|
(1) Zhu, Y.; Hosmane, N. Applications and Perspectives of Boron-Enriched Nanocomposites in Cancer Therapy. Future Med. Chem. 2013, 5, 705–714. https://doi.org/10.4155/fmc.13.47. (2) Moss, R. L. Critical Review, with an Optimistic Outlook, on Boron Neutron Capture Therapy (BNCT). Appl. Radiat. Isot. 2014, 88, 2–11. https://doi.org/10.1016/j.apradiso.2013.11.109. (3) Barth, R. F.; Soloway, A. H.; Goodman, J. H.; Gahbauer, R. A.; Gupta, N.; Blue, T. E.; Yang, W.; Tjarks, W. Boron Neutron Capture Therapy of Brain Tumors: An Emerging Therapeutic Modality. Neurosurgery 1999, 44 (3), 433. (4) Coderre, J. A.; Morris, G. M. The Radiation Biology of Boron Neutron Capture Therapy. Radiat. Res. 1999, 151 (1), 1–18. https://doi.org/10.2307/3579742. (5) Jin, W. H.; Seldon, C.; Butkus, M.; Sauerwein, W.; Giap, H. B. A Review of Boron Neutron Capture Therapy: Its History and Current Challenges. Int. J. Part. Ther. 2022, 9 (1), 71–82. https://doi.org/10.14338/IJPT-22-00002.1. (6) Nedunchezhian, K.; Aswath, N.; Thiruppathy, M.; Thirugnanamurthy, S. Boron Neutron Capture Therapy - A Literature Review. J. Clin. Diagn. Res. JCDR 2016, 10 (12), ZE01–ZE04. https://doi.org/10.7860/JCDR/2016/19890.9024. (7) Barth, R. F.; Coderre, J. A.; Vicente, M. G. H.; Blue, T. E. Boron Neutron Capture Therapy of Cancer: Current Status and Future Prospects. Clin. Cancer Res. 2005, 11 (11), 3987–4002. https://doi.org/10.1158/1078-0432.CCR-05-0035. (8) Miyatake, S.-I.; Kawabata, S.; Hiramatsu, R.; Kuroiwa, T.; Suzuki, M.; Ono, K. Boron Neutron Capture Therapy of Malignant Gliomas. 2018. https://doi.org/10.1159/000469679. (9) Kawabata, S.; Miyatake, S.-I.; Nonoguchi, N.; Hiramatsu, Ry.; Iida, K.; Miyata, S.; Yokoyama, K.; Doi, A.; Kuroda, Y.; Kuroiwa, T.; Michiue, H.; Kumada, H.; Kirihata, M.; Imahori, Y.; Maruhashi, A.; Sakurai, Y.; Suzuki, M.; Masunaga, S.-I.; Ono, K. Survival Benefit from Boron Neutron Capture Therapy for the Newly Diagnosed Glioblastoma Patients. Appl. Radiat. Isot. 2009, 67 (7, Supplement), S15–S18. https://doi.org/10.1016/j.apradiso.2009.03.015. (10) Wang, L. W.; Wang, S. J.; Chu, P. Y.; Ho, C. Y.; Jiang, S. H.; Liu, Y. W. H.; Liu, Y. H.; Liu, H. M.; Peir, J. J.; Chou, F. I.; Yen, S. H.; Lee, Y. L.; Chang, C. W.; Liu, C. S.; Chen, Y. W.; Ono, K. BNCT for Locally Recurrent Head and Neck Cancer: Preliminary Clinical Experience from a Phase I/II Trial at Tsing Hua Open-Pool Reactor. Appl. Radiat. Isot. 2011, 69 (12), 1803–1806. https://doi.org/10.1016/j.apradiso.2011.03.008. (11) Aihara, T.; Morita, N. BNCT for Advanced or Recurrent Head and Neck Cancer. In Neutron Capture Therapy: Principles and Applications; Sauerwein, W., Wittig, A., Moss, R., Nakagawa, Y., Eds.; Springer: Berlin, Heidelberg, 2012; pp 417–424. https://doi.org/10.1007/978-3-642-31334-9_24. (12) Suzuki, M.; Kato, I.; Aihara, T.; Hiratsuka, J.; Yoshimura, K.; Niimi, M.; Kimura, Y.; Ariyoshi, Y.; Haginomori, S.; Sakurai, Y.; Kinashi, Y.; Masunaga, S.; Fukushima, M.; Ono, K.; Maruhashi, A. Boron Neutron Capture Therapy Outcomes for Advanced or Recurrent Head and Neck Cancer. J. Radiat. Res. (Tokyo) 2014, 55 (1), 146–153. https://doi.org/10.1093/jrr/rrt098. (13) Yanagie, H.; Higashi, S.; Seguchi, K.; Ikushima, I.; Fujihara, M.; Nonaka, Y.; Oyama, K.; Maruyama, S.; Hatae, R.; Suzuki, M.; Masunaga, S.; Kinashi, T.; Sakurai, Y.; Tanaka, H.; Kondo, N.; Narabayashi, M.; Kajiyama, T.; Maruhashi, A.; Ono, K.; Nakajima, J.; Ono, M.; Takahashi, H.; Eriguchi, M. Pilot Clinical Study of Boron Neutron Capture Therapy for Recurrent Hepatic Cancer Involving the Intra-Arterial Injection of a 10BSH-Containing WOW Emulsion. Appl. Radiat. Isot. 2014, 88, 32–37. https://doi.org/10.1016/j.apradiso.2014.01.014. (14) Trivillin, V. A.; Pozzi, E. C. C.; Colombo, L. L.; Thorp, S. I.; Garabalino, M. A.; Monti Hughes, A.; González, S. J.; Farías, R. O.; Curotto, P.; Santa Cruz, G. A.; Carando, D. G.; Schwint, A. E. Abscopal Effect of Boron Neutron Capture Therapy (BNCT): Proof of Principle in an Experimental Model of Colon Cancer. Radiat. Environ. Biophys. 2017, 56 (4), 365–375. https://doi.org/10.1007/s00411-017-0704-7. (15) González, S. J.; Bonomi, M. R.; Santa Cruz, G. A.; Blaumann, H. R.; Larrieu, O. A. C.; Menéndez, P.; Rebagliati, R. J.; Longhino, J.; Feld, D. B.; Dagrosa, M. A.; Argerich, C.; Castiglia, S. G.; Batistoni, D. A.; Liberman, S. J.; Roth, B. M. C. First BNCT Treatment of a Skin Melanoma in Argentina: Dosimetric Analysis and Clinical Outcome. Appl. Radiat. Isot. 2004, 61 (5), 1101–1105. https://doi.org/10.1016/j.apradiso.2004.05.060. (16) Menéndez, P. R.; Roth, B. M. C.; Pereira, M. D.; Casal, M. R.; González, S. J.; Feld, D. B.; Santa Cruz, G. A.; Kessler, J.; Longhino, J.; Blaumann, H.; Jiménez Rebagliati, R.; Calzetta Larrieu, O. A.; Fernández, C.; Nievas, S. I.; Liberman, S. J. BNCT for Skin Melanoma in Extremities: Updated Argentine Clinical Results. Appl. Radiat. Isot. 2009, 67 (7, Supplement), S50–S53. https://doi.org/10.1016/j.apradiso.2009.03.020. (17) Fukuda, H. Boron Neutron Capture Therapy (BNCT) for Cutaneous Malignant Melanoma Using 10B-p-Boronophenylalanine (BPA) with Special Reference to the Radiobiological Basis and Clinical Results. Cells 2021, 10 (11), 2881. https://doi.org/10.3390/cells10112881. (18) Carpano, M.; Perona, M.; Rodriguez, C.; Nievas, S.; Olivera, M.; Santa Cruz, G. A.; Brandizzi, D.; Cabrini, R.; Pisarev, M.; Juvenal, G. J.; Dagrosa, M. A. Experimental Studies of Boronophenylalanine (10BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment. Int. J. Radiat. Oncol. 2015, 93 (2), 344–352. https://doi.org/10.1016/j.ijrobp.2015.05.039. (19) Mishima, Y. Selective Thermal Neutron Capture Therapy of Cancer Cells Using Their Specific Metabolic Activities—Melanoma as Prototype. In Cancer Neutron Capture Therapy; Mishima, Y., Ed.; Springer US: Boston, MA, 1996; pp 1–26. https://doi.org/10.1007/978-1-4757-9567-7_1. (20) Coderre, J. A.; Glass, J. D.; Fairchild, R. G.; Roy, U.; Cohen, S.; Fand, I. Selective Targeting of Boronophenylalanine to Melanoma in BALB/c Mice for Neutron Capture Therapy1. Cancer Res. 1987, 47 (23), 6377–6383. (21) Sznol, M.; Hodi, F. S.; Margolin, K.; McDermott, D. F.; Ernstoff, M. S.; Kirkwood, J. M.; Wojtaszek, C.; Feltquate, D.; Logan, T. Phase I Study of BMS-663513, a Fully Human Anti-CD137 Agonist Monoclonal Antibody, in Patients (Pts) with Advanced Cancer (CA). J. Clin. Oncol. 2008, 26 (15_suppl), 3007–3007. https://doi.org/10.1200/jco.2008.26.15_suppl.3007. (22) Old, L. J. Immunotherapy for Cancer. Sci. Am. 1996, 275 (3), 136–143. (23) Xie, Y.; Xie, F.; Zhang, L.; Zhou, X.; Huang, J.; Wang, F.; Jin, J.; Zhang, L.; Zeng, L.; Zhou, F. Targeted Anti-Tumor Immunotherapy Using Tumor Infiltrating Cells. Adv. Sci. 2021, 8 (22), 2101672. https://doi.org/10.1002/advs.202101672. (24) Pardoll, D. M. The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nat. Rev. Cancer 2012, 12 (4), 252–264. https://doi.org/10.1038/nrc3239. (25) Seidel, J. A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front. Oncol. 2018, 8. (26) Sharabi, A. B.; Lim, M.; DeWeese, T. L.; Drake, C. G. Radiation and Checkpoint Blockade Immunotherapy: Radiosensitisation and Potential Mechanisms of Synergy. Lancet Oncol. 2015, 16 (13), e498–e509. https://doi.org/10.1016/S1470-2045(15)00007-8. (27) Mohme, M.; Riethdorf, S.; Pantel, K. Circulating and Disseminated Tumour Cells — Mechanisms of Immune Surveillance and Escape. Nat. Rev. Clin. Oncol. 2017, 14 (3), 155–167. https://doi.org/10.1038/nrclinonc.2016.144. (28) Khair, D. O.; Bax, H. J.; Mele, S.; Crescioli, S.; Pellizzari, G.; Khiabany, A.; Nakamura, M.; Harris, R. J.; French, E.; Hoffmann, R. M.; Williams, I. P.; Cheung, A.; Thair, B.; Beales, C. T.; Touizer, E.; Signell, A. W.; Tasnova, N. L.; Spicer, J. F.; Josephs, D. H.; Geh, J. L.; MacKenzie Ross, A.; Healy, C.; Papa, S.; Lacy, K. E.; Karagiannis, S. N. Combining Immune Checkpoint Inhibitors: Established and Emerging Targets and Strategies to Improve Outcomes in Melanoma. Front. Immunol. 2019, 10. (29) Ribas, A.; Wolchok, J. D. Cancer Immunotherapy Using Checkpoint Blockade. Science 2018, 359 (6382), 1350–1355. https://doi.org/10.1126/science.aar4060. (30) Baxi, S.; Yang, A.; Gennarelli, R. L.; Khan, N.; Wang, Z.; Boyce, L.; Korenstein, D. Immune-Related Adverse Events for Anti-PD-1 and Anti-PD-L1 Drugs: Systematic Review and Meta-Analysis. BMJ 2018, 360, k793. https://doi.org/10.1136/bmj.k793. (31) Chen, Q.; Li, T.; Yue, W. Drug Response to PD-1/PD-L1 Blockade: Based on Biomarkers. OncoTargets Ther. 2018, 11, 4673–4683. https://doi.org/10.2147/OTT.S168313. (32) Sgambato, A.; Casaluce, F.; Gridelli, C. The Role of Checkpoint Inhibitors Immunotherapy in Advanced Non-Small Cell Lung Cancer in the Elderly. Expert Opin. Biol. Ther. 2017, 17 (5), 565–571. https://doi.org/10.1080/14712598.2017.1294157. (33) Xiong, W.; Zhao, Y.; Du, H.; Guo, X. Current Status of Immune Checkpoint Inhibitor Immunotherapy for Lung Cancer. Front. Oncol. 2021, 11. (34) Langer, C. J. Emerging Immunotherapies in the Treatment of Non–Small Cell Lung Cancer (NSCLC): The Role of Immune Checkpoint Inhibitors. Am. J. Clin. Oncol. 2015, 38 (4), 422. https://doi.org/10.1097/COC.0000000000000059. (35) Dogan, V.; Rieckmann, T.; Münscher, A.; Busch, C.-J. Current Studies of Immunotherapy in Head and Neck Cancer. Clin. Otolaryngol. 2018, 43 (1), 13–21. https://doi.org/10.1111/coa.12895. (36) Zolkind, P.; Uppaluri, R. Checkpoint Immunotherapy in Head and Neck Cancers. Cancer Metastasis Rev. 2017, 36 (3), 475–489. https://doi.org/10.1007/s10555-017-9694-9. (37) Kao, H.-F.; Lou, P.-J. Immune Checkpoint Inhibitors for Head and Neck Squamous Cell Carcinoma: Current Landscape and Future Directions. Head Neck 2019, 41 (S1), 4–18. https://doi.org/10.1002/hed.25930. (38) Brahmer, J. R.; Pardoll, D. M. Immune Checkpoint Inhibitors: Making Immunotherapy a Reality for the Treatment of Lung Cancer. Cancer Immunol. Res. 2013, 1 (2), 85–91. https://doi.org/10.1158/2326-6066.CIR-13-0078. (39) Lopez-Beltran, A.; Cimadamore, A.; Blanca, A.; Massari, F.; Vau, N.; Scarpelli, M.; Cheng, L.; Montironi, R. Immune Checkpoint Inhibitors for the Treatment of Bladder Cancer. Cancers 2021, 13 (1), 131. https://doi.org/10.3390/cancers13010131. (40) Biomedicines | Free Full-Text | Immune-Checkpoint Inhibitors in Advanced Bladder Cancer: Seize the Day. https://www.mdpi.com/2227-9059/10/2/411 (accessed 2023-06-24). (41) Huang, A. C.; Zappasodi, R. A Decade of Checkpoint Blockade Immunotherapy in Melanoma: Understanding the Molecular Basis for Immune Sensitivity and Resistance. Nat. Immunol. 2022, 23 (5), 660–670. https://doi.org/10.1038/s41590-022-01141-1. (42) Carlino, M. S.; Larkin, J.; Long, G. V. Immune Checkpoint Inhibitors in Melanoma. The Lancet 2021, 398 (10304), 1002–1014. https://doi.org/10.1016/S0140-6736(21)01206-X. (43) De Risi, I.; Sciacovelli, A. M.; Guida, M. Checkpoint Inhibitors Immunotherapy in Metastatic Melanoma: When to Stop Treatment? Biomedicines 2022, 10 (10), 2424. https://doi.org/10.3390/biomedicines10102424. (44) Barazzuol, L.; Coppes, R. P.; van Luijk, P. Prevention and Treatment of Radiotherapy-Induced Side Effects. Mol. Oncol. 2020, 14 (7), 1538–1554. https://doi.org/10.1002/1878-0261.12750. (45) Zhou, Z.; Guan, B.; Xia, H.; Zheng, R.; Xu, B. Particle Radiotherapy in the Era of Radioimmunotherapy. Cancer Lett. 2023, 567, 216268. https://doi.org/10.1016/j.canlet.2023.216268. (46) Nguyen, H. Q.; To, N. H.; Zadigue, P.; Kerbrat, S.; De La Taille, A.; Le Gouvello, S.; Belkacemi, Y. Ionizing Radiation-Induced Cellular Senescence Promotes Tissue Fibrosis after Radiotherapy. A Review. Crit. Rev. Oncol. Hematol. 2018, 129, 13–26. https://doi.org/10.1016/j.critrevonc.2018.06.012. (47) Derer, A.; Deloch, L.; Rubner, Y.; Fietkau, R.; Frey, B.; Gaipl, U. S. Radio-Immunotherapy-Induced Immunogenic Cancer Cells as Basis for Induction of Systemic Anti-Tumor Immune Responses – Pre-Clinical Evidence and Ongoing Clinical Applications. Front. Immunol. 2015, 6. (48) Bentzen, S. M. Preventing or Reducing Late Side Effects of Radiation Therapy: Radiobiology Meets Molecular Pathology. Nat. Rev. Cancer 2006, 6 (9), 702–713. https://doi.org/10.1038/nrc1950. (49) Seneviratne, D.; Advani, P.; Trifiletti, D. M.; Chumsri, S.; Beltran, C. J.; Bush, A. F.; Vallow, L. A. Exploring the Biological and Physical Basis of Boron Neutron Capture Therapy (BNCT) as a Promising Treatment Frontier in Breast Cancer. Cancers 2022, 14 (12), 3009. https://doi.org/10.3390/cancers14123009. (50) Suzuki, M. Boron Neutron Capture Therapy (BNCT): A Unique Role in Radiotherapy with a View to Entering the Accelerator-Based BNCT Era. Int. J. Clin. Oncol. 2020, 25 (1), 43–50. https://doi.org/10.1007/s10147-019-01480-4. (51) Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, H. Clinical Results of Boron Neutron Capture Therapy (BNCT) for Glioblastoma. Appl. Radiat. Isot. 2011, 69 (12), 1823–1825. https://doi.org/10.1016/j.apradiso.2011.05.029. (52) Omerhodzic, I.; Arnautovic, K. Glioma: Contemporary Diagnostic and Therapeutic Approaches; BoD – Books on Demand, 2019. (53) Biology | Free Full-Text | Clinical Veterinary Boron Neutron Capture Therapy (BNCT) Studies in Dogs with Head and Neck Cancer: Bridging the Gap between Translational and Clinical Studies. https://www.mdpi.com/2079-7737/9/10/327 (accessed 2023-06-26). (54) Kato, I.; Ono, K.; Sakurai, Y.; Ohmae, M.; Maruhashi, A.; Imahori, Y.; Kirihata, M.; Nakazawa, M.; Yura, Y. Effectiveness of BNCT for Recurrent Head and Neck Malignancies. Appl. Radiat. Isot. 2004, 61 (5), 1069–1073. https://doi.org/10.1016/j.apradiso.2004.05.059. (55) Koivunoro, H.; Kankaanranta, L.; Seppälä, T.; Haapaniemi, A.; Mäkitie, A.; Joensuu, H. Boron Neutron Capture Therapy for Locally Recurrent Head and Neck Squamous Cell Carcinoma: An Analysis of Dose Response and Survival. Radiother. Oncol. 2019, 137, 153–158. https://doi.org/10.1016/j.radonc.2019.04.033. (56) Barth, R. F.; Zhang, Z.; Liu, T. A Realistic Appraisal of Boron Neutron Capture Therapy as a Cancer Treatment Modality. Cancer Commun. 2018, 38 (1), 36. https://doi.org/10.1186/s40880-018-0280-5. (57) Mitin, V. N.; Kulakov, V. N.; Khokhlov, V. F.; Sheino, I. N.; Arnopolskaya, A. M.; Kozlovskaya, N. G.; Zaitsev, K. N.; Portnov, A. A. Comparison of BNCT and GdNCT Efficacy in Treatment of Canine Cancer. Appl. Radiat. Isot. 2009, 67 (7, Supplement), S299–S301. https://doi.org/10.1016/j.apradiso.2009.03.067. (58) Li, L.; Dai, K.; Li, J.; Shi, Y.; Zhang, Z.; Liu, T.; Jun Xie; Ruiping Zhang; Liu, Z. A Boron-10 Nitride Nanosheet for Combinational Boron Neutron Capture Therapy and Chemotherapy of Tumor. Biomaterials 2021, 268, 120587. https://doi.org/10.1016/j.biomaterials.2020.120587. (59) Cells | Free Full-Text | A Boronated Derivative of Temozolomide Showing Enhanced Efficacy in Boron Neutron Capture Therapy of Glioblastoma. https://www.mdpi.com/2073-4409/11/7/1173 (accessed 2023-06-26). (60) Chen, J.; Dai, Q.; Yang, Q.; Bao, X.; Zhou, Y.; Zhong, H.; Wu, L.; Wang, T.; Zhang, Z.; Lu, Y.; Zhang, Z.; Lin, M.; Han, M.; Wei, Q. Therapeutic Nucleus-Access BNCT Drug Combined CD47-Targeting Gene Editing in Glioblastoma. J. Nanobiotechnology 2022, 20 (1), 102. https://doi.org/10.1186/s12951-022-01304-0. (61) Hiratsuka, J.; Kamitani, N.; Tanaka, R.; Tokiya, R.; Yoden, E.; Sakurai, Y.; Suzuki, M. Long-Term Outcome of Cutaneous Melanoma Patients Treated with Boron Neutron Capture Therapy (BNCT). J. Radiat. Res. (Tokyo) 2020, 61 (6), 945–951. https://doi.org/10.1093/jrr/rraa068. (62) Anagnostou, V. K.; Brahmer, J. R. Cancer Immunotherapy: A Future Paradigm Shift in the Treatment of Non–Small Cell Lung Cancer. Clin. Cancer Res. 2015, 21 (5), 976–984. https://doi.org/10.1158/1078-0432.CCR-14-1187. (63) Steven, A.; Fisher, S. A.; Robinson, B. W. Immunotherapy for Lung Cancer. Respirology 2016, 21 (5), 821–833. https://doi.org/10.1111/resp.12789. (64) Doroshow, D. B.; Sanmamed, M. F.; Hastings, K.; Politi, K.; Rimm, D. L.; Chen, L.; Melero, I.; Schalper, K. A.; Herbst, R. S. Immunotherapy in Non–Small Cell Lung Cancer: Facts and Hopes. Clin. Cancer Res. 2019, 25 (15), 4592–4602. https://doi.org/10.1158/1078-0432.CCR-18-1538. (65) Raez, L. E.; Fein, S.; Podack, E. R. Lung Cancer Immunotherapy. Clin. Med. Res. 2005, 3 (4), 221–228. https://doi.org/10.3121/cmr.3.4.221. (66) Cramer, J. D.; Burtness, B.; Ferris, R. L. Immunotherapy for Head and Neck Cancer: Recent Advances and Future Directions. Oral Oncol. 2019, 99, 104460. https://doi.org/10.1016/j.oraloncology.2019.104460. (67) Bauml, J. M.; Aggarwal, C.; Cohen, R. B. Immunotherapy for Head and Neck Cancer: Where Are We Now and Where Are We Going? Ann. Transl. Med. 2019, 7 (Suppl 3), S75. https://doi.org/10.21037/atm.2019.03.58. (68) Ling, D. C.; Bakkenist, C. J.; Ferris, R. L.; Clump, D. A. Role of Immunotherapy in Head and Neck Cancer. Semin. Radiat. Oncol. 2018, 28 (1), 12–16. https://doi.org/10.1016/j.semradonc.2017.08.009. (69) Fuge, O.; Vasdev, N.; Allchorne, P.; Green, J. S. Immunotherapy for Bladder Cancer. Res. Rep. Urol. 2015, 7, 65–79. https://doi.org/10.2147/RRU.S63447. (70) Wołącewicz, M.; Hrynkiewicz, R.; Grywalska, E.; Suchojad, T.; Leksowski, T.; Roliński, J.; Niedźwiedzka-Rystwej, P. Immunotherapy in Bladder Cancer: Current Methods and Future Perspectives. Cancers 2020, 12 (5), 1181. https://doi.org/10.3390/cancers12051181. (71) Rhea, L. P.; Mendez-Marti, S.; Kim, D.; Aragon-Ching, J. B. Role of Immunotherapy in Bladder Cancer. Cancer Treat. Res. Commun. 2021, 26, 100296. https://doi.org/10.1016/j.ctarc.2020.100296. (72) Redman, J. M.; Gibney, G. T.; Atkins, M. B. Advances in Immunotherapy for Melanoma. BMC Med. 2016, 14 (1), 20. https://doi.org/10.1186/s12916-016-0571-0. (73) Albittar, A. A.; Alhalabi, O.; Glitza Oliva, I. C. Immunotherapy for Melanoma. In Immunotherapy; Naing, A., Hajjar, J., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, 2020; pp 51–68. https://doi.org/10.1007/978-3-030-41008-7_3. (74) Franklin, C.; Livingstone, E.; Roesch, A.; Schilling, B.; Schadendorf, D. Immunotherapy in Melanoma: Recent Advances and Future Directions. Eur. J. Surg. Oncol. EJSO 2017, 43 (3), 604–611. https://doi.org/10.1016/j.ejso.2016.07.145. (75) Sanlorenzo, M.; Vujic, I.; Posch, C.; Dajee, A.; Yen, A.; Kim, S.; Ashworth, M.; Rosenblum, M. D.; Algazi, A.; Osella-Abate, S.; Quaglino, P.; Daud, A.; Ortiz-Urda, S. Melanoma Immunotherapy. Cancer Biol. Ther. 2014, 15 (6), 665–674. https://doi.org/10.4161/cbt.28555. (76) June, C. H.; O’Connor, R. S.; Kawalekar, O. U.; Ghassemi, S.; Milone, M. C. CAR T Cell Immunotherapy for Human Cancer. Science 2018, 359 (6382), 1361–1365. https://doi.org/10.1126/science.aar6711. (77) Feins, S.; Kong, W.; Williams, E. F.; Milone, M. C.; Fraietta, J. A. An Introduction to Chimeric Antigen Receptor (CAR) T-Cell Immunotherapy for Human Cancer. Am. J. Hematol. 2019, 94 (S1), S3–S9. https://doi.org/10.1002/ajh.25418. (78) Gubin, M. M.; Zhang, X.; Schuster, H.; Caron, E.; Ward, J. P.; Noguchi, T.; Ivanova, Y.; Hundal, J.; Arthur, C. D.; Krebber, W.-J.; Mulder, G. E.; Toebes, M.; Vesely, M. D.; Lam, S. S. K.; Korman, A. J.; Allison, J. P.; Freeman, G. J.; Sharpe, A. H.; Pearce, E. L.; Schumacher, T. N.; Aebersold, R.; Rammensee, H.-G.; Melief, C. J. M.; Mardis, E. R.; Gillanders, W. E.; Artyomov, M. N.; Schreiber, R. D. Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens. Nature 2014, 515 (7528), 577–581. https://doi.org/10.1038/nature13988. (79) Sheykhhasan, M.; Manoochehri, H.; Dama, P. Use of CAR T-Cell for Acute Lymphoblastic Leukemia (ALL) Treatment: A Review Study. Cancer Gene Ther. 2022, 29 (8), 1080–1096. https://doi.org/10.1038/s41417-021-00418-1. (80) Singh, N.; Frey, N. V.; Grupp, S. A.; Maude, S. L. CAR T Cell Therapy in Acute Lymphoblastic Leukemia and Potential for Chronic Lymphocytic Leukemia. Curr. Treat. Options Oncol. 2016, 17 (6), 28. https://doi.org/10.1007/s11864-016-0406-4. (81) Wei, J.; Liu, Y.; Wang, C.; Zhang, Y.; Tong, C.; Dai, G.; Wang, W.; Rasko, J. E. J.; Melenhorst, J. J.; Qian, W.; Liang, A.; Han, W. The Model of Cytokine Release Syndrome in CAR T-Cell Treatment for B-Cell Non-Hodgkin Lymphoma. Signal Transduct. Target. Ther. 2020, 5 (1), 1–9. https://doi.org/10.1038/s41392-020-00256-x. (82) Marofi, F.; Rahman, H. S.; Achmad, M. H.; Sergeevna, K. N.; Suksatan, W.; Abdelbasset, W. K.; Mikhailova, M. V.; Shomali, N.; Yazdanifar, M.; Hassanzadeh, A.; Ahmadi, M.; Motavalli, R.; Pathak, Y.; Izadi, S.; Jarahian, M. A Deep Insight Into CAR-T Cell Therapy in Non-Hodgkin Lymphoma: Application, Opportunities, and Future Directions. Front. Immunol. 2021, 12. (83) Wang, L.; Ma, Q.; Yao, R.; Liu, J. Current Status and Development of Anti-PD-1/PD-L1 Immunotherapy for Lung Cancer. Int. Immunopharmacol. 2020, 79, 106088. https://doi.org/10.1016/j.intimp.2019.106088. (84) Sun, R.; Limkin, E. J.; Vakalopoulou, M.; Dercle, L.; Champiat, S.; Han, S. R.; Verlingue, L.; Brandao, D.; Lancia, A.; Ammari, S.; Hollebecque, A.; Scoazec, J.-Y.; Marabelle, A.; Massard, C.; Soria, J.-C.; Robert, C.; Paragios, N.; Deutsch, E.; Ferté, C. A Radiomics Approach to Assess Tumour-Infiltrating CD8 Cells and Response to Anti-PD-1 or Anti-PD-L1 Immunotherapy: An Imaging Biomarker, Retrospective Multicohort Study. Lancet Oncol. 2018, 19 (9), 1180–1191. https://doi.org/10.1016/S1470-2045(18)30413-3. (85) Zhao, J.; Chen, A. X.; Gartrell, R. D.; Silverman, A. M.; Aparicio, L.; Chu, T.; Bordbar, D.; Shan, D.; Samanamud, J.; Mahajan, A.; Filip, I.; Orenbuch, R.; Goetz, M.; Yamaguchi, J. T.; Cloney, M.; Horbinski, C.; Lukas, R. V.; Raizer, J.; Rae, A. I.; Yuan, J.; Canoll, P.; Bruce, J. N.; Saenger, Y. M.; Sims, P.; Iwamoto, F. M.; Sonabend, A. M.; Rabadan, R. Immune and Genomic Correlates of Response to Anti-PD-1 Immunotherapy in Glioblastoma. Nat. Med. 2019, 25 (3), 462–469. https://doi.org/10.1038/s41591-019-0349-y. (86) Moreira, R. S.; Bicker, J.; Musicco, F.; Persichetti, A.; Pereira, A. M. P. T. Anti-PD-1 Immunotherapy in Advanced Metastatic Melanoma: State of the Art and Future Challenges. Life Sci. 2020, 240, 117093. https://doi.org/10.1016/j.lfs.2019.117093. (87) Gopalakrishnan, V.; Spencer, C. N.; Nezi, L.; Reuben, A.; Andrews, M. C.; Karpinets, T. V.; Prieto, P. A.; Vicente, D.; Hoffman, K.; Wei, S. C.; Cogdill, A. P.; Zhao, L.; Hudgens, C. W.; Hutchinson, D. S.; Manzo, T.; Petaccia de Macedo, M.; Cotechini, T.; Kumar, T.; Chen, W. S.; Reddy, S. M.; Szczepaniak Sloane, R.; Galloway-Pena, J.; Jiang, H.; Chen, P. L.; Shpall, E. J.; Rezvani, K.; Alousi, A. M.; Chemaly, R. F.; Shelburne, S.; Vence, L. M.; Okhuysen, P. C.; Jensen, V. B.; Swennes, A. G.; McAllister, F.; Marcelo Riquelme Sanchez, E.; Zhang, Y.; Le Chatelier, E.; Zitvogel, L.; Pons, N.; Austin-Breneman, J. L.; Haydu, L. E.; Burton, E. M.; Gardner, J. M.; Sirmans, E.; Hu, J.; Lazar, A. J.; Tsujikawa, T.; Diab, A.; Tawbi, H.; Glitza, I. C.; Hwu, W. J.; Patel, S. P.; Woodman, S. E.; Amaria, R. N.; Davies, M. A.; Gershenwald, J. E.; Hwu, P.; Lee, J. E.; Zhang, J.; Coussens, L. M.; Cooper, Z. A.; Futreal, P. A.; Daniel, C. R.; Ajami, N. J.; Petrosino, J. F.; Tetzlaff, M. T.; Sharma, P.; Allison, J. P.; Jenq, R. R.; Wargo, J. A. Gut Microbiome Modulates Response to Anti–PD-1 Immunotherapy in Melanoma Patients. Science 2018, 359 (6371), 97–103. https://doi.org/10.1126/science.aan4236. (88) Hao, C.; Tian, J.; Liu, H.; Li, F.; Niu, H.; Zhu, B. Efficacy and Safety of Anti-PD-1 and Anti-PD-1 Combined with Anti-CTLA-4 Immunotherapy to Advanced Melanoma. Medicine (Baltimore) 2017, 96 (26), e7325. https://doi.org/10.1097/MD.0000000000007325. (89) Peng, Z.; Cheng, S.; Kou, Y.; Wang, Z.; Jin, R.; Hu, H.; Zhang, X.; Gong, J.; Li, J.; Lu, M.; Wang, X.; Zhou, J.; Lu, Z.; Zhang, Q.; Tzeng, D. T. W.; Bi, D.; Tan, Y.; Shen, L. The Gut Microbiome Is Associated with Clinical Response to Anti–PD-1/PD-L1 Immunotherapy in Gastrointestinal Cancer. Cancer Immunol. Res. 2020, 8 (10), 1251–1261. https://doi.org/10.1158/2326-6066.CIR-19-1014. (90) Pol, J.; Kroemer, G. Anti-CTLA-4 Immunotherapy: Uncoupling Toxicity and Efficacy. Cell Res. 2018, 28 (5), 501–502. https://doi.org/10.1038/s41422-018-0031-9. (91) Peggs, K. S.; Quezada, S. A.; Korman, A. J.; Allison, J. P. Principles and Use of Anti-CTLA4 Antibody in Human Cancer Immunotherapy. Curr. Opin. Immunol. 2006, 18 (2), 206–213. https://doi.org/10.1016/j.coi.2006.01.011. (92) Callahan, M. K.; Wolchok, J. D.; Allison, J. P. Anti–CTLA-4 Antibody Therapy: Immune Monitoring During Clinical Development of a Novel Immunotherapy. Semin. Oncol. 2010, 37 (5), 473–484. https://doi.org/10.1053/j.seminoncol.2010.09.001. (93) Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study - The Lancet Oncology. https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(09)70334-1/fulltext (accessed 2023-06-27). (94) Schadendorf, D.; Hodi, F. S.; Robert, C.; Weber, J. S.; Margolin, K.; Hamid, O.; Patt, D.; Chen, T.-T.; Berman, D. M.; Wolchok, J. D. Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J. Clin. Oncol. 2015, 33 (17), 1889–1894. https://doi.org/10.1200/JCO.2014.56.2736. (95) Liang, S. C.; Latchman, Y. E.; Buhlmann, J. E.; Tomczak, M. F.; Horwitz, B. H.; Freeman, G. J.; Sharpe, A. H. Regulation of PD-1, PD-L1, and PD-L2 Expression during Normal and Autoimmune Responses. Eur. J. Immunol. 2003, 33 (10), 2706–2716. https://doi.org/10.1002/eji.200324228. (96) Latchman, Y.; Wood, C. R.; Chernova, T.; Chaudhary, D.; Borde, M.; Chernova, I.; Iwai, Y.; Long, A. J.; Brown, J. A.; Nunes, R.; Greenfield, E. A.; Bourque, K.; Boussiotis, V. A.; Carter, L. L.; Carreno, B. M.; Malenkovich, N.; Nishimura, H.; Okazaki, T.; Honjo, T.; Sharpe, A. H.; Freeman, G. J. PD-L2 Is a Second Ligand for PD-1 and Inhibits T Cell Activation. Nat. Immunol. 2001, 2 (3), 261–268. https://doi.org/10.1038/85330. (97) Frearson, J. A.; Alexander, D. R. The Phosphotyrosine Phosphatase SHP-2 Participates in a Multimeric Signaling Complex and Regulates T Cell Receptor (TCR) Coupling to the Ras/Mitogen-Activated Protein Kinase (MAPK) Pathway in Jurkat T Cells. J. Exp. Med. 1998, 187 (9), 1417–1426. https://doi.org/10.1084/jem.187.9.1417. (98) Betts, G.; Jones, E.; Junaid, S.; El-Shanawany, T.; Scurr, M.; Mizen, P.; Kumar, M.; Jones, S.; Rees, B.; Williams, G.; Gallimore, A.; Godkin, A. Suppression of Tumour-Specific CD4 + T Cells by Regulatory T Cells Is Associated with Progression of Human Colorectal Cancer. Gut 2012, 61 (8), 1163–1171. https://doi.org/10.1136/gutjnl-2011-300970. (99) Ishida, M.; Iwai, Y.; Tanaka, Y.; Okazaki, T.; Freeman, G. J.; Minato, N.; Honjo, T. Differential Expression of PD-L1 and PD-L2, Ligands for an Inhibitory Receptor PD-1, in the Cells of Lymphohematopoietic Tissues. Immunol. Lett. 2002, 84 (1), 57–62. https://doi.org/10.1016/S0165-2478(02)00142-6. (100) Frucht, D. M.; Fukao, T.; Bogdan, C.; Schindler, H.; O’Shea, J. J.; Koyasu, S. IFN-γ Production by Antigen-Presenting Cells: Mechanisms Emerge. Trends Immunol. 2001, 22 (10), 556–560. https://doi.org/10.1016/S1471-4906(01)02005-1. (101) van Hall, T.; Sijts, A.; Camps, M.; Offringa, R.; Melief, C.; Kloetzel, P.-M.; Ossendorp, F. Differential Influence on Cytotoxic T Lymphocyte Epitope Presentation by Controlled Expression of Either Proteasome Immunosubunits or Pa28. J. Exp. Med. 2000, 192 (4), 483–494. https://doi.org/10.1084/jem.192.4.483. (102) Lu, C.; Ma, H.; Song, L.; Wang, H.; Wang, L.; Li, S.; Lagana, S. M.; Sepulveda, A. R.; Hoebe, K.; Pan, S. S.; Yang, Y.-G.; Lentzsch, S.; Mapara, M. Y. IFN-γR/STAT1 Signaling in Recipient Hematopoietic Antigen-Presenting Cells Suppresses Graft-versus-Host Disease. J. Clin. Invest. 2023, 133 (3). https://doi.org/10.1172/JCI125986. (103) Sorich, M. J.; Rowland, A.; Karapetis, C. S.; Hopkins, A. M. Evaluation of the Lung Immune Prognostic Index for Prediction of Survival and Response in Patients Treated With Atezolizumab for NSCLC: Pooled Analysis of Clinical Trials. J. Thorac. Oncol. 2019, 14 (8), 1440–1446. https://doi.org/10.1016/j.jtho.2019.04.006. (104) Jacquelot, N.; Roberti, M. P.; Enot, D. P.; Rusakiewicz, S.; Ternès, N.; Jegou, S.; Woods, D. M.; Sodré, A. L.; Hansen, M.; Meirow, Y.; Sade-Feldman, M.; Burra, A.; Kwek, S. S.; Flament, C.; Messaoudene, M.; Duong, C. P. M.; Chen, L.; Kwon, B. S.; Anderson, A. C.; Kuchroo, V. K.; Weide, B.; Aubin, F.; Borg, C.; Dalle, S.; Beatrix, O.; Ayyoub, M.; Balme, B.; Tomasic, G.; Di Giacomo, A. M.; Maio, M.; Schadendorf, D.; Melero, I.; Dréno, B.; Khammari, A.; Dummer, R.; Levesque, M.; Koguchi, Y.; Fong, L.; Lotem, M.; Baniyash, M.; Schmidt, H.; Svane, I. M.; Kroemer, G.; Marabelle, A.; Michiels, S.; Cavalcanti, A.; Smyth, M. J.; Weber, J. S.; Eggermont, A. M.; Zitvogel, L. Predictors of Responses to Immune Checkpoint Blockade in Advanced Melanoma. Nat. Commun. 2017, 8 (1), 592. https://doi.org/10.1038/s41467-017-00608-2. (105) Koyama, S.; Akbay, E. A.; Li, Y. Y.; Herter-Sprie, G. S.; Buczkowski, K. A.; Richards, W. G.; Gandhi, L.; Redig, A. J.; Rodig, S. J.; Asahina, H.; Jones, R. E.; Kulkarni, M. M.; Kuraguchi, M.; Palakurthi, S.; Fecci, P. E.; Johnson, B. E.; Janne, P. A.; Engelman, J. A.; Gangadharan, S. P.; Costa, D. B.; Freeman, G. J.; Bueno, R.; Hodi, F. S.; Dranoff, G.; Wong, K.-K.; Hammerman, P. S. Adaptive Resistance to Therapeutic PD-1 Blockade Is Associated with Upregulation of Alternative Immune Checkpoints. Nat. Commun. 2016, 7 (1), 10501. https://doi.org/10.1038/ncomms10501. (106) De Henau, O.; Rausch, M.; Winkler, D.; Campesato, L. F.; Liu, C.; Cymerman, D. H.; Budhu, S.; Ghosh, A.; Pink, M.; Tchaicha, J.; Douglas, M.; Tibbitts, T.; Sharma, S.; Proctor, J.; Kosmider, N.; White, K.; Stern, H.; Soglia, J.; Adams, J.; Palombella, V. J.; McGovern, K.; Kutok, J. L.; Wolchok, J. D.; Merghoub, T. Overcoming Resistance to Checkpoint Blockade Therapy by Targeting PI3Kγ in Myeloid Cells. Nature 2016, 539 (7629), 443–447. https://doi.org/10.1038/nature20554. (107) Mei, Z.; Huang, J.; Qiao, B.; Lam, A. K. Immune Checkpoint Pathways in Immunotherapy for Head and Neck Squamous Cell Carcinoma. Int. J. Oral Sci. 2020, 12 (1), 1–9. https://doi.org/10.1038/s41368-020-0084-8. (108) O’ Donovan, D. H.; Mao, Y.; Mele, D. A. The Next Generation of Pattern Recognition Receptor Agonists: Improving Response Rates in Cancer Immunotherapy. Curr. Med. Chem. 2020, 27 (34), 5654–5674. https://doi.org/10.2174/0929867326666190620103105. (109) Wu, D.; Wang, D. C.; Cheng, Y.; Qian, M.; Zhang, M.; Shen, Q.; Wang, X. Roles of Tumor Heterogeneity in the Development of Drug Resistance: A Call for Precision Therapy. Semin. Cancer Biol. 2017, 42, 13–19. https://doi.org/10.1016/j.semcancer.2016.11.006. (110) Liu, Y.; Cao, X. Immunosuppressive Cells in Tumor Immune Escape and Metastasis. J. Mol. Med. 2016, 94 (5), 509–522. https://doi.org/10.1007/s00109-015-1376-x. (111) Bauché, D.; Mauze, S.; Kochel, C.; Grein, J.; Sawant, A.; Zybina, Y.; Blumenschein, W.; Yang, P.; Annamalai, L.; Yearley, J. H.; Punnonen, J.; Bowman, E. P.; Chackerian, A.; Laface, D. Antitumor Efficacy of Combined CTLA4/PD-1 Blockade without Intestinal Inflammation Is Achieved by Elimination of FcγR Interactions. J. Immunother. Cancer 2020, 8 (2), e001584. https://doi.org/10.1136/jitc-2020-001584. (112) Ahern, E.; Harjunpää, H.; O’Donnell, J. S.; Allen, S.; Dougall, W. C.; Teng, M. W. L.; Smyth, M. J. RANKL Blockade Improves Efficacy of PD1-PD-L1 Blockade or Dual PD1-PD-L1 and CTLA4 Blockade in Mouse Models of Cancer. OncoImmunology 2018, 7 (6), e1431088. https://doi.org/10.1080/2162402X.2018.1431088. (113) Puzanov, I.; Milhem, M. M.; Minor, D.; Hamid, O.; Li, A.; Chen, L.; Chastain, M.; Gorski, K. S.; Anderson, A.; Chou, J.; Kaufman, H. L.; Andtbacka, R. H. I. Talimogene Laherparepvec in Combination With Ipilimumab in Previously Untreated, Unresectable Stage IIIB-IV Melanoma. J. Clin. Oncol. 2016, 34 (22), 2619–2626. https://doi.org/10.1200/JCO.2016.67.1529. (114) Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J. J.; Cowey, C. L.; Lao, C. D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; Ferrucci, P. F.; Hill, A.; Wagstaff, J.; Carlino, M. S.; Haanen, J. B.; Maio, M.; Marquez-Rodas, I.; McArthur, G. A.; Ascierto, P. A.; Long, G. V.; Callahan, M. K.; Postow, M. A.; Grossmann, K.; Sznol, M.; Dreno, B.; Bastholt, L.; Yang, A.; Rollin, L. M.; Horak, C.; Hodi, F. S.; Wolchok, J. D. Combined Nivolumab and Ipilimumab or Monotherapy in Previously Untreated Melanoma. N. Engl. J. Med. 2015, 373 (1), 23–34. https://doi.org/10.1056/NEJMoa1504030. (115) Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J. J.; Cowey, C. L.; Lao, C. D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; Ferrucci, P. F.; Hill, A.; Wagstaff, J.; Carlino, M. S.; Haanen, J. B.; Maio, M.; Marquez-Rodas, I.; McArthur, G. A.; Ascierto, P. A.; Long, G. V.; Callahan, M. K.; Postow, M. A.; Grossmann, K.; Sznol, M.; Dreno, B.; Bastholt, L.; Yang, A.; Rollin, L. M.; Horak, C.; Hodi, F. S.; Wolchok, J. D. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373 (1), 23–34. https://doi.org/10.1056/NEJMoa1504030. (116) Lu, Q.; Ye, H.; Wang, K.; Zhao, J.; Wang, H.; Song, J.; Fan, X.; Lu, Y.; Cao, L.; Wan, B.; Zhang, H.; He, Z.; Sun, J. Bioengineered Platelets Combining Chemotherapy and Immunotherapy for Postsurgical Melanoma Treatment: Internal Core-Loaded Doxorubicin and External Surface-Anchored Anti-PD-L1 Antibody Backpacks. Nano Lett. 2022, 22 (7), 3141–3150. https://doi.org/10.1021/acs.nanolett.2c00907. (117) Su, Z.; Xiao, Z.; Wang, Y.; Huang, J.; An, Y.; Wang, X.; Shuai, X. Codelivery of Anti-PD-1 Antibody and Paclitaxel with Matrix Metalloproteinase and PH Dual-Sensitive Micelles for Enhanced Tumor Chemoimmunotherapy. Small 2020, 16 (7), 1906832. https://doi.org/10.1002/smll.201906832. (118) Pham, L. M.; Poudel, K.; Ou, W.; Phung, C. D.; Nguyen, H. T.; Nguyen, B. L.; Karmacharya, P.; Pandit, M.; Chang, J.-H.; Jeong, J.-H.; Ku, S. K.; Yong, C. S.; Choi, H.-G.; Kim, J. O. Combination Chemotherapeutic and Immune-Therapeutic Anticancer Approach via Anti-PD-L1 Antibody Conjugated Albumin Nanoparticles. Int. J. Pharm. 2021, 605, 120816. https://doi.org/10.1016/j.ijpharm.2021.120816. (119) Li, L.; Li, Y.; Yang, C.-H.; Radford, D. C.; Wang, J.; Janát-Amsbury, M.; Kopeček, J.; Yang, J. Inhibition of Immunosuppressive Tumors by Polymer-Assisted Inductions of Immunogenic Cell Death and Multivalent PD-L1 Crosslinking. Adv. Funct. Mater. 2020, 30 (12), 1908961. https://doi.org/10.1002/adfm.201908961. (120) Wei, J.; Long, Y.; Guo, R.; Liu, X.; Tang, X.; Rao, J.; Yin, S.; Zhang, Z.; Li, M.; He, Q. Multifunctional Polymeric Micelle-Based Chemo-Immunotherapy with Immune Checkpoint Blockade for Efficient Treatment of Orthotopic and Metastatic Breast Cancer. Acta Pharm. Sin. B 2019, 9 (4), 819–831. https://doi.org/10.1016/j.apsb.2019.01.018. (121) Vatner, R. E.; Cooper, B. T.; Vanpouille-Box, C.; Demaria, S.; Formenti, S. C. Combinations of Immunotherapy and Radiation in Cancer Therapy. Front. Oncol. 2014, 4. (122) Dewan, M. Z.; Galloway, A. E.; Kawashima, N.; Dewyngaert, J. K.; Babb, J. S.; Formenti, S. C.; Demaria, S. Fractionated but Not Single-Dose Radiotherapy Induces an Immune-Mediated Abscopal Effect When Combined with Anti–CTLA-4 Antibody. Clin. Cancer Res. 2009, 15 (17), 5379–5388. https://doi.org/10.1158/1078-0432.CCR-09-0265. (123) Teng, F.; Kong, L.; Meng, X.; Yang, J.; Yu, J. Radiotherapy Combined with Immune Checkpoint Blockade Immunotherapy: Achievements and Challenges. Cancer Lett. 2015, 365 (1), 23–29. https://doi.org/10.1016/j.canlet.2015.05.012. (124) Trivillin, V. A.; Langle, Y. V.; Palmieri, M. A.; Pozzi, E. C. C.; Thorp, S. I.; Benitez Frydryk, D. N.; Garabalino, M. A.; Monti Hughes, A.; Curotto, P. M.; Colombo, L. L.; Santa Cruz, I. S.; Ramos, P. S.; Itoiz, M. E.; Argüelles, C.; Eiján, A. M.; Schwint, A. E. Evaluation of Local, Regional and Abscopal Effects of Boron Neutron Capture Therapy (BNCT) Combined with Immunotherapy in an Ectopic Colon Cancer Model. Br. J. Radiol. 2021, 94 (1128), 20210593. https://doi.org/10.1259/bjr.20210593. (125) Shi, Y.; Guo, Z.; Fu, Q.; Shen, X.; Zhang, Z.; Sun, W.; Wang, J.; Sun, J.; Zhang, Z.; Liu, T.; Gu, Z.; Liu, Z. Localized Nuclear Reaction Breaks Boron Drug Capsules Loaded with Immune Adjuvants for Cancer Immunotherapy. Nat. Commun. 2023, 14 (1), 1884. https://doi.org/10.1038/s41467-023-37253-x. (126) Ladoire, S.; Hannani, D.; Vetizou, M.; Locher, C.; Aymeric, L.; Apetoh, L.; Kepp, O.; Kroemer, G.; Ghiringhelli, F.; Zitvogel, L. Cell-Death-Associated Molecular Patterns As Determinants of Cancer Immunogenicity. Antioxid. Redox Signal. 2014, 20 (7), 1098–1116. https://doi.org/10.1089/ars.2012.5133. (127) Sheng, W.-Y.; Huang, L. Cancer Immunotherapy and Nanomedicine. Pharm. Res. 2011, 28 (2), 200–214. https://doi.org/10.1007/s11095-010-0258-8. (128) Nichols, J. W.; Bae, Y. H. EPR: Evidence and Fallacy. J. Controlled Release 2014, 190, 451–464. https://doi.org/10.1016/j.jconrel.2014.03.057. (129) Analysis of nanoparticle delivery to tumours | Nature Reviews Materials. https://www.nature.com/articles/natrevmats201614 (accessed 2023-07-03). (130) Florence, A. T. “Targeting” Nanoparticles: The Constraints of Physical Laws and Physical Barriers. J. Controlled Release 2012, 164 (2), 115–124. https://doi.org/10.1016/j.jconrel.2012.03.022. (131) Bazak, R.; Houri, M.; El Achy, S.; Kamel, S.; Refaat, T. Cancer Active Targeting by Nanoparticles: A Comprehensive Review of Literature. J. Cancer Res. Clin. Oncol. 2015, 141 (5), 769–784. https://doi.org/10.1007/s00432-014-1767-3. (132) Singh, M. S.; Bhaskar, S. Nanocarrier-Based Immunotherapy in Cancer Management and Research. ImmunoTargets Ther. 2014, 3, 121–134. https://doi.org/10.2147/ITT.S62471. (133) Baeza, A. Tumor Targeted Nanocarriers for Immunotherapy. Molecules 2020, 25 (7), 1508. https://doi.org/10.3390/molecules25071508. (134) Suk, J. S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. https://doi.org/10.1016/j.addr.2015.09.012. (135) Li, Y.; Zhang, X.; Liu, X.; Pan, W.; Li, N.; Tang, B. Intelligent Stimuli-Responsive Nano Immunomodulators for Cancer Immunotherapy. Chem. Sci. 2021, 12 (9), 3130–3145. https://doi.org/10.1039/D0SC06557A. (136) Mao, L.; Ma, P.; Luo, X.; Cheng, H.; Wang, Z.; Ye, E.; Loh, X. J.; Wu, Y.-L.; Li, Z. Stimuli-Responsive Polymeric Nanovaccines Toward Next-Generation Immunotherapy. ACS Nano 2023, 17 (11), 9826–9849. https://doi.org/10.1021/acsnano.3c02273. (137) Banstola, A.; Poudel, K.; Kim, J. O.; Jeong, J.-H.; Yook, S. Recent Progress in Stimuli-Responsive Nanosystems for Inducing Immunogenic Cell Death. J. Controlled Release 2021, 337, 505–520. https://doi.org/10.1016/j.jconrel.2021.07.038. (138) Ismail, E. A.; Devnarain, N.; Govender, T.; Omolo, C. A. Stimuli-Responsive and Biomimetic Delivery Systems for Sepsis and Related Complications. J. Controlled Release 2022, 352, 1048–1070. https://doi.org/10.1016/j.jconrel.2022.11.013. (139) Qin, J.; Sun, M.; Hu, W.; Cheng, J.; Fan, Z.; Du, J. Stimuli-Responsive Hydrogels for Cancer Immunotherapy. Polym. Chem. 2023, 14 (7), 793–802. https://doi.org/10.1039/D2PY01308H. (140) Delfi, M.; Sartorius, R.; Ashrafizadeh, M.; Sharifi, E.; Zhang, Y.; De Berardinis, P.; Zarrabi, A.; Varma, R. S.; Tay, F. R.; Smith, B. R.; Makvandi, P. Self-Assembled Peptide and Protein Nanostructures for Anti-Cancer Therapy: Targeted Delivery, Stimuli-Responsive Devices and Immunotherapy. Nano Today 2021, 38, 101119. https://doi.org/10.1016/j.nantod.2021.101119. (141) Barth, R. F.; H Vicente, Mg.; Harling, O. K.; Kiger, W.; Riley, K. J.; Binns, P. J.; Wagner, F. M.; Suzuki, M.; Aihara, T.; Kato, I.; Kawabata, S. Current Status of Boron Neutron Capture Therapy of High Grade Gliomas and Recurrent Head and Neck Cancer. Radiat. Oncol. 2012, 7 (1), 146. https://doi.org/10.1186/1748-717X-7-146. (142) Kato, I.; Fujita, Y.; Maruhashi, A.; Kumada, H.; Ohmae, M.; Kirihata, M.; Imahori, Y.; Suzuki, M.; Sakrai, Y.; Sumi, T.; Iwai, S.; Nakazawa, M.; Murata, I.; Miyamaru, H.; Ono, K. Effectiveness of Boron Neutron Capture Therapy for Recurrent Head and Neck Malignancies. Appl. Radiat. Isot. 2009, 67 (7, Supplement), S37–S42. https://doi.org/10.1016/j.apradiso.2009.03.103. (143) Mehta, S. C.; Lu, D. R. Targeted Drug Delivery for Boron Neutron Capture Therapy. Pharm. Res. 1996, 13 (3), 344–351. https://doi.org/10.1023/A:1016076022267. (144) Drugs for BNCT: BSH and BPA | SpringerLink. https://link.springer.com/chapter/10.1007/978-3-642-31334-9_8 (accessed 2023-06-29). (145) Yokoyama, K.; Miyatake, S.-I.; Kajimoto, Y.; Kawabata, S.; Doi, A.; Yoshida, T.; Asano, T.; Kirihata, M.; Ono, K.; Kuroiwa, T. Pharmacokinetic Study of BSH and BPA in Simultaneous Use for BNCT. J. Neurooncol. 2006, 78 (3), 227–232. https://doi.org/10.1007/s11060-005-9099-4. (146) Wongthai, P.; Hagiwara, K.; Miyoshi, Y.; Wiriyasermkul, P.; Wei, L.; Ohgaki, R.; Kato, I.; Hamase, K.; Nagamori, S.; Kanai, Y. Boronophenylalanine, a Boron Delivery Agent for Boron Neutron Capture Therapy, Is Transported by ATB0,+, LAT1 and LAT2. Cancer Sci. 2015, 106 (3), 279–286. https://doi.org/10.1111/cas.12602. (147) Lin, Y.-C.; Chou, F.-I.; Yang, B.-H.; Chang, C.-W.; Chen, Y.-W.; Hwang, J.-J. Similar T/N Ratio between 18F-FBPA Diagnostic and BPA Therapeutic Dosages for Boron Neutron Capture Therapy in Orthotropic Tongue Cancer Model. Ann. Nucl. Med. 2020, 34 (1), 58–64. https://doi.org/10.1007/s12149-019-01415-z. (148) Heikkinen, S.; Savolainen, S.; Melkko, P. In Vitro Studies on Stability of L-p-Boronophenylalanine–Fructose Complex (BPA-F). J. Radiat. Res. (Tokyo) 2011, 52 (3), 360–364. https://doi.org/10.1269/jrr.10138. (149) Bendel, P.; Anderson, C.; Kabalka, G. W. Structure of the BPA-Fructose Complex. In Frontiers in Neutron Capture Therapy: Volume 1; Hawthorne, M. F., Shelly, K., Wiersema, R. J., Eds.; Springer US: Boston, MA, 2001; pp 869–874. https://doi.org/10.1007/978-1-4615-1285-1_130. (150) Chen, B.-G.; Zhang, M.-Y.; Zhao, Y.-Y.; Zhang, J.; Sun, C.-C. Structural and Electronic Properties of BPA-Fructose Complex Used in Boron Neutron Capture Therapy. J. Mol. Struct. THEOCHEM 2006, 766 (1), 35–40. https://doi.org/10.1016/j.theochem.2006.04.003. (151) Yoshino, K.; Yabe, T.; Hattori, T.; Saito, K.; Ishikawa, A.; Ohki, H. 10B-NMR Determination of 10B-BPA, 10B-BPA–Fructose Complex and Total 10B in Blood for BNCT. Appl. Radiat. Isot. 2014, 88, 74–77. https://doi.org/10.1016/j.apradiso.2013.12.020. (152) Fukuda, H.; Hiratsuka, J.; Honda, C.; Kobayashi, T.; Yoshino, K.; Karashima, H.; Takahashi, J.; Abe, Y.; Kanda, K.; Ichihashi, M. Boron Neutron Capture Therapy of Malignant Melanoma Using 10B-Paraboronophenylalanine with Special Reference to Evaluation of Radiation Dose and Damage to the Normal Skin. Radiat. Res. 1994, 138 (3), 435–442. https://doi.org/10.2307/3578693. (153) Chadha, M.; Capala, J.; Coderre, J. A.; Elowitz, E. H.; Iwai, J.; Joel, D. D.; Liu, H. B.; Wielopolski, L.; Chanana, A. D. Boron Neutron-Capture Therapy (BNCT) for Glioblastoma Multiforme (GBM) Using the Epithermal Neutron Beam at the Brookhaven National Laboratory. Int. J. Radiat. Oncol. 1998, 40 (4), 829–834. https://doi.org/10.1016/S0360-3016(97)00891-2. (154) Ishiwata, K.; Ido, T.; Mejia, A. A.; Ichihashi, M.; Mishima, Y. Synthesis and Radiation Dosimetry of 4-Borono-2-[18F]Fluoro-d,l-Phenylalanine: A Target Compound for PET and Boron Neutron Capture Therapy. Int. J. Rad. Appl. Instrum. [A] 1991, 42 (4), 325–328. https://doi.org/10.1016/0883-2889(91)90133-L. (155) Vähätalo, J. K.; Eskola, O.; Bergman, J.; Forsback, S.; Lehikoinen, P.; Jääskeläinen, J.; Solin, O. Synthesis of 4-Dihydroxyboryl-2-[18F]Fluorophenylalanine with Relatively High-Specific Activity. J. Label. Compd. Radiopharm. 2002, 45 (8), 697–704. https://doi.org/10.1002/jlcr.600. (156) Watabe, T.; Hanaoka, K.; Naka, S.; Kanai, Y.; Ikeda, H.; Aoki, M.; Shimosegawa, E.; Kirihata, M.; Hatazawa, J. Practical Calculation Method to Estimate the Absolute Boron Concentration in Tissues Using 18F-FBPA PET. Ann. Nucl. Med. 2017, 31 (6), 481–485. https://doi.org/10.1007/s12149-017-1172-5. (157) Dymova, M. A.; Taskaev, S. Y.; Richter, V. A.; Kuligina, E. V. Boron Neutron Capture Therapy: Current Status and Future Perspectives. Cancer Commun. 2020, 40 (9), 406–421. https://doi.org/10.1002/cac2.12089. (158) Yoshimoto, M.; Kurihara, H.; Honda, N.; Kawai, K.; Ohe, K.; Fujii, H.; Itami, J.; Arai, Y. Predominant Contribution of L-Type Amino Acid Transporter to 4-Borono-2-18F-Fluoro-Phenylalanine Uptake in Human Glioblastoma Cells. Nucl. Med. Biol. 2013, 40 (5), 625–629. https://doi.org/10.1016/j.nucmedbio.2013.02.010. (159) Ali, F.; S Hosmane, N.; Zhu, Y. Boron Chemistry for Medical Applications. Molecules 2020, 25 (4), 828. https://doi.org/10.3390/molecules25040828. (160) Matsumoto, Y.; Fukumitsu, N.; Ishikawa, H.; Nakai, K.; Sakurai, H. A Critical Review of Radiation Therapy: From Particle Beam Therapy (Proton, Carbon, and BNCT) to Beyond. J. Pers. Med. 2021, 11 (8), 825. https://doi.org/10.3390/jpm11080825. (161) Maeda, H. The 35th Anniversary of the Discovery of EPR Effect: A New Wave of Nanomedicines for Tumor-Targeted Drug Delivery—Personal Remarks and Future Prospects. J. Pers. Med. 2021, 11 (3), 229. https://doi.org/10.3390/jpm11030229. (162) Torchilin, V. Tumor Delivery of Macromolecular Drugs Based on the EPR Effect. Adv. Drug Deliv. Rev. 2011, 63 (3), 131–135. https://doi.org/10.1016/j.addr.2010.03.011. (163) Fang, J.; Nakamura, H.; Maeda, H. The EPR Effect: Unique Features of Tumor Blood Vessels for Drug Delivery, Factors Involved, and Limitations and Augmentation of the Effect. Adv. Drug Deliv. Rev. 2011, 63 (3), 136–151. https://doi.org/10.1016/j.addr.2010.04.009. (164) Maruyama, K. Intracellular Targeting Delivery of Liposomal Drugs to Solid Tumors Based on EPR Effects. Adv. Drug Deliv. Rev. 2011, 63 (3), 161–169. https://doi.org/10.1016/j.addr.2010.09.003. (165) Wang, J.; Mao, W.; Lock, L. L.; Tang, J.; Sui, M.; Sun, W.; Cui, H.; Xu, D.; Shen, Y. The Role of Micelle Size in Tumor Accumulation, Penetration, and Treatment. ACS Nano 2015, 9 (7), 7195–7206. https://doi.org/10.1021/acsnano.5b02017. (166) Kang, H.; Rho, S.; Stiles, W. R.; Hu, S.; Baek, Y.; Hwang, D. W.; Kashiwagi, S.; Kim, M. S.; Choi, H. S. Size-Dependent EPR Effect of Polymeric Nanoparticles on Tumor Targeting. Adv. Healthc. Mater. 2020, 9 (1), 1901223. https://doi.org/10.1002/adhm.201901223. (167) Barth, R. F.; Mi, P.; Yang, W. Boron Delivery Agents for Neutron Capture Therapy of Cancer. Cancer Commun. 2018, 38 (1), 35. https://doi.org/10.1186/s40880-018-0299-7. (168) Metallacarboranes on the Road to Anticancer Therapies: Cellular Uptake, DNA Interaction, and Biological Evaluation of Cobaltabisdicarbollide [COSAN]− - Fuentes - 2018 - Chemistry – A European Journal - Wiley Online Library. https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/chem.201803178 (accessed 2023-06-30). (169) Chen, W.; Mehta, S. C.; Lu, D. R. Selective Boron Drug Delivery to Brain Tumors for Boron Neutron Capture Therapy. Adv. Drug Deliv. Rev. 1997, 26 (2), 231–247. https://doi.org/10.1016/S0169-409X(97)00037-9. (170) He, T.; Chittur, S. V.; Musah, R. A. Impact on Glioblastoma U87 Cell Gene Expression of a Carborane Cluster-Bearing Amino Acid: Implications for Carborane Toxicity in Mammalian Cells. ACS Chem. Neurosci. 2019, 10 (3), 1524–1534. https://doi.org/10.1021/acschemneuro.8b00512. (171) Novick, S.; Quastel, M. R.; Marcus, S.; Chipman, D.; Shani, G.; Barth, R. F.; Soloway, A. H. Linkage of Boronated Polylysine to Glycoside Moieties of Polyclonal Antibody; Boronated Antibodies as Potential Delivery Agents for Neutron Capture Therapy1 1Abbreviations: BNCT, Boron Neutron Capture Therapy; BPL, Boronated Poly-DL-Lysine; BSA, Bovine Serum Albumin; DMBA, p-Dimethylaminobenzaldehyde; DMF, Dimethylformamide; DMSO, Dimethyl Sulfoxide; DTT, Dithiothreitol; FTSC, Fluorescein Thiosemicarbazide; HRP, Horseradish Peroxidase; IgG, Immunoglobulin-G; IRMA, Immunoradiometric Assay; LET, Linear Energy Transfer; MB-Hydrazide, m-Maleimidobenzoyl Hydrazide; MW, Molecular Weight; PBS, Phosphate Buffered Saline; PL, Poly-DL-Lysine; SDS-PAGE, Sodium n-Dodecyl Sulfate Polyacrylamide Gel Electrophoresis; SPDP, N-Succinimidyl-3-(2 Pyridyldithio) Propionate; Sulfo-MBS, m-Maleimidobenzoyl-N-Hydroxysulfosuccinimide Ester; TRIZMA®, Tris (Hydroxymethyl) Aminomethane; TSH, Thyroid Stimulating Hormone. Nucl. Med. Biol. 2002, 29 (2), 159–167. https://doi.org/10.1016/S0969-8051(01)00297-9. (172) Wu, G.; Barth, R. F.; Yang, W.; Chatterjee, M.; Tjarks, W.; Ciesielski, M. J.; Fenstermaker, R. A. Site-Specific Conjugation of Boron-Containing Dendrimers to Anti-EGF Receptor Monoclonal Antibody Cetuximab (IMC-C225) and Its Evaluation as a Potential Delivery Agent for Neutron Capture Therapy. Bioconjug. Chem. 2004, 15 (1), 185–194. https://doi.org/10.1021/bc0341674. (173) Yang, W.; Barth, R. F.; Wu, G.; Huo, T.; Tjarks, W.; Ciesielski, M.; Fenstermaker, R. A.; Ross, B. D.; Wikstrand, C. J.; Riley, K. J.; Binns, P. J. Convection Enhanced Delivery of Boronated EGF as a Molecular Targeting Agent for Neutron Capture Therapy of Brain Tumors. J. Neurooncol. 2009, 95 (3), 355–365. https://doi.org/10.1007/s11060-009-9945-x. (174) Wang, J.; Wu, W.; Jiang, X. Nanoscaled Boron-Containing Delivery Systems and Therapeutic Agents for Cancer Treatment. Nanomed. 2015, 10 (7), 1149–1163. https://doi.org/10.2217/nnm.14.213. (175) Wu, C.-Y.; Lin, J.-J.; Chang, W.-Y.; Hsieh, C.-Y.; Wu, C.-C.; Chen, H.-S.; Hsu, H.-J.; Yang, A.-S.; Hsu, M.-H.; Kuo, W.-Y. Development of Theranostic Active-Targeting Boron-Containing Gold Nanoparticles for Boron Neutron Capture Therapy (BNCT). Colloids Surf. B Biointerfaces 2019, 183, 110387. https://doi.org/10.1016/j.colsurfb.2019.110387. (176) Pitto-Barry, A. Polymers and Boron Neutron Capture Therapy (BNCT): A Potent Combination. Polym. Chem. 2021, 12 (14), 2035–2044. https://doi.org/10.1039/D0PY01392G. (177) Gratton, S. E. A.; Parrott, M. C.; Adronov, A. Preparation of Carborane-Containing Polymers by Atom Transfer Radical Polymerization. J. Inorg. Organomet. Polym. Mater. 2005, 15 (4), 469–475. https://doi.org/10.1007/s10904-006-9000-8. (178) Seneviratne, D. S.; Saifi, O.; Mackeyev, Y.; Malouff, T.; Krishnan, S. Next-Generation Boron Drugs and Rational Translational Studies Driving the Revival of BNCT. Cells 2023, 12 (10), 1398. https://doi.org/10.3390/cells12101398. (179) Masunaga, S.; Sanada, Y.; Tano, K.; Sakurai, Y.; Tanaka, H.; Takata, T.; Suzuki, M.; Ono, K. An Attempt to Improve the Therapeutic Effect of Boron Neutron Capture Therapy Using Commonly Employed 10B-Carriers Based on Analytical Studies on the Correlation among Quiescent Tumor Cell Characteristics, Tumor Heterogeneity and Cancer Stemness. J. Radiat. Res. (Tokyo) 2020, 61 (6), 876–885. https://doi.org/10.1093/jrr/rraa048. (180) Hader, M.; Frey, B.; Fietkau, R.; Hecht, M.; Gaipl, U. S. Immune Biological Rationales for the Design of Combined Radio- and Immunotherapies. Cancer Immunol. Immunother. 2020, 69 (2), 293–306. https://doi.org/10.1007/s00262-019-02460-3. (181) Suzuki, M.; Endo, K.; Satoh, H.; Sakurai, Y.; Kumada, H.; Kimura, H.; Masunaga, S.; Kinashi, Y.; Nagata, K.; Maruhashi, A.; Ono, K. A Novel Concept of Treatment of Diffuse or Multiple Pleural Tumors by Boron Neutron Capture Therapy (BNCT). Radiother. Oncol. 2008, 88 (2), 192–195. https://doi.org/10.1016/j.radonc.2008.06.009. (182) Aiyama, H.; Nakai, K.; Yamamoto, T.; Nariai, T.; Kumada, H.; Ishikawa, E.; Isobe, T.; Endo, K.; Takada, T.; Yoshida, F.; Shibata, Y.; Matsumura, A. A Clinical Trial Protocol for Second Line Treatment of Malignant Brain Tumors with BNCT at University of Tsukuba. Appl. Radiat. Isot. 2011, 69 (12), 1819–1822. https://doi.org/10.1016/j.apradiso.2011.04.031. (183) Khan A. A.; Maitz C.; Quanyu C.; Hawthorne F. BNCT induced immunomodulatory effects contribute to mammary tumor inhibition. PLOS ONE 2019, 14 (9), e0222022. https://doi.org/10.1371/journal.pone.0222022. (184) Hughes, A. M. Importance of Radiobiological Studies for the Advancement of Boron Neutron Capture Therapy (BNCT). Expert Rev. Mol. Med. 2022, 24, e14. https://doi.org/10.1017/erm.2022.7. (185) Krysko, D. V.; Garg, A. D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic Cell Death and DAMPs in Cancer Therapy. Nat. Rev. Cancer 2012, 12 (12), 860–875. https://doi.org/10.1038/nrc3380. (186) Obeid, M.; Tesniere, A.; Ghiringhelli, F.; Fimia, G. M.; Apetoh, L.; Perfettini, J.-L.; Castedo, M.; Mignot, G.; Panaretakis, T.; Casares, N.; Métivier, D.; Larochette, N.; van Endert, P.; Ciccosanti, F.; Piacentini, M.; Zitvogel, L.; Kroemer, G. Calreticulin Exposure Dictates the Immunogenicity of Cancer Cell Death. Nat. Med. 2007, 13 (1), 54–61. https://doi.org/10.1038/nm1523. (187) Martins, I.; Wang, Y.; Michaud, M.; Ma, Y.; Sukkurwala, A. Q.; Shen, S.; Kepp, O.; Métivier, D.; Galluzzi, L.; Perfettini, J.-L.; Zitvogel, L.; Kroemer, G. Molecular Mechanisms of ATP Secretion during Immunogenic Cell Death. Cell Death Differ. 2014, 21 (1), 79–91. https://doi.org/10.1038/cdd.2013.75. (188) Zonta, A.; Prati, U.; Roveda, L.; Ferrari, C.; Zonta, S.; Clerici, A.; Zonta, C.; Pinelli, T.; Fossati, F.; Altieri, S.; Bortolussi, S.; Bruschi, P.; Nano, R.; Barni, S.; Chiari, P.; Mazzini, G. Clinical Lessons from the First Applications of BNCT on Unresectable Liver Metastases. J. Phys. Conf. Ser. 2006, 41 (1), 484. https://doi.org/10.1088/1742-6596/41/1/054. (189) Yamamoto, T.; Matsumura, A.; Nakai, K.; Shibata, Y.; Endo, K.; Sakurai, F.; Kishi, T.; Kumada, H.; Yamamoto, K.; Torii, Y. Current Clinical Results of the Tsukuba BNCT Trial. Appl. Radiat. Isot. 2004, 61 (5), 1089–1093. https://doi.org/10.1016/j.apradiso.2004.05.010. (190) Chen, M.-F.; Chen, P.-T.; Hsieh, C.-C.; Wang, C.-C. Effect of Proton Therapy on Tumor Cell Killing and Immune Microenvironment for Hepatocellular Carcinoma. Cells 2023, 12 (2), 332. https://doi.org/10.3390/cells12020332. (191) Asija, S.; Chatterjee, A.; Yadav, S.; Chekuri, G.; Karulkar, A.; Jaiswal, A. K.; Goda, J. S.; Purwar, R. Combinatorial Approaches to Effective Therapy in Glioblastoma (GBM): Current Status and What the Future Holds. Int. Rev. Immunol. 2022, 41 (6), 582–605. https://doi.org/10.1080/08830185.2022.2101647. (192) Zhang, S.; Wang, J.; Kong, Z.; Sun, X.; He, Z.; Sun, B.; Luo, C.; Sun, J. Emerging Photodynamic Nanotherapeutics for Inducing Immunogenic Cell Death and Potentiating Cancer Immunotherapy. Biomaterials 2022, 282, 121433. https://doi.org/10.1016/j.biomaterials.2022.121433. (193) Fifis, T.; Gamvrellis, A.; Crimeen-Irwin, B.; Pietersz, G. A.; Li, J.; Mottram, P. L.; McKenzie, I. F. C.; Plebanski, M. Size-Dependent Immunogenicity: Therapeutic and Protective Properties of Nano-Vaccines against Tumors1. J. Immunol. 2004, 173 (5), 3148–3154. https://doi.org/10.4049/jimmunol.173.5.3148. (194) Tyrrell, Z. L.; Shen, Y.; Radosz, M. Fabrication of Micellar Nanoparticles for Drug Delivery through the Self-Assembly of Block Copolymers. Prog. Polym. Sci. 2010, 35 (9), 1128–1143. https://doi.org/10.1016/j.progpolymsci.2010.06.003. (195) Hussain, Z.; Khan, S.; Imran, M.; Sohail, M.; Shah, S. W. A.; de Matas, M. PEGylation: A Promising Strategy to Overcome Challenges to Cancer-Targeted Nanomedicines: A Review of Challenges to Clinical Transition and Promising Resolution. Drug Deliv. Transl. Res. 2019, 9 (3), 721–734. https://doi.org/10.1007/s13346-019-00631-4. (196) Florindo, H. F.; Pandit, S.; Lacerda, L.; Gonçalves, L. M. D.; Alpar, H. O.; Almeida, A. J. The Enhancement of the Immune Response against S. Equi Antigens through the Intranasal Administration of Poly-ɛ-Caprolactone-Based Nanoparticles. Biomaterials 2009, 30 (5), 879–891. https://doi.org/10.1016/j.biomaterials.2008.10.035. (197) Zhao, W.; He, C.; Wang, H.; Su, B.; Sun, S.; Zhao, C. Improved Antifouling Property of Polyethersulfone Hollow Fiber Membranes Using Additive of Poly(Ethylene Glycol) Methyl Ether-b-Poly(Styrene) Copolymers. Ind. Eng. Chem. Res. 2011, 50 (6), 3295–3303. https://doi.org/10.1021/ie102251v. (198) Xia, T.; Hao, W.; Shang, Y.; Xu, S.; Liu, H. Incorporation of Amphipathic Diblock Copolymer in Lipid Bilayer for Improving PH Responsiveness. Int. J. Polym. Sci. 2016, 2016, e5879428. https://doi.org/10.1155/2016/5879428. (199) Yang, X.-L.; Luo, Y.-L.; Xu, F.; Chen, Y.-S. Thermosensitive MPEG-b-PA-g-PNIPAM Comb Block Copolymer Micelles: Effect of Hydrophilic Chain Length and Camptothecin Release Behavior. Pharm. Res. 2014, 31 (2), 291–304. https://doi.org/10.1007/s11095-013-1160-y. (200) Kim, K. T.; Cornelissen, J. J. L. M.; Nolte, R. J. M.; van Hest, J. C. M. A Polymersome Nanoreactor with Controllable Permeability Induced by Stimuli-Responsive Block Copolymers. Adv. Mater. 2009, 21 (27), 2787–2791. https://doi.org/10.1002/adma.200900300. (201) Qin, Y.; Sukul, V.; Pagakos, D.; Cui, C.; Jäkle, F. Preparation of Organoboron Block Copolymers via ATRP of Silicon and Boron-Functionalized Monomers. Macromolecules 2005, 38 (22), 8987–8990. https://doi.org/10.1021/ma051615p. (202) Stubbs, E.; Laskowski, E.; Conor, P.; Heinze, D. A.; Karis, D.; Glogowski, E. M. Control of PH- and Temperature-Responsive Behavior of MPEG-b-PDMAEMA Copolymers through Polymer Composition. J. Macromol. Sci. Part A 2017, 54 (4), 228–235. https://doi.org/10.1080/10601325.2017.1282694. (203) Dayananda, K.; Kim, M. S.; Kim, B. S.; Lee, D. S. Synthesis and Characterization of MPEG-b-PDPA Amphiphilic Block Copolymer via Atom Transfer Radical Polymerization and Its PH-Dependent Micellar Behavior. Macromol. Res. 2007, 15 (4), 385–391. https://doi.org/10.1007/BF03218803. (204) Qin, S.; Saget, J.; Pyun, J.; Jia, S.; Kowalewski, T. Synthesis of Block, Statistical, and Gradient Copolymers from Octadecyl (Meth)Acrylates Using Atom Transfer Radical Polymerization. Macromolecules 2003, 36 (24), 8969–8977. https://doi.org/10.1021/ma0349985. (205) Xin, Y.; Yuan, J. Schiff’s Base as a Stimuli-Responsive Linker in Polymer Chemistry. Polym. Chem. 2012, 3 (11), 3045–3055. https://doi.org/10.1039/C2PY20290E. (206) Peng, J.; Chen, J.; Xie, F.; Bao, W.; Xu, H.; Wang, H.; Xu, Y.; Du, Z. Herceptin-Conjugated Paclitaxel Loaded PCL-PEG Worm-like Nanocrystal Micelles for the Combinatorial Treatment of HER2-Positive Breast Cancer. Biomaterials 2019, 222, 119420. https://doi.org/10.1016/j.biomaterials.2019.119420. (207) Emami, F.; Banstola, A.; Vatanara, A.; Lee, S.; Kim, J. O.; Jeong, J.-H.; Yook, S. Doxorubicin and Anti-PD-L1 Antibody Conjugated Gold Nanoparticles for Colorectal Cancer Photochemotherapy. Mol. Pharm. 2019, 16 (3), 1184–1199. https://doi.org/10.1021/acs.molpharmaceut.8b01157. (208) Di Tommaso, C.; Como, C.; Gurny, R.; Möller, M. Investigations on the Lyophilisation of MPEG–HexPLA Micelle Based Pharmaceutical Formulations. Eur. J. Pharm. Sci. 2010, 40 (1), 38–47. https://doi.org/10.1016/j.ejps.2010.02.006. (209) Trimaille, T.; Mondon, K.; Gurny, R.; Möller, M. Novel Polymeric Micelles for Hydrophobic Drug Delivery Based on Biodegradable Poly(Hexyl-Substituted Lactides). Int. J. Pharm. 2006, 319 (1), 147–154. https://doi.org/10.1016/j.ijpharm.2006.03.036. (210) Oh, K. T.; Bronich, T. K.; Kabanov, A. V. Micellar Formulations for Drug Delivery Based on Mixtures of Hydrophobic and Hydrophilic Pluronic® Block Copolymers. J. Controlled Release 2004, 94 (2), 411–422. https://doi.org/10.1016/j.jconrel.2003.10.018. (211) Kwon, G. S.; Naito, M.; Kataoka, K.; Yokoyama, M.; Sakurai, Y.; Okano, T. Block Copolymer Micelles as Vehicles for Hydrophobic Drugs. Colloids Surf. B Biointerfaces 1994, 2 (4), 429–434. https://doi.org/10.1016/0927-7765(94)80007-3. (212) IgG (Total) Rat Uncoated ELISA Kit with Plates - Invitrogen. https://www.thermofisher.com/elisa/product/IgG-Total-Rat-Uncoated-ELISA-Kit-with-Plates/88-50490-22?fbclid=IwAR1hxu2Pmp_gMFA1QTFsaaBaROALLf-j-68rFIvgc_gp5YLEa-2GVTx5GFM (accessed 2023-05-18). (213) Zalba, S.; Contreras-Sandoval, A. M.; Martisova, E.; Debets, R.; Smerdou, C.; Garrido, M. J. Quantification of Pharmacokinetic Profiles of PD-1/PD-L1 Antibodies by Validated ELISAs. Pharmaceutics 2020, 12 (6), 595. https://doi.org/10.3390/pharmaceutics12060595. (214) Chiang, C.-W.; Chien, Y.-C.; Yu, W.-J.; Ho, C.-Y.; Wang, C.-Y.; Wang, T.-W.; Chiang, C.-S.; Keng, P.-Y. Polymer-Coated Nanoparticles for Therapeutic and Diagnostic Non-10B Enriched Polymer-Coated Boron Carbon Oxynitride (BCNO) Nanoparticles as Potent BNCT Drug. Nanomaterials 2021, 11 (11), 2936. https://doi.org/10.3390/nano11112936. (215) Akkapeddi, P.; Azizi, S.-A.; M. Freedy, A.; D. Cal, P. M. S.; P. Gois, P. M.; L. Bernardes, G. J. Construction of Homogeneous Antibody–Drug Conjugates Using Site-Selective Protein Chemistry. Chem. Sci. 2016, 7 (5), 2954–2963. https://doi.org/10.1039/C6SC00170J. (216) Miozzari, G. F.; Niederberger, P.; Hu¨tter, R. Permeabilization of Microorganisms by Triton X-100. Anal. Biochem. 1978, 90 (1), 220–233. https://doi.org/10.1016/0003-2697(78)90026-X. (217) Granada, J. R.; Dawidowski, J.; Mayer, R. E.; Gillette, V. H. Thermal Neutron Cross Section and Transport Properties of Polyethylene. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 1987, 261 (3), 573–578. https://doi.org/10.1016/0168-9002(87)90370-6. (218) Ogawara, R.; Kusumoto, T.; Konishi, T.; Hamano, T.; Kodaira, S. Polyethylene Moderator Optimized for Increasing Thermal Neutron Flux in the NASBEE Accelerator-Based Neutron Field. Radiat. Meas. 2020, 137, 106358. https://doi.org/10.1016/j.radmeas.2020.106358. (219) Rataj, J.; Suk, P.; Bílý, T.; Štefánik, M.; Frýbort, J. Characterisation of Neutron Field in the Polyethylene Neutron Irradiator. Appl. Radiat. Isot. 2021, 168, 109529. https://doi.org/10.1016/j.apradiso.2020.109529. (220) Ferreira, T. H.; Miranda, M. C.; Rocha, Z.; Leal, A. S.; Gomes, D. A.; Sousa, E. M. B. An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy. Nanomaterials 2017, 7 (4), 82. https://doi.org/10.3390/nano7040082. (221) Faustino-Rocha, A.; Oliveira, P. A.; Pinho-Oliveira, J.; Teixeira-Guedes, C.; Soares-Maia, R.; da Costa, R. G.; Colaço, B.; Pires, M. J.; Colaço, J.; Ferreira, R.; Ginja, M. Estimation of Rat Mammary Tumor Volume Using Caliper and Ultrasonography Measurements. Lab Anim. 2013, 42 (6), 217–224. https://doi.org/10.1038/laban.254. (222) Kim, A.; Suzuki, M.; Matsumoto, Y.; Fukumitsu, N.; Nagasaki, Y. Non-Isotope Enriched Phenylboronic Acid-Decorated Dual-Functional Nano-Assembles for an Actively Targeting BNCT Drug. Biomaterials 2021, 268, 120551. https://doi.org/10.1016/j.biomaterials.2020.120551. (223) Sayson, L. V.; Ortiz, D. M.; Lee, H. J.; Kim, M.; Custodio, R. J. P.; Yun, J.; Lee, C. H.; Lee, Y. S.; Cha, H. J.; Cheong, J. H.; Kim, H. J. Deletion of Cryab Increases the Vulnerability of Mice to the Addiction-like Effects of the Cannabinoid JWH-018 via Upregulation of Striatal NF-ΚB Expression. Front. Pharmacol. 2023, 14. (224) Li, X.; He, C.; Matyjaszewski, K.; Pan, X. ATRP of MIDA Boronate-Containing Monomers as a Tool for Synthesizing Linear Phenolic and Functionalized Polymers. ACS Macro Lett. 2021, 10 (10), 1327–1332. https://doi.org/10.1021/acsmacrolett.1c00592. (225) Bhat, K. L.; Markham, G. D.; Larkin, J. D.; Bock, C. W. Thermodynamics of Boroxine Formation from the Aliphatic Boronic Acid Monomers R–B(OH)2 (R = H, H3C, H2N, HO, and F): A Computational Investigation. J. Phys. Chem. A 2011, 115 (26), 7785–7793. https://doi.org/10.1021/jp202409m. (226) Braunecker, W. A.; Matyjaszewski, K. Controlled/Living Radical Polymerization: Features, Developments, and Perspectives. Prog. Polym. Sci. 2007, 32 (1), 93–146. https://doi.org/10.1016/j.progpolymsci.2006.11.002. (227) Man, Y.; Peng, G.; Lv, X.; Liang, Y.; Wang, Y.; Chen, Y.; Deng, Y. Microchip-Grafted P(NIPAAm-Co-VPBA) with Thermoresponsive Boronate Affinity for Capture–Release of Cis-Diol Biomolecules. Chromatographia 2015, 78 (3–4), 157–162. https://doi.org/10.1007/s10337-014-2821-7. (228) Cambre, J. N.; Roy, D.; Gondi, S. R.; Sumerlin, B. S. Facile Strategy to Well-Defined Water-Soluble Boronic Acid (Co)Polymers. J. Am. Chem. Soc. 2007, 129 (34), 10348–10349. https://doi.org/10.1021/ja074239s. (229) Abbasian, M.; Bonab, S. E. S.; Shoaeifar, P.; Entezami, A. A. Synthesis and Characterization of Amphiphilic Methoxypoly(Ethylene Glycol)-Polystyrene Diblock Copolymer by ATRP and NMRP Techniques. J. Elastomers Plast. 2012, 44 (2), 205–220. https://doi.org/10.1177/0095244311420537. (230) Ryu, J.-H.; Jiwpanich, S.; Chacko, R.; Bickerton, S.; Thayumanavan, S. Surface-Functionalizable Polymer Nanogels with Facile Hydrophobic Guest Encapsulation Capabilities. J. Am. Chem. Soc. 2010, 132 (24), 8246–8247. https://doi.org/10.1021/ja102316a. (231) Guo, Q.; Zhang, T.; An, J.; Wu, Z.; Zhao, Y.; Dai, X.; Zhang, X.; Li, C. Block versus Random Amphiphilic Glycopolymer Nanopaticles as Glucose-Responsive Vehicles. Biomacromolecules 2015, 16 (10), 3345–3356. https://doi.org/10.1021/acs.biomac.5b01020. (232) Aitchison, T. J.; Ginic-Markovic, M.; Clarke, S.; Valiyaveettil, S. Polystyrene-Block-Poly(Methyl Methacrylate): Initiation Issues with Block Copolymer Formation Using ARGET ATRP. Macromol. Chem. Phys. 2012, 213 (1), 79–86. https://doi.org/10.1002/macp.201100478. (233) Miller, T.; Rachel, R.; Besheer, A.; Uezguen, S.; Weigandt, M.; Goepferich, A. Comparative Investigations on In Vitro Serum Stability of Polymeric Micelle Formulations. Pharm. Res. 2012, 29 (2), 448–459. https://doi.org/10.1007/s11095-011-0555-x. (234) Souza, T. G. F.; Ciminelli, V. S. T.; Mohallem, N. D. S. A Comparison of TEM and DLS Methods to Characterize Size Distribution of Ceramic Nanoparticles. J. Phys. Conf. Ser. 2016, 733 (1), 012039. https://doi.org/10.1088/1742-6596/733/1/012039. (235) Phetphoung, T.; Malla, A.; Rattanapisit, K.; Pisuttinusart, N.; Damrongyot, N.; Joyjamras, K.; Chanvorachote, P.; Phakham, T.; Wongtangprasert, T.; Strasser, R.; Chaotham, C.; Phoolcharoen, W. Expression of Plant-Produced Anti-PD-L1 Antibody with Anoikis Sensitizing Activity in Human Lung Cancer Cells via., Suppression on Epithelial-Mesenchymal Transition. PLOS ONE 2022, 17 (11), e0274737. https://doi.org/10.1371/journal.pone.0274737. (236) Becker, J. C.; Houben, R.; Schrama, D.; Voigt, H.; Ugurel, S.; Reisfeld, R. A. Mouse Models for Melanoma: A Personal Perspective. Exp. Dermatol. 2010, 19 (2), 157–164. https://doi.org/10.1111/j.1600-0625.2009.00986.x. (237) Zaboronok, A.; Khaptakhanova, P.; Uspenskii, S.; Bekarevich, R.; Mechetina, L.; Volkova, O.; Mathis, B. J.; Kanygin, V.; Ishikawa, E.; Kasatova, A.; Kasatov, D.; Shchudlo, I.; Sycheva, T.; Taskaev, S.; Matsumura, A. Polymer-Stabilized Elemental Boron Nanoparticles for Boron Neutron Capture Therapy: Initial Irradiation Experiments. Pharmaceutics 2022, 14 (4), 761. https://doi.org/10.3390/pharmaceutics14040761. (238) Ha, T.-J.; Im, D.-K.; Kim, S.-M.; Lee, J.-D. 1,2-Diphenyl-o-Carborane and Its Chromium Derivatives: Synthesis, Characterization, X-Ray Structural Studies, and Biological Evaluations. Molecules 2023, 28 (13), 4942. https://doi.org/10.3390/molecules28134942. (239) Liberman, S. J.; Dagrosa, A.; Jiménez Rebagliati, R. A.; Bonomi, M. R.; Roth, B. M.; Turjanski, L.; Castiglia, S. I.; González, S. J.; Menéndez, P. R.; Cabrini, R.; Roberti, M. J.; Batistoni, D. A. Biodistribution Studies of Boronophenylalanine–Fructose in Melanoma and Brain Tumor Patients in Argentina. Appl. Radiat. Isot. 2004, 61 (5), 1095–1100. https://doi.org/10.1016/j.apradiso.2004.05.013. (240) Coderre, J. A.; Chanana, A. D.; Joel, D. D.; Elowitz, E. H.; Micca, P. L.; Nawrocky, M. M.; Chadha, M.; Gebbers, J.-O.; Shady, M.; Peress, N. S.; Slatkin, D. N. Biodistribution of Boronophenylalanine in Patients with Glioblastoma Multiforme: Boron Concentration Correlates with Tumor Cellularity. Radiat. Res. 1998, 149 (2), 163–170. https://doi.org/10.2307/3579926. (241) Detta, A.; Cruickshank, G. S. L-Amino Acid Transporter-1 and Boronophenylalanine-Based Boron Neutron Capture Therapy of Human Brain Tumors. Cancer Res. 2009, 69 (5), 2126–2132. https://doi.org/10.1158/0008-5472.CAN-08-2345. (242) Fukuda, H.; Honda, C.; Wadabayashi, N.; Kobayashi, T.; Yoshino, K.; Hiratsuka, J.; Takahashi, J.; Akaizawa, T.; Abe, Y.; Ichihashi, M.; Mishima, Y. Pharmacokinetics of 10B-p-Boronophenylalanine in Tumours, Skin and Blood of Melanoma Patients: A Study of Boron Neutron Capture Therapy for Malignant Melanoma. Melanoma Res. 1999, 9 (1), 75. (243) Rösler, A.; Vandermeulen, G. W. M.; Klok, H.-A. Advanced Drug Delivery Devices via Self-Assembly of Amphiphilic Block Copolymers. Adv. Drug Deliv. Rev. 2012, 64, 270–279. https://doi.org/10.1016/j.addr.2012.09.026. (244) Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: A Review. J. Controlled Release 2000, 65 (1), 271–284. https://doi.org/10.1016/S0168-3659(99)00248-5. (245) Phoenix, B.; Green, S.; Hill, M. A.; Jones, B.; Mill, A.; Stevens, D. L. Do the Various Radiations Present in BNCT Act Synergistically? Cell Survival Experiments in Mixed Alpha-Particle and Gamma-Ray Fields. Appl. Radiat. Isot. Data Instrum. Methods Use Agric. Ind. Med. 2009, 67 (7-8 Suppl), S318-320. https://doi.org/10.1016/j.apradiso.2009.03.097. (246) Leach, J. K.; Van Tuyle, G.; Lin, P.-S.; Schmidt-Ullrich, R.; Mikkelsen, R. B. Ionizing Radiation-Induced, Mitochondria-Dependent Generation of Reactive Oxygen/Nitrogen1. Cancer Res. 2001, 61 (10), 3894–3901. (247) Nordberg, J.; Arnér, E. S. J. Reactive Oxygen Species, Antioxidants, and the Mammalian Thioredoxin System1 1This Review Is Based on the Licentiate Thesis “Thioredoxin Reductase—Interactions with the Redox Active Compounds 1-Chloro-2,4-Dinitrobenzene and Lipoic Acid” by Jonas Nordberg, 2001, Karolinska Institute, Stockholm, ISBN 91-631-1064-4. Free Radic. Biol. Med. 2001, 31 (11), 1287–1312. https://doi.org/10.1016/S0891-5849(01)00724-9. (248) Gao, Z.; Horiguchi, Y.; Nakai, K.; Matsumura, A.; Suzuki, M.; Ono, K.; Nagasaki, Y. Use of Boron Cluster-Containing Redox Nanoparticles with ROS Scavenging Ability in Boron Neutron Capture Therapy to Achieve High Therapeutic Efficiency and Low Adverse Effects. Biomaterials 2016, 104, 201–212. https://doi.org/10.1016/j.biomaterials.2016.06.046. (249) Nikitaki, Z.; Velalopoulou, A.; Zanni, V.; Tremi, I.; Havaki, S.; Kokkoris, M.; Gorgoulis, V. G.; Koumenis, C.; Georgakilas, A. G. Key Biological Mechanisms Involved in High-LET Radiation Therapies with a Focus on DNA Damage and Repair. Expert Rev. Mol. Med. 2022, 24, e15. https://doi.org/10.1017/erm.2022.6. (250) Alamón, C.; Dávila, B.; Cerecetto, H.; Couto, M. Exploring the Cell Death Mechanisms of Cytotoxic [1,2,3]Triazolylcarborane Lead Compounds against U87 MG Human Glioblastoma Cells. Chem. Biol. Drug Des. 2023, 101 (6), 1435–1445. https://doi.org/10.1111/cbdd.14208. (251) Maeda, H.; Bharate, G. Y.; Daruwalla, J. Polymeric Drugs for Efficient Tumor-Targeted Drug Delivery Based on EPR-Effect. Eur. J. Pharm. Biopharm. 2009, 71 (3), 409–419. https://doi.org/10.1016/j.ejpb.2008.11.010. (252) Kwon, G.; Suwa, S.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Kataoka, K. Enhanced Tumor Accumulation and Prolonged Circulation Times of Micelle-Forming Poly (Ethylene Oxide-Aspartate) Block Copolymer-Adriamycin Conjugates. J. Controlled Release 1994, 29 (1), 17–23. https://doi.org/10.1016/0168-3659(94)90118-X. (253) Alexis, F.; Pridgen, E.; Molnar, L. K.; Farokhzad, O. C. Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. Mol. Pharm. 2008, 5 (4), 505–515. https://doi.org/10.1021/mp800051m. (254) Gabizon, A.; Goren, D.; Horowitz, A. T.; Tzemach, D.; Lossos, A.; Siegal, T. Long-Circulating Liposomes for Drug Delivery in Cancer Therapy: A Review of Biodistribution Studies in Tumor-Bearing Animals. Adv. Drug Deliv. Rev. 1997, 24 (2), 337–344. https://doi.org/10.1016/S0169-409X(96)00476-0. (255) Anselmo, A. C.; Gupta, V.; Zern, B. J.; Pan, D.; Zakrewsky, M.; Muzykantov, V.; Mitragotri, S. Delivering Nanoparticles to Lungs While Avoiding Liver and Spleen through Adsorption on Red Blood Cells. ACS Nano 2013, 7 (12), 11129–11137. https://doi.org/10.1021/nn404853z. (256) Steinhauser, I.; Spänkuch, B.; Strebhardt, K.; Langer, K. Trastuzumab-Modified Nanoparticles: Optimisation of Preparation and Uptake in Cancer Cells. Biomaterials 2006, 27 (28), 4975–4983. https://doi.org/10.1016/j.biomaterials.2006.05.016. (257) M. Cardoso, M.; N. Peca, I.; C. A. Roque, A. Antibody-Conjugated Nanoparticles for Therapeutic Applications. Curr. Med. Chem. 2012, 19 (19), 3103–3127. https://doi.org/10.2174/092986712800784667. (258) Salahpour Anarjan, F. Active Targeting Drug Delivery Nanocarriers: Ligands. Nano-Struct. Nano-Objects 2019, 19, 100370. https://doi.org/10.1016/j.nanoso.2019.100370. (259) Xiao, W.; Wang, Y.; Zhang, H.; Liu, Y.; Xie, R.; He, X.; Zhou, Y.; Liang, L.; Gao, H. The Protein Corona Hampers the Transcytosis of Transferrin-Modified Nanoparticles through Blood–Brain Barrier and Attenuates Their Targeting Ability to Brain Tumor. Biomaterials 2021, 274, 120888. https://doi.org/10.1016/j.biomaterials.2021.120888. (260) Liu, J.; Shi, J.; Nie, W.; Wang, S.; Liu, G.; Cai, K. Recent Progress in the Development of Multifunctional Nanoplatform for Precise Tumor Phototherapy. Adv. Healthc. Mater. 2021, 10 (1), 2001207. https://doi.org/10.1002/adhm.202001207. (261) Demidenko, E. Three Endpoints of in Vivo Tumour Radiobiology and Their Statistical Estimation. Int. J. Radiat. Biol. 2010, 86 (2), 164–173. https://doi.org/10.3109/09553000903419304. (262) Henriksson, R.; Capala, J.; Michanek, A.; Lindahl, S.-Å.; Salford, L. G.; Franzén, L.; Blomquist, E.; Westlin, J.-E.; Bergenheim, A. T. Boron Neutron Capture Therapy (BNCT) for Glioblastoma Multiforme: A Phase II Study Evaluating a Prolonged High-Dose of Boronophenylalanine (BPA). Radiother. Oncol. 2008, 88 (2), 183–191. https://doi.org/10.1016/j.radonc.2006.04.015. (263) Zhong, Y.; Meng, F.; Deng, C.; Zhong, Z. Ligand-Directed Active Tumor-Targeting Polymeric Nanoparticles for Cancer Chemotherapy. Biomacromolecules 2014, 15 (6), 1955–1969. https://doi.org/10.1021/bm5003009. (264) Haeri, A.; Zalba, S.; ten Hagen, T. L. M.; Dadashzadeh, S.; Koning, G. A. EGFR Targeted Thermosensitive Liposomes: A Novel Multifunctional Platform for Simultaneous Tumor Targeted and Stimulus Responsive Drug Delivery. Colloids Surf. B Biointerfaces 2016, 146, 657–669. https://doi.org/10.1016/j.colsurfb.2016.06.012. (265) Lee, D.; Mi Lee, Y.; Kim, J.; Kyu Lee, M.; Jong Kim, W. Enhanced Tumor-Targeted Gene Delivery by Bioreducible Polyethylenimine Tethering EGFR Divalent Ligands. Biomater. Sci. 2015, 3 (7), 1096–1104. https://doi.org/10.1039/C5BM00004A. |