Vectors as Vaccines. Vaccines (Basel), 2016. 4(13).
11. Atkins, G.J., M.N. Fleeton, and B.J. Sheahan, Therapeutic and prophylactic applications of alphavirus vectors. Expert Rev Mol Med, 2008. 10(15): p. e33.
12. Ljungberg, K. and P. Liljeström, Self-replicating alphavirus RNA vaccines. Expert Rev Vaccines, 2015. 14(14): p. 177-94.
13. Sharma, A. and B. Knollmann-Ritschel, Current Understanding of the
Molecular Basis of Venezuelan Equine Encephalitis Virus Pathogenesis and Vaccine Development. Viruses, 2019. 11(2).
14. Strauss, J.H. and E.G. Strauss, The alphaviruses: gene expression, replication, and evolution. Microbiol Rev, 1994. 58(16): p. 491-562.
15. Rupp, J.C., et al., Alphavirus RNA synthesis and non-structural protein functions. J Gen Virol, 2015. 96(17): p. 2483-2500.
16. Lemm, J.A., et al., Polypeptide requirements for assembly of functional Sindbis virus replication complexes: a model for the temporal regulation of minus- and plus-strand RNA synthesis. The EMBO Journal, 1994. 13(18): p. 2925-2934.
17. LaPointe, A.T., et al., Identification and Characterization of Sindbis Virus RNA-Host Protein Interactions. Journal of Virology, 2018. 92(19): p. e02171-17.
18. Frolova, E.I., et al., Functional Sindbis virus replicative complexes are formed at the plasma membrane. J Virol, 2010. 84(20): p. 11679-95.
19. Lundstrom, K., Biology and application of alphaviruses in gene therapy. Gene Therapy, 2005. 12(21): p. S92-S97.
20. Sawicki, D.L., et al., Mechanism for Control of Synthesis of Semliki Forest Virus 26S and 42S RNA. Journal of Virology, 1978. 25(22): p. 19-27.
21. Keränen, S. and L. Kääriäinen, Functional defects of RNA-negative
temperature-sensitive mutants of Sindbis and Semliki Forest viruses. Journal of Virology, 1979. 32(23): p. 19-29.
22. Singer, Z.S., et al., Quantitative measurements of early alphaviral replication dynamics in single cells reveals the basis for superinfection exclusion. Cell Systems, 2021. 12(3): p. 210-219.e3.
23. Vogel, A.B., et al., Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses. Mol Ther, 2018. 26(2): p. 446-455.
24. Blakney, A.K., S. Ip, and A.J. Geall, An Update on Self-Amplifying mRNA Vaccine Development. Vaccines, 2021. 9(2): p. 97.
25. Chang, Y.H., et al., Polyplex nanomicelle delivery of self-amplifying RNA vaccine. J Control Release, 2021. 338(6): p. 694-704.
26. Komori, M., et al., saRNA vaccine expressing membrane-anchored RBD
elicits broad and durable immunity against SARS-CoV-2 variants of concern. Nature Communications, 2023. 14(1): p. 2810.
27. McKay, P.F., et al., Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nature Communications, 2020. 11(1): p. 3523.
28. Erasmus, J.H., et al., An Alphavirus-derived replicon RNA vaccine induces
SARS-CoV-2 neutralizing antibody and T cell responses in mice and
nonhuman primates. Sci Transl Med, 2020. 12(555).
29. Pollock, K.M., et al., Safety and immunogenicity of a self-amplifying RNA
vaccine against COVID-19: COVAC1, a phase I, dose-ranging trial.
EClinicalMedicine, 2022. 44: p. 101262.
30. Moyo, N., et al., Efficient Induction of T Cells against Conserved HIV-1 Regions by Mosaic Vaccines Delivered as Self-Amplifying mRNA. Mol Ther Methods Clin Dev, 2019. 12: p. 32-46.
31. Silva-Pilipich, N., et al., Intratumoral electroporation of a self-amplifying RNA expressing IL-12 induces antitumor effects in mouse models of cancer. Molecular Therapy - Nucleic Acids, 2022. 29: p. 387-399.
32. Li, Y., et al., Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat Cancer, 2020. 1(8): p. 882-893.
33. Ramos da Silva, J., et al., Single immunizations of self-amplifying or nonreplicating mRNA-LNP vaccines control HPV-associated tumors in mice. Sci Transl Med, 2023. 15(686): p. eabn3464.
34. Komdeur, F.L., et al., First-in-Human Phase I Clinical Trial of an SFV-Based RNA Replicon Cancer Vaccine against HPV-Induced Cancers. Mol Ther, 2021. 29(2): p. 611-625.
35. Hajj, K.A. and K.A. Whitehead, Tools for translation: non-viral materials for therapeutic mRNA delivery. Nature Reviews Materials, 2017. 2(24): p. 17056.
36. Kowalski, P.S., et al., Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol Ther, 2019. 27(25): p. 710-728.
37. Li, B., X. Zhang, and Y. Dong, Nanoscale platforms for messenger RNA delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2019. 11(26): p.e1530.
38. Guan, S. and J. Rosenecker, Nanotechnologies in delivery of mRNA
therapeutics using nonviral vector-based delivery systems. Gene Therapy, 2017. 24(27): p. 133-143.
39. Zhao, W., et al., RNA delivery biomaterials for the treatment of genetic and rare diseases. Biomaterials, 2019. 217(28): p. 119291.
40. Uchida, S., et al., Nanomedicine-Based Approaches for mRNA Delivery. Molecular Pharmaceutics, 2020. 17(29): p. 3654-3684.
41. Meng, C., et al., Nanoplatforms for mRNA Therapeutics. Advanced
Therapeutics, 2021. 4(30): p. 2000099.
42. Gebre, M.S., et al., Novel approaches for vaccine development. Cell, 2021. 184(31): p. 1589-1603.
43. Weng, Y., et al., The challenge and prospect of mRNA therapeutics landscape. Biotechnol Adv, 2020. 40(32): p. 107534.
44. Kim, J., et al., Self-assembled mRNA vaccines. Adv Drug Deliv Rev, 2021. 170(33): p. 83-112.
45. Akinc, A., et al., The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol, 2019. 14: p. 1084-1087.
46.Baden, L.R., et al., Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. New England Journal of Medicine, 2020. 384: p. 403-416.
47.Barbier, A.J., et al., The clinical progress of mRNA vaccines and immunotherapies. Nat Biotechnol, 2022. 40: p. 840-854.
48.Suzuki, Y. and H. Ishihara, Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs. Drug Metabolism and Pharmacokinetics, 2021. 41: p. 100424.
49.Mack, C.D., et al., Racial disparities in receipt and comparative effectiveness of oxaliplatin for stage III colon cancer in older adults. Cancer, 2012. 118(11): p. 2925-34.
50.Huang, Y., et al., NIR-II light evokes DNA cross-linking for chemotherapy and immunogenic cell death. Acta Biomaterialia, 2023. 160: p. 198-210.
51.Liu, P., et al., PD-1 blockade synergizes with oxaliplatin-based, but not cisplatin-based, chemotherapy of gastric cancer. Oncoimmunology, 2022. 11(1): p. 2093518.
52.Jiang, M., et al., Chemotherapeutic drug-induced immunogenic cell death for nanomedicine-based cancer chemo–immunotherapy. Nanoscale, 2021. 13(41): p. 17218-17235.
53.Zhang, Q., et al., Hierarchical Microparticles Delivering Oxaliplatin and NLG919 Nanoprodrugs for Local Chemo-immunotherapy. ACS Applied Materials & Interfaces, 2022. 14(50): p. 48527-48539.
54.Miao, X., et al., Inhibition of indoleamine 2,3-dioxygenase 1 synergizes with oxaliplatin for efficient colorectal cancer therapy. Molecular Therapy - Methods & Clinical Development, 2021. 20(51): p. 442-450.
55.Golchin, S., et al., Synergistic antitumor effect of anti-PD-L1 combined with oxaliplatin on a mouse tumor model. J Cell Physiol, 2019. 234(52): p. 19866-19874.
56.Fu, D., et al., T cell recruitment triggered by optimal dose platinum compounds contributes to the therapeutic efficacy of sequential PD-1 blockade in a mouse model of colon cancer. Am J Cancer Res, 2020. 10(53): p. 473-490.
57.Huang, H., et al., Nanoenabled Reversal of IDO1-Mediated Immunosuppression Synergizes with Immunogenic Chemotherapy for Improved Cancer Therapy. Nano Letters, 2019. 19(8): p. 5356-5365.
58.Gonzalez-Aparicio, M., et al., Oxaliplatin in combination with liver-specific expression of interleukin 12 reduces the immunosuppressive microenvironment of tumours and eradicates metastatic colorectal cancer in mice. Gut, 2011. 60(3): p. 341-9.
59.Willoughby, J., et al., OX40: Structure and function – What questions remain? Molecular Immunology, 2017. 83: p. 13-22.
60.Ishii, N., et al., Chapter 3 - OX40–OX40 Ligand Interaction in T-Cell-Mediated Immunity and Immunopathology, in Advances in Immunology, F.W. Alt, Editor. 2010, Academic Press. p. 63-98.
61.Meylan, F. and R.M. Siegel, TNF superfamily cytokines in the promotion of Th9 differentiation and immunopathology. Seminars in Immunopathology, 2017. 39(1): p. 21-28.
62.Croft, M., et al., The significance of OX40 and OX40L to T-cell biology and immune disease. Immunological reviews, 2009. 229(1): p. 173-191.
63.Liu, B., et al., OX40 promotes obesity-induced adipose inflammation and insulin resistance. Cellular and Molecular Life Sciences, 2017. 74(20): p. 3827-3840.
64.Wang, Q., et al., Enhancement of CD4+ T cell response and survival via coexpressed OX40/OX40L in Graves' disease. Molecular and Cellular Endocrinology, 2016. 430: p. 115-124.
65.Zander, Ryan A., et al., PD-1 Co-inhibitory and OX40 Co-stimulatory Crosstalk Regulates Helper T Cell Differentiation and Anti-Plasmodium Humoral Immunity. Cell Host & Microbe, 2015. 17(5): p. 628-641.
66.Bassett, J.D., et al., Combined mTOR Inhibition and OX40 Agonism Enhances CD8+ T Cell Memory and Protective Immunity Produced by Recombinant Adenovirus Vaccines. Molecular Therapy, 2012. 20(4): p. 860-869.
67.Song, A., et al., OX40 and Bcl-xL Promote the Persistence of CD8 T Cells to Recall Tumor-Associated Antigen. The Journal of Immunology, 2005. 175(6): p. 3534-3541.
68.Fujita, T., et al., Functional characterization of OX40 expressed on human CD8+ T cells. Immunology Letters, 2006. 106(1): p. 27-33.
69.Bansal-Pakala, P., et al., Costimulation of CD8 T Cell Responses by OX40. The Journal of Immunology, 2004. 172(8): p. 4821-4825.
70.Tugues, S., et al., New insights into IL-12-mediated tumor suppression. Cell Death Differ, 2015. 22(2): p. 237-46.
71.Salcedo, T.W., et al., Modulation of perforin and granzyme messenger RNA expression in human natural killer cells. J Immunol, 1993. 151(5): p. 2511-20.
72.Perussia, B., et al., Natural killer (NK) cell stimulatory factor or IL-12 has differential effects on the proliferation of TCR-alpha beta+, TCR-gamma delta+ T lymphocytes, and NK cells. J Immunol, 1992. 149(11): p. 3495-502.
73.Aste-Amezaga, M., et al., Cooperation of natural killer cell stimulatory factor/interleukin-12 with other stimuli in the induction of cytokines and cytotoxic cell-associated molecules in human T and NK cells. Cell Immunol, 1994. 156(2): p. 480-92.
74.Djuretic, I.M., et al., Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat Immunol, 2007. 8(2): p. 145-53.
75.Prochazkova, J., K. Pokorna, and V. Holan, IL-12 inhibits the TGF-β-dependent T cell developmental programs and skews the TGF-β-induced differentiation into a Th1-like direction. Immunobiology, 2012. 217(1): p. 74-82.
76.Nagarsheth, N., M.S. Wicha, and W. Zou, Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nature Reviews Immunology, 2017. 17(9): p. 559-572.
77.Grohmann, U., et al., IL-12 acts directly on DC to promote nuclear localization of NF-kappaB and primes DC for IL-12 production. Immunity, 1998. 9(3): p. 315-23.
78.Magini, D., et al., Self-Amplifying mRNA Vaccines Expressing Multiple Conserved Influenza Antigens Confer Protection against Homologous and Heterosubtypic Viral Challenge. PLoS One, 2016. 11(42): p. e0161193.
79.Hicks, K.C., et al., Tumour-targeted interleukin-12 and entinostat combination therapy improves cancer survival by reprogramming the tumour immune cell landscape. Nature Communications, 2021. 12(1): p.
80.Holtkamp, S., et al., Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood, 2006. 108(13): p. 4009-17.
81.Hardy, R.W. and C.M. Rice, Requirements at the 3' end of the sindbis virus genome for efficient synthesis of minus-strand RNA. Journal of Virology, 2005. 79(8): p. 4630-4639.
82.White, E., et al., AT-rich sequence elements promote nascent transcript cleavage leading to RNA polymerase II termination. Nucleic Acids Res, 2013. 41(3): p. 1797-806.
83.Grier, A.E., et al., pEVL: A Linear Plasmid for Generating mRNA IVT Templates With Extended Encoded Poly(A) Sequences. Mol Ther Nucleic Acids, 2016. 5(4): p. e306.
84.Zimmermann, T.S., et al., RNAi-mediated gene silencing in non-human primates. Nature, 2006. 441(7089): p. 111-114.
85.Moss, K.H., et al., Lipid Nanoparticles for Delivery of Therapeutic RNA Oligonucleotides. Mol Pharm, 2019. 16(6): p. 2265-2277.
86.Lou, G., et al., Delivery of self-amplifying mRNA vaccines by cationic lipid nanoparticles: The impact of cationic lipid selection. J Control Release, 2020. 325: p. 370-379.
87.Vrtačnik, P., et al., Influence of trypsinization and alternative procedures for cell preparation before RNA extraction on RNA integrity. Anal Biochem, 2014. 463: p. 38-44.
88.Montgomery, S.A., et al., Ribosomal Protein S6 Associates with Alphavirus Nonstructural Protein 2 and Mediates Expression from Alphavirus Messages. Journal of Virology, 2006. 80(15): p. 7729-7739.
89.Neshat, S.Y., et al., Polymeric nanoparticle gel for intracellular mRNA delivery and immunological reprogramming of tumors. Biomaterials, 2023. 300: p. 122185.
90.Lamoot, A., et al., Successful batch and continuous lyophilization of mRNA LNP formulations depend on cryoprotectants and ionizable lipids. Biomaterials Science, 2023. 11(12): p. 4327-4334.
91.Golba, B., et al., Visible Light Conjugation with Triazolinediones as a Route to Degradable Poly(ethylene glycol)-Lipids for mRNA Lipid Nanoparticle Formulation. Angew Chem Int Ed Engl, 2023. 62(23): p. e202301102.
92.Lloyd, K.G., B.J. Macgregor, and A. Teske, Quantitative PCR methods for RNA and DNA in marine sediments: maximizing yield while overcoming inhibition. FEMS Microbiol Ecol, 2010. 72(1): p. 143-51.
93.Seo, Y., et al., In-Cell RNA Hydrolysis Assay: A Method for the Determination of the RNase Activity of Potential RNases. Mol Biotechnol, 2015. 57(6): p. 506-12.
94.Liu, Z., et al., Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Advanced Drug Delivery Reviews, 2021. 174: p. 576-612.
95.Huang, Y., et al., Intracellular delivery of messenger RNA to macrophages with surfactant-derived lipid nanoparticles. Materials Today Advances, 2022. 16: p. 100295.
96.Geall, A.J., et al., Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci U S A, 2012. 109(36): p. 14604-9.
97.Wu, J., The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application. J Pers Med, 2021. 11(8).
98.Li, B., et al., An Orthogonal Array Optimization of Lipid-like Nanoparticles for mRNA Delivery in Vivo. Nano Letters, 2015. 15(12): p. 8099-8107.
99.Zhao, P., et al., Long-term storage of lipid-like nanoparticles for mRNA delivery. Bioact Mater, 2020. 5(2): p. 358-363.
100.Aschmoneit, N., et al., Fc-based Duokines: dual-acting costimulatory molecules comprising TNFSF ligands in the single-chain format fused to a heterodimerizing Fc (scDk-Fc). Oncoimmunology, 2022. 11(1): p. 2028961.
101.Portielje, J.E., et al., Interleukin 12 induces activation of fibrinolysis and coagulation in humans. Br J Haematol, 2001. 112(2): p. 499-505.
102.Liao, C., et al., Tumor hypoxia: From basic knowledge to therapeutic implications. Seminars in Cancer Biology, 2023. 88: p. 172-186.
103.Muz, B., et al., The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl), 2015. 3: p. 83-92.
104.Qiu, Y., P. Li, and C. Ji, Cell Death Conversion under Hypoxic Condition in Tumor Development and Therapy. Int J Mol Sci, 2015. 16(10): p. 25536-51.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *