|
(1)Lu, H.; Li, X.; Lei, Q. Conjugated Conductive Polymer Materials and its Applications: A Mini-Review. Front Chem 2021, 9, 732132. DOI: 10.3389/fchem.2021.732132 From NLM. (2)陳壽安. 意外發現的導電高分子. 科學月刊, 2000. (accessed. (3)Guo, Q.; Guo, Q.; Geng, Y.; Tang, A.; Zhang, M.; Du, M.; Sun, X.; Zhou, E. Recent advances in PM6:Y6-based organic solar cells. Materials Chemistry Frontiers 2021, 5 (8), 3257-3280, 10.1039/D1QM00060H. DOI: 10.1039/D1QM00060H. (4)Cao, Z.; Li, Z.; Tolba, S. A.; Mason, G. T.; Xiong, M.; Ocheje, M. U.; Alesadi, A.; Do, C.; Hong, K.; Lei, T.; et al. Probing single-chain conformation and its impact on the optoelectronic properties of donor–accepter conjugated polymers. J. Mater. Chem. A 2023, 10.1039/D2TA09389H. DOI: 10.1039/D2TA09389H. (5)Khasbaatar, A.; Cheng, A.; Jones, A. L.; Kwok, J. J.; Park, S. K.; Komar, J. K.; Lin, O.; Jackson, N. E.; Chen, Q.; DeLongchamp, D. M.; et al. Solution Aggregate Structures of Donor Polymers Determine the Morphology and Processing Resiliency of Non-Fullerene Organic Solar Cells. Chemistry of Materials 2023, 35 (7), 2713-2729. DOI: 10.1021/acs.chemmater.2c02141. (6)Ze-Fan, Y.; Jie-Yu, W.; Jian, P. Controlling morphology and microstructure of conjugated polymers via solution-state aggregation. Progress in Polymer Science 2023, 136, 101626. DOI: https://doi.org/10.1016/j.progpolymsci.2022.101626. (7)Danielsen, S. P. O.; Bridges, C. R.; Segalman, R. A. Chain Stiffness of Donor–Acceptor Conjugated Polymers in Solution. Macromolecules 2022, 55 (2), 437-449. DOI: 10.1021/acs.macromol.1c02229. (8)Liu, C.; Hu, W.; Jiang, H.; Liu, G.; Han, C. C.; Sirringhaus, H.; Boué, F.; Wang, D. Chain Conformation and Aggregation Structure Formation of a High Charge Mobility DPP-Based Donor–Acceptor Conjugated Polymer. Macromolecules 2020, 53 (19), 8255-8266. DOI: 10.1021/acs.macromol.0c01646. (9)Yi, H. L.; Wu, C. H.; Wang, C. I.; Hua, C. C. Solvent-Regulated Mesoscale Aggregation Properties of Dilute PBTTT-C14 Solutions. Macromolecules 2017, 50 (14), 5498-5509. DOI: 10.1021/acs.macromol.7b00790. (10)Wei, Y.; Hore, M. J. A. Characterizing polymer structure with small-angle neutron scattering: A Tutorial. Journal of Applied Physics 2021, 129 (17), 171101. DOI: 10.1063/5.0045841. (11)Zheng, Y.-Q.; Yao, Z.-F.; Lei, T.; Dou, J.-H.; Yang, C.-Y.; Zou, L.; Meng, X.; Ma, W.; Wang, J.-Y.; Pei, J. Unraveling the Solution-State Supramolecular Structures of Donor–Acceptor Polymers and their Influence on Solid-State Morphology and Charge-Transport Properties. Advanced Materials 2017, 29 (42), 1701072. DOI: https://doi.org/10.1002/adma.201701072. (12)Kwok, J. J.; Park, K. S.; Patel, B. B.; Dilmurat, R.; Beljonne, D.; Zuo, X.; Lee, B.; Diao, Y. Understanding solution state conformation and aggregate structure of conjugated polymers via small angle x-ray scattering. Macromolecules 2022. (13)Tao, X.; Zhao, Y.; Wang, S.; Li, C.; Li, R. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chemical Society Reviews 2022. (14)Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. nature 1972, 238 (5358), 37-38. (15)Yanagida, S.; Kabumoto, A.; Mizumoto, K.; Pac, C.; Yoshino, K. Poly(p-phenylene)-catalysed photoreduction of water to hydrogen. Journal of the Chemical Society, Chemical Communications 1985, (8), 474-475, 10.1039/C39850000474. DOI: 10.1039/C39850000474. (16)Xiao, N.; Li, S.; Li, X.; Ge, L.; Gao, Y.; Li, N. The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen. Chinese Journal of Catalysis 2020, 41 (4), 642-671. (17)Meng, X.; Liu, L.; Ouyang, S.; Xu, H.; Wang, D.; Zhao, N.; Ye, J. Nanometals for Solar-to-Chemical Energy Conversion: From Semiconductor-Based Photocatalysis to Plasmon-Mediated Photocatalysis and Photo-Thermocatalysis. Advanced Materials 2016, 28 (32), 6781-6803. DOI: https://doi.org/10.1002/adma.201600305. (18)Zhang, Z.; Cao, S.-W.; Liao, Y.; Xue, C. Selective photocatalytic decomposition of formic acid over AuPd nanoparticle-decorated TiO2 nanofibers toward high-yield hydrogen production. Applied Catalysis B: Environmental 2015, 162, 204-209. DOI: https://doi.org/10.1016/j.apcatb.2014.06.055. (19)Li, S.; Hou, L.; Zhang, L.; Chen, L.; Lin, Y.; wang, D.; Xie, T. Direct evidence of the efficient hole collection process of the CoOx cocatalyst for photocatalytic reactions: a surface photovoltage study. J. Mater. Chem. A 2015, 3 (34), 17820-17826, 10.1039/C5TA04653J. DOI: 10.1039/C5TA04653J. (20)Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the Exchange Current for Hydrogen Evolution. Journal of The Electrochemical Society 2005, 152 (3), J23. DOI: 10.1149/1.1856988. (21)Pellegrin, Y.; Odobel, F. Sacrificial electron donor reagents for solar fuel production. Comptes Rendus Chimie 2017, 20 (3), 283-295. DOI: https://doi.org/10.1016/j.crci.2015.11.026. (22)Lin, W.-C.; Jayakumar, J.; Chang, C.-L.; Ting, L.-Y.; Elsayed, M. H.; Abdellah, M.; Zheng, K.; Elewa, A. M.; Lin, Y.-T.; Liu, J.-J.; et al. Effect of energy bandgap and sacrificial agents of cyclopentadithiophene-based polymers for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental 2021, 298, 120577. DOI: https://doi.org/10.1016/j.apcatb.2021.120577. (23)Wang, W. R.; Li, J.; Li, Q.; Xu, Z. W.; Liu, L. N.; Chen, X. Q.; Xiao, W. J.; Yao, J. H.; Zhang, F.; Li, W. S. Side-chain-extended conjugation: a strategy for improving the photocatalytic hydrogen production performance of a linear conjugated polymer. J. Mater. Chem. A 2021, 9 (13), 8782-8791, Article. DOI: 10.1039/d0ta12425g. (24)Meng, B.; Liu, J.; Wang, L. X. Oligo(ethylene glycol) as side chains of conjugated polymers for optoelectronic applications. Polymer Chemistry 2020, 11 (7), 1261-1270. DOI: 10.1039/c9py01469a. (25)Woods, D. J.; Hillman, S. A. J.; Pearce, D.; Wilbraham, L.; Flagg, L. Q.; Duffy, W.; McCulloch, I.; Durrant, J. R.; Guilbert, A. A. Y.; Zwijnenburg, M. A.; et al. Side-chain tuning in conjugated polymer photocatalysts for improved hydrogen production from water. Energy & Environmental Science 2020, 13 (6), 1843-1855, 10.1039/D0EE01213K. DOI: 10.1039/D0EE01213K. (26)Hu, Z. C.; Wang, Z. F.; Zhang, X.; Tang, H. R.; Liu, X. C.; Huang, F.; Cao, Y. Conjugated Polymers with Oligoethylene Glycol Side Chains for Improved Photocatalytic Hydrogen Evolution. iScience 2019, 13, 33-+, Article. DOI: 10.1016/j.isci.2019.02.007. (27)Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. Science 1992, 258 (5087), 1474-1476. DOI: 10.1126/science.258.5087.1474. (28)Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270 (5243), 1789-1791. DOI: 10.1126/science.270.5243.1789. (29)Zhang, M.; Guo, X.; Ma, W.; Ade, H.; Hou, J. A Large-Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance. Advanced Materials 2015, 27 (31), 4655-4660. DOI: https://doi.org/10.1002/adma.201502110. (30)Han, C.; Wang, J.; Zhang, S.; Chen, L.; Bi, F.; Wang, J.; Yang, C.; Wang, P.; Li, Y.; Bao, X. Over 19% Efficiency Organic Solar Cells by Regulating Multidimensional Intermolecular Interactions. Advanced Materials 2023, 35 (10), 2208986. DOI: https://doi.org/10.1002/adma.202208986. (31)Feng, L.; Yuan, J.; Zhang, Z.; Peng, H.; Zhang, Z.-G.; Xu, S.; Liu, Y.; Li, Y.; Zou, Y. Thieno 3,2-b pyrrolo-Fused Pentacyclic Benzotriazole-Based Acceptor for Efficient Organic Photovoltaics. ACS Applied Materials \& Interfaces 2017, 9 (37), 31985-31992. DOI: 10.1021/acsami.7b10995 , note = PMID: 28837314. (32)Jun, Y.; Yunqiang, Z.; Liuyang, Z.; Guichuan, Z.; Hin-Lap, Y.; Tsz-Ki, L.; Xinhui, L.; Can, Z.; Hongjian, P.; Paul, A. J.; et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3 (4), 1140-1151. DOI: https://doi.org/10.1016/j.joule.2019.01.004. (33)Cui, Y.; Yao, H.; Hong, L.; Zhang, T.; Tang, Y.; Lin, B.; Xian, K.; Gao, B.; An, C.; Bi, P.; et al. Organic photovoltaic cell with 17% efficiency and superior processability. National Science Review 2019, 7 (7), 1239-1246. DOI: 10.1093/nsr/nwz200 (acccessed 6/4/2023). (34)Kui, J.; Qingya, W.; Joshua Yuk Lin, L.; Zhengxing, P.; Ha Kyung, K.; Jun, Y.; Long, Y.; Harald, A.; Yingping, Z.; He, Y. Alkyl Chain Tuning of Small Molecule Acceptors for Efficient Organic Solar Cells. Joule 2019, 3 (12), 3020-3033. DOI: https://doi.org/10.1016/j.joule.2019.09.010. (35)Zaheer, A.; Seung Un, R.; Muhammad, H.; Chang Eun, S.; Hang Ken, L.; Sang Kyu, L.; Won Suk, S.; Taiho, P.; Jong-Cheol, L. Optimized vertical phase separation via systematic Y6 inner side-chain modulation for non-halogen solvent processed inverted organic solar cells. Nano Energy 2022, 101, 107574. DOI: https://doi.org/10.1016/j.nanoen.2022.107574. (36)Chen, H.; Liang, H.; Guo, Z.; Zhu, Y.; Zhang, Z.; Li, Z.; Cao, X.; Wang, H.; Feng, W.; Zou, Y.; et al. Central Unit Fluorination of Non-Fullerene Acceptors Enables Highly Efficient Organic Solar Cells with Over 18 % Efficiency. Angewandte Chemie International Edition 2022, 61 (41), e202209580. DOI: https://doi.org/10.1002/anie.202209580. (37)He, C.; Chen, Z.; Wang, T.; Shen, Z.; Li, Y.; Zhou, J.; Yu, J.; Fang, H.; Li, Y.; Li, S.; et al. Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18%. Nature Communications 2022, 13 (1), 2598. DOI: 10.1038/s41467-022-30225-7. (38)林育昇. 以臨場掠角X光散射解析受五氟苯基添加劑調控之有機太陽能電池薄膜相分離及結晶行為. 國立清華大學化學工程學系, 2021. (39)Project, T. S. SasView manual. 2019. (accessed 2023 06/04). (40)Lin, J.-M.; Lin, T.-L.; Jeng, U.-S.; Zhong, Y.-J.; Yeh, C.-T.; Chen, T.-Y. Fractal aggregates of the Pt nanoparticles synthesized by the polyol process and poly (N-vinyl-2-pyrrolidone) reduction. Applied Crystallography 2007, 40 (s1), s540-s543. (41)Li, Y.-C.; Chen, K.-B.; Chen, H.-L.; Hsu, C.-S.; Tsao, C.-S.; Chen, J.-H.; Chen, S.-A. Fractal Aggregates of Conjugated Polymer in Solution State. Langmuir 2006, 22 (26), 11009-11015. DOI: 10.1021/la0612769. (42)Lin, Y.-C.; Chen, C.-Y.; Chen, H.-L.; Hashimoto, T.; Chen, S.-A.; Li, Y.-C. Hierarchical self-assembly of nanoparticles in polymer matrix and the nature of the interparticle interaction. The Journal of chemical physics 2015, 142, 214905. DOI: 10.1063/1.4921567. (43)Flory, P. J.; Volkenstein, M. Statistical mechanics of chain molecules. Biopolymers 1969, 8 (5), 699-700. DOI: https://doi.org/10.1002/bip.1969.360080514. (44)Pedersen, J. S.; Schurtenberger, P. Scattering Functions of Semiflexible Polymers with and without Excluded Volume Effects. Macromolecules 1996, 29 (23), 7602-7612. DOI: 10.1021/ma9607630. (45)Chen, W.-R.; Butler, P. D.; Magid, L. J. Incorporating intermicellar interactions in the fitting of SANS data from cationic wormlike micelles. Langmuir 2006, 22 (15), 6539-6548. (46)Performance of the new biological small- and wide-angle X-ray scattering beamline 13A at the Taiwan Photon Source. Journal of Applied Crystallography 2022, 55 (2), 340--352. DOI: 10.1107/S1600576722001923. (47)柳嘉甄. 探討引入親水性寡乙二醇合成側鏈橋接型共軛聚合物於光催化產氫之影響. 國立清華大學, 2022. (48)Bao, S.; Yang, H.; Fan, H.; Zhang, J.; Wei, Z.; Cui, C.; Li, Y. Volatilizable Solid Additive-Assisted Treatment Enables Organic Solar Cells with Efficiency over 18.8% and Fill Factor Exceeding 80%. Advanced Materials 2021, 33 (48), 2105301. DOI: https://doi.org/10.1002/adma.202105301. (49)Wu, B.; Hanay, S. B.; Kimmins, S. D.; Cryan, S.-A.; Hermida Merino, D.; Heise, A. Ion-Triggered Hydrogels Self-Assembled from Statistical Copolypeptides. ACS Macro Letters 2022, 11 (3), 323-328. DOI: 10.1021/acsmacrolett.1c00774.
|