帳號:guest(3.22.248.100)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴澤宇
作者(外文):Lai, Ze-Yu
論文名稱(中文):以小角-廣角X光散射解析有機共軛聚合物與單體溶液結構與元件性能之間相關性
論文名稱(外文):Correlation between Solution Structure and Device Performance of Conjugated Species as Revealed via Using Small/ Wide-angle X-ray Scattering
指導教授(中文):鄭有舜
指導教授(外文):Jeng, U-Ser
口試委員(中文):蘇安仲
陳信龍
鄭彥如
周鶴修
口試委員(外文):Su, An-Chung
Chen, Hsin-Lung
Cheng, Yen-Ju
Chou, Ho-Hsiu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:110032512
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:91
中文關鍵詞:共軛聚合物產氫反應側鏈橋接聚合物混摻系統太陽能電池非富勒烯受體小角度-廣角度X光散射
外文關鍵詞:Conjugated polymersHydrogen evolution reactionSide-chain bridged polymersBlended system solar cellsNon-fullerene acceptorsSmall/wide-angle X-ray scattering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:423
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,研究有機共軛聚合物應用領域蓬勃發展,歸因於其分子結構具有導電特性,在發展太陽能領域具有龐大發展潛力,其中光催化產氫、光伏打電池便是目前熱門研究題目。此兩者的共通點皆是應用聚合物的分子設計去調控內部的能階差以形成予體-受體機制。然而,影響裝置功能的關鍵並不僅限於化學上的分子設計,更與其在溶液以及固態的單體與聚集結構特徵相關,故研究其結構特徵並進行調控極為重要。本研究利用小角度-廣角度X光散射技術(Small- and Wide-Angle X-ray Scattering, SAXS-WAXS or SWAXS)針對此類材料分別探討其於溶液狀態下的聚集結構特徵與其催化產氫或薄膜態太陽光電能表現的關聯性。第一部分探討側鏈橋接(side chain briged)的PCz2S聚合物於水溶液下的聚集網路對於產氫速率(HER)的影響,透過SWAXS數據的模型擬合,可以發現在水溶液中擁有最鬆散聚集網絡結構的PCz2S-PEG共軛聚合物,對應至最佳產氫速率。由此推測,寡乙二醇側鏈長度可助於調控聚集網絡內部大小,以導引水分子進入進行照催化光電子與氫離子的產生與電子交換形成氫氣。原位(in operando)照光產氫的SWAXS結果顯示,PCz2S-PEG與鉑離子照光共催化產氫的過程可能是以氫氣生成後再聚集形成約1.4 nm 大小的氫團簇,其初期產氫的動態可以成核量產方式描述。第二部分則探討雙成分系統有機太陽能電池於有機溶液中的結構特徵對光電轉換效率(PCE)之影響,使用模型擬合混摻系統,可得知在與幾個不同的非富勒烯受體(NFAs)的小分子混摻的系統中,PM6共軛聚合物所呈現出的鏈僵直度皆不相同,在氯苯溶液中展現出最僵直鏈的PM6:CB16二元系統,透露出與小分子CB16有較佳的交互作用,其對應的元件薄膜也有最好的光電轉換效率。在PM6:SB16混摻系統,則可以觀測到在進行旋轉塗佈成膜前的氯苯溶液中,SB16即已形成層狀排列的結構。這代表其混摻前SB16間即形成自我層狀排列。此種較大尺度的相分離現象大量減少到其與PM6的予體-受體的交互作用(電子交換),造成低光電轉換效率的現象。本研究結果清楚顯示出調控溶液狀態下的聚集結構特徵對於提升有機共軛聚合物的工作表現有相當重要的影響。

In recent years, there has been significant development in the field of organic conjugated polymers due to their advanced molecular structures for improved electrical properties. Among the feature applications, photocatalytic hydrogen production and photovoltaic devices have particularly gained attention. These applications rely on molecular design of the conjugate polymers for appropriate energy levels that can form efficient donor-acceptor(D-A) pairs. However, factors influencing the photovoltaic device performance go beyond the molecular architecture design; tuning aggregation or network structures in solution and device thin films is also critically relevant. Understanding the solution aggregation structures of these materials is of help in controlling the structures formed in the corresponding device films. In this study, we have utilized small/wide- angle X-ray scattering (SWAXS) to investigate the correlations between the morphology in solution and the optoelectronic performance for two types of conjugate polymers. In the first system, we study the influence of network aggregation in aqueous solution of several side-chain bridged conjugate polymers, which can perform hydrogen evolution reaction (HER) under light illumination. The SWAXS data analysis reveals that PCz2S-PEG exhibits a mass fractal structure of relatively loose aggregate networks in water-based solution, among the three side-chain bridged conjugate polymers synthesized, and performs a best hydrogen evolution rate. The higher performance is attributed to the lengthened oligoethylene glycol side chains of PCz2S-PEG that can provide more internal space for water molecules to permeate inside the polymer fractal aggregates. Consequently, proton-electron pair production followed by electron transfer for hydrogen production can be better promoted. Furthermore, in-situ SAXS observation of PCz2S-PEG in solution under light illumination reveals a nucleation formation of 1.4 nm nanoclusters that are attributed to hydrogen clusters. In the second system, we investigate the solution structures of a conjugate polymer PM6 and its mixtures with several Y6-inspired small conjugate molecules in organic solutions; the solution structures are correlated to the photovoltaic performance (PCE) of the solar-cell films spin-coated from the binary solutions. SAXS model fitting of the blend system shows that the conjugated polymer PM6 exhibits different chain rigidity and network structures in chlorobenzene solutions containing the respective small molecules. Among them, PM6:CB16 complex exhibits the most rigid worm-like chains; which is associated with the highest photovoltaic conversion efficiency achieved with the spin-coated device film. In contrast, the PM6:SB16 mixture in chlorobenzene exhibits a lamellar structure, which resembles that for the SB16 solution alone and that in the thin films spin-coated from the mixture. The result suggests that SB16 phase-segregates strongly from PM6 in the solution and self-assembles into lamellar nanodomains. Consequently, the large-scale phase segregation and aggregation lead to a lowest device performance, due to less interfaces between PM6 and SB16 for charge separation and transfer. Understanding the solution structures of the organic conjugate polymers and their complexes with the small-molecule acceptors is of help in future optimization of the molecular design and device processing for improving further organic photovoltaic and photocatalytic performances.
摘要......1
ABSTRACT......3
目錄......5
圖目錄......7
表目錄......10
第1章 緒論......11
1.1共軛聚合物......11
1.2 有機共軛聚合物於溶液狀態下型態觀察......13
1.3 有機半導體機制......20
1.4 光催化產氫之有機共軛聚合物......22
1.5 有機太陽能電池......28
1.6 研究動機......30
第2章 研究方法......32
2.1 小角散射原理......32
2.2 小角散射模型擬合......33
2.3 幕次散射定律(power-law scattering)與質量碎形(mass fractal)......35
2.4 蠕蟲鏈(worm-like)......38
第3章 實驗設置......40
3.1 小角-廣角X光散射實驗設置......40
3.2 原位(in-operando)小角及廣角散射測量......45
3.3 相關性質測量1: 光催化產氫系統......46
3.4 相關性質測量2: 有機太陽能電池......49
第4章 結果與討論一: 側鏈橋接共軛聚合物於水溶液結構特徵探討......56
4.1 側鏈橋接共軛高分子於水溶液下結構特徵分析......57
4.2 受可見光激發原位(In-situ)小角X光散射分析......63
第5章 結果與討論之二: 太陽能有機電池(OSCS)二元系統於溶液狀態結構特徵探討......66
5.1 PM6聚合物結構特徵擬合 ......68
5.2 於氯苯下混摻系統結構特徵分析......71
第6章 結論......82
參考文獻......84
附錄......89

(1)Lu, H.; Li, X.; Lei, Q. Conjugated Conductive Polymer Materials and its Applications: A Mini-Review. Front Chem 2021, 9, 732132. DOI: 10.3389/fchem.2021.732132 From NLM.
(2)陳壽安. 意外發現的導電高分子. 科學月刊, 2000. (accessed.
(3)Guo, Q.; Guo, Q.; Geng, Y.; Tang, A.; Zhang, M.; Du, M.; Sun, X.; Zhou, E. Recent advances in PM6:Y6-based organic solar cells. Materials Chemistry Frontiers 2021, 5 (8), 3257-3280, 10.1039/D1QM00060H. DOI: 10.1039/D1QM00060H.
(4)Cao, Z.; Li, Z.; Tolba, S. A.; Mason, G. T.; Xiong, M.; Ocheje, M. U.; Alesadi, A.; Do, C.; Hong, K.; Lei, T.; et al. Probing single-chain conformation and its impact on the optoelectronic properties of donor–accepter conjugated polymers. J. Mater. Chem. A 2023, 10.1039/D2TA09389H. DOI: 10.1039/D2TA09389H.
(5)Khasbaatar, A.; Cheng, A.; Jones, A. L.; Kwok, J. J.; Park, S. K.; Komar, J. K.; Lin, O.; Jackson, N. E.; Chen, Q.; DeLongchamp, D. M.; et al. Solution Aggregate Structures of Donor Polymers Determine the Morphology and Processing Resiliency of Non-Fullerene Organic Solar Cells. Chemistry of Materials 2023, 35 (7), 2713-2729. DOI: 10.1021/acs.chemmater.2c02141.
(6)Ze-Fan, Y.; Jie-Yu, W.; Jian, P. Controlling morphology and microstructure of conjugated polymers via solution-state aggregation. Progress in Polymer Science 2023, 136, 101626. DOI: https://doi.org/10.1016/j.progpolymsci.2022.101626.
(7)Danielsen, S. P. O.; Bridges, C. R.; Segalman, R. A. Chain Stiffness of Donor–Acceptor Conjugated Polymers in Solution. Macromolecules 2022, 55 (2), 437-449. DOI: 10.1021/acs.macromol.1c02229.
(8)Liu, C.; Hu, W.; Jiang, H.; Liu, G.; Han, C. C.; Sirringhaus, H.; Boué, F.; Wang, D. Chain Conformation and Aggregation Structure Formation of a High Charge Mobility DPP-Based Donor–Acceptor Conjugated Polymer. Macromolecules 2020, 53 (19), 8255-8266. DOI: 10.1021/acs.macromol.0c01646.
(9)Yi, H. L.; Wu, C. H.; Wang, C. I.; Hua, C. C. Solvent-Regulated Mesoscale Aggregation Properties of Dilute PBTTT-C14 Solutions. Macromolecules 2017, 50 (14), 5498-5509. DOI: 10.1021/acs.macromol.7b00790.
(10)Wei, Y.; Hore, M. J. A. Characterizing polymer structure with small-angle neutron scattering: A Tutorial. Journal of Applied Physics 2021, 129 (17), 171101. DOI: 10.1063/5.0045841.
(11)Zheng, Y.-Q.; Yao, Z.-F.; Lei, T.; Dou, J.-H.; Yang, C.-Y.; Zou, L.; Meng, X.; Ma, W.; Wang, J.-Y.; Pei, J. Unraveling the Solution-State Supramolecular Structures of Donor–Acceptor Polymers and their Influence on Solid-State Morphology and Charge-Transport Properties. Advanced Materials 2017, 29 (42), 1701072. DOI: https://doi.org/10.1002/adma.201701072.
(12)Kwok, J. J.; Park, K. S.; Patel, B. B.; Dilmurat, R.; Beljonne, D.; Zuo, X.; Lee, B.; Diao, Y. Understanding solution state conformation and aggregate structure of conjugated polymers via small angle x-ray scattering. Macromolecules 2022.
(13)Tao, X.; Zhao, Y.; Wang, S.; Li, C.; Li, R. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chemical Society Reviews 2022.
(14)Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. nature 1972, 238 (5358), 37-38.
(15)Yanagida, S.; Kabumoto, A.; Mizumoto, K.; Pac, C.; Yoshino, K. Poly(p-phenylene)-catalysed photoreduction of water to hydrogen. Journal of the Chemical Society, Chemical Communications 1985, (8), 474-475, 10.1039/C39850000474. DOI: 10.1039/C39850000474.
(16)Xiao, N.; Li, S.; Li, X.; Ge, L.; Gao, Y.; Li, N. The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen. Chinese Journal of Catalysis 2020, 41 (4), 642-671.
(17)Meng, X.; Liu, L.; Ouyang, S.; Xu, H.; Wang, D.; Zhao, N.; Ye, J. Nanometals for Solar-to-Chemical Energy Conversion: From Semiconductor-Based Photocatalysis to Plasmon-Mediated Photocatalysis and Photo-Thermocatalysis. Advanced Materials 2016, 28 (32), 6781-6803. DOI: https://doi.org/10.1002/adma.201600305.
(18)Zhang, Z.; Cao, S.-W.; Liao, Y.; Xue, C. Selective photocatalytic decomposition of formic acid over AuPd nanoparticle-decorated TiO2 nanofibers toward high-yield hydrogen production. Applied Catalysis B: Environmental 2015, 162, 204-209. DOI: https://doi.org/10.1016/j.apcatb.2014.06.055.
(19)Li, S.; Hou, L.; Zhang, L.; Chen, L.; Lin, Y.; wang, D.; Xie, T. Direct evidence of the efficient hole collection process of the CoOx cocatalyst for photocatalytic reactions: a surface photovoltage study. J. Mater. Chem. A 2015, 3 (34), 17820-17826, 10.1039/C5TA04653J. DOI: 10.1039/C5TA04653J.
(20)Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the Exchange Current for Hydrogen Evolution. Journal of The Electrochemical Society 2005, 152 (3), J23. DOI: 10.1149/1.1856988.
(21)Pellegrin, Y.; Odobel, F. Sacrificial electron donor reagents for solar fuel production. Comptes Rendus Chimie 2017, 20 (3), 283-295. DOI: https://doi.org/10.1016/j.crci.2015.11.026.
(22)Lin, W.-C.; Jayakumar, J.; Chang, C.-L.; Ting, L.-Y.; Elsayed, M. H.; Abdellah, M.; Zheng, K.; Elewa, A. M.; Lin, Y.-T.; Liu, J.-J.; et al. Effect of energy bandgap and sacrificial agents of cyclopentadithiophene-based polymers for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental 2021, 298, 120577. DOI: https://doi.org/10.1016/j.apcatb.2021.120577.
(23)Wang, W. R.; Li, J.; Li, Q.; Xu, Z. W.; Liu, L. N.; Chen, X. Q.; Xiao, W. J.; Yao, J. H.; Zhang, F.; Li, W. S. Side-chain-extended conjugation: a strategy for improving the photocatalytic hydrogen production performance of a linear conjugated polymer. J. Mater. Chem. A 2021, 9 (13), 8782-8791, Article. DOI: 10.1039/d0ta12425g.
(24)Meng, B.; Liu, J.; Wang, L. X. Oligo(ethylene glycol) as side chains of conjugated polymers for optoelectronic applications. Polymer Chemistry 2020, 11 (7), 1261-1270. DOI: 10.1039/c9py01469a.
(25)Woods, D. J.; Hillman, S. A. J.; Pearce, D.; Wilbraham, L.; Flagg, L. Q.; Duffy, W.; McCulloch, I.; Durrant, J. R.; Guilbert, A. A. Y.; Zwijnenburg, M. A.; et al. Side-chain tuning in conjugated polymer photocatalysts for improved hydrogen production from water. Energy & Environmental Science 2020, 13 (6), 1843-1855, 10.1039/D0EE01213K. DOI: 10.1039/D0EE01213K.
(26)Hu, Z. C.; Wang, Z. F.; Zhang, X.; Tang, H. R.; Liu, X. C.; Huang, F.; Cao, Y. Conjugated Polymers with Oligoethylene Glycol Side Chains for Improved Photocatalytic Hydrogen Evolution. iScience 2019, 13, 33-+, Article. DOI: 10.1016/j.isci.2019.02.007.
(27)Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. Science 1992, 258 (5087), 1474-1476. DOI: 10.1126/science.258.5087.1474.
(28)Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270 (5243), 1789-1791. DOI: 10.1126/science.270.5243.1789.
(29)Zhang, M.; Guo, X.; Ma, W.; Ade, H.; Hou, J. A Large-Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance. Advanced Materials 2015, 27 (31), 4655-4660. DOI: https://doi.org/10.1002/adma.201502110.
(30)Han, C.; Wang, J.; Zhang, S.; Chen, L.; Bi, F.; Wang, J.; Yang, C.; Wang, P.; Li, Y.; Bao, X. Over 19% Efficiency Organic Solar Cells by Regulating Multidimensional Intermolecular Interactions. Advanced Materials 2023, 35 (10), 2208986. DOI: https://doi.org/10.1002/adma.202208986.
(31)Feng, L.; Yuan, J.; Zhang, Z.; Peng, H.; Zhang, Z.-G.; Xu, S.; Liu, Y.; Li, Y.; Zou, Y. Thieno 3,2-b pyrrolo-Fused Pentacyclic Benzotriazole-Based Acceptor for Efficient Organic Photovoltaics. ACS Applied Materials \& Interfaces 2017, 9 (37), 31985-31992. DOI: 10.1021/acsami.7b10995 , note = PMID: 28837314.
(32)Jun, Y.; Yunqiang, Z.; Liuyang, Z.; Guichuan, Z.; Hin-Lap, Y.; Tsz-Ki, L.; Xinhui, L.; Can, Z.; Hongjian, P.; Paul, A. J.; et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3 (4), 1140-1151. DOI: https://doi.org/10.1016/j.joule.2019.01.004.
(33)Cui, Y.; Yao, H.; Hong, L.; Zhang, T.; Tang, Y.; Lin, B.; Xian, K.; Gao, B.; An, C.; Bi, P.; et al. Organic photovoltaic cell with 17% efficiency and superior processability. National Science Review 2019, 7 (7), 1239-1246. DOI: 10.1093/nsr/nwz200 (acccessed 6/4/2023).
(34)Kui, J.; Qingya, W.; Joshua Yuk Lin, L.; Zhengxing, P.; Ha Kyung, K.; Jun, Y.; Long, Y.; Harald, A.; Yingping, Z.; He, Y. Alkyl Chain Tuning of Small Molecule Acceptors for Efficient Organic Solar Cells. Joule 2019, 3 (12), 3020-3033. DOI: https://doi.org/10.1016/j.joule.2019.09.010.
(35)Zaheer, A.; Seung Un, R.; Muhammad, H.; Chang Eun, S.; Hang Ken, L.; Sang Kyu, L.; Won Suk, S.; Taiho, P.; Jong-Cheol, L. Optimized vertical phase separation via systematic Y6 inner side-chain modulation for non-halogen solvent processed inverted organic solar cells. Nano Energy 2022, 101, 107574. DOI: https://doi.org/10.1016/j.nanoen.2022.107574.
(36)Chen, H.; Liang, H.; Guo, Z.; Zhu, Y.; Zhang, Z.; Li, Z.; Cao, X.; Wang, H.; Feng, W.; Zou, Y.; et al. Central Unit Fluorination of Non-Fullerene Acceptors Enables Highly Efficient Organic Solar Cells with Over 18 % Efficiency. Angewandte Chemie International Edition 2022, 61 (41), e202209580. DOI: https://doi.org/10.1002/anie.202209580.
(37)He, C.; Chen, Z.; Wang, T.; Shen, Z.; Li, Y.; Zhou, J.; Yu, J.; Fang, H.; Li, Y.; Li, S.; et al. Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18%. Nature Communications 2022, 13 (1), 2598. DOI: 10.1038/s41467-022-30225-7.
(38)林育昇. 以臨場掠角X光散射解析受五氟苯基添加劑調控之有機太陽能電池薄膜相分離及結晶行為. 國立清華大學化學工程學系, 2021.
(39)Project, T. S. SasView manual. 2019. (accessed 2023 06/04).
(40)Lin, J.-M.; Lin, T.-L.; Jeng, U.-S.; Zhong, Y.-J.; Yeh, C.-T.; Chen, T.-Y. Fractal aggregates of the Pt nanoparticles synthesized by the polyol process and poly (N-vinyl-2-pyrrolidone) reduction. Applied Crystallography 2007, 40 (s1), s540-s543.
(41)Li, Y.-C.; Chen, K.-B.; Chen, H.-L.; Hsu, C.-S.; Tsao, C.-S.; Chen, J.-H.; Chen, S.-A. Fractal Aggregates of Conjugated Polymer in Solution State. Langmuir 2006, 22 (26), 11009-11015. DOI: 10.1021/la0612769.
(42)Lin, Y.-C.; Chen, C.-Y.; Chen, H.-L.; Hashimoto, T.; Chen, S.-A.; Li, Y.-C. Hierarchical self-assembly of nanoparticles in polymer matrix and the nature of the interparticle interaction. The Journal of chemical physics 2015, 142, 214905. DOI: 10.1063/1.4921567.
(43)Flory, P. J.; Volkenstein, M. Statistical mechanics of chain molecules. Biopolymers 1969, 8 (5), 699-700. DOI: https://doi.org/10.1002/bip.1969.360080514.
(44)Pedersen, J. S.; Schurtenberger, P. Scattering Functions of Semiflexible Polymers with and without Excluded Volume Effects. Macromolecules 1996, 29 (23), 7602-7612. DOI: 10.1021/ma9607630.
(45)Chen, W.-R.; Butler, P. D.; Magid, L. J. Incorporating intermicellar interactions in the fitting of SANS data from cationic wormlike micelles. Langmuir 2006, 22 (15), 6539-6548.
(46)Performance of the new biological small- and wide-angle X-ray scattering beamline 13A at the Taiwan Photon Source. Journal of Applied Crystallography 2022, 55 (2), 340--352. DOI: 10.1107/S1600576722001923.
(47)柳嘉甄. 探討引入親水性寡乙二醇合成側鏈橋接型共軛聚合物於光催化產氫之影響. 國立清華大學, 2022.
(48)Bao, S.; Yang, H.; Fan, H.; Zhang, J.; Wei, Z.; Cui, C.; Li, Y. Volatilizable Solid Additive-Assisted Treatment Enables Organic Solar Cells with Efficiency over 18.8% and Fill Factor Exceeding 80%. Advanced Materials 2021, 33 (48), 2105301. DOI: https://doi.org/10.1002/adma.202105301.
(49)Wu, B.; Hanay, S. B.; Kimmins, S. D.; Cryan, S.-A.; Hermida Merino, D.; Heise, A. Ion-Triggered Hydrogels Self-Assembled from Statistical Copolypeptides. ACS Macro Letters 2022, 11 (3), 323-328. DOI: 10.1021/acsmacrolett.1c00774.

(此全文20280727後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *