帳號:guest(3.141.12.254)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱奕霖
作者(外文):Chiu, Yi-Lin
論文名稱(中文):合成聚硼酸酯聚合物微胞:一種潛在的硼藥物透過結合BNCT和PD-1/PD-L1檢查點阻斷免疫療法以增強癌症治療效果
論文名稱(外文):Synthesis of Polyboronate Ester Polymer Micelles: A Potential Boron Drug for Enhancing Cancer Treatment through the Combination of BNCT and PD-1/PD-L1 Checkpoint Blockade Immunotherapy
指導教授(中文):龔佩雲
指導教授(外文):Keng, Pei-Yuin
口試委員(中文):王子威
吳思翰
口試委員(外文):Wang, Tzu-Wei
Wu, Si-Han
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:110031632
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:109
中文關鍵詞:硼中子捕獲治療免疫療法癌症治療檢查點阻斷藥物投遞奈米藥物
外文關鍵詞:Boron neutron capture therapyImmunotherapyCancer treatmentCheckpoint blockadeDrug deliveryNanomedicine
相關次數:
  • 推薦推薦:0
  • 點閱點閱:80
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,針對癌症的研究進展迅速,有許多研究集中在癌症的發病機制、癌細胞的生長及轉移方式、周圍環境和癌症細胞的交互作用,以及如何防治癌症等問題。許多研究還集中於癌症治療,開發新型藥物和治療方法,包括基因療法、細胞療法、硼中子捕獲治療、免疫療法等,以提高癌症治療的效果和生存率。其中提到的硼中子捕獲治療(BNCT)是一種放射治療模式,依靠將非放射性硼-10(10B)同位素特定運送到腫瘤部位。經過熱中子照射,硼原子將進行核分裂反應,釋放出高能α粒子,可以局部特異性地摧毀癌細胞。然而,目前的硼藥物在腫瘤中顯示出較低的腫瘤累積和分布不均,導致BNCT後癌症復發。為了克服這個挑戰,在本篇碩士論文中開發了富硼聚硼酸酯聚合物微胞,用於結合BNCT和免疫檢查點阻斷 (PD-1/PD-L1 blockade) 治療的聯合治療,這已被證明可以有效逆轉T細胞抑制並增強體內抗腫瘤免疫力。通過自組裝的方法製備富硼的高分子微胞,聚乙二醇-b-[聚(3-乙烯基苯甲醛)-r-聚(4-乙烯基苯硼酸酯)] (mPEG-b-(PVB-r-PVBE) ,在這個方法中,PVBE重複單元同時作為中子捕獲劑,又用作微胞中疏水段,在選擇性溶劑作用下誘導自組裝的微胞結構。此外,苯甲醛重複單元被安裝作為席夫鹼鍵結的連接點與抗小鼠PD-L1單克隆抗體(anti-mouse PD-L1 mAbs)共價結合。在這種聯合治療中,附著在微胞結構上的抗PD-L1會在進入微酸腫瘤微環境(TME)時因對酸敏感的席夫鹼鍵結斷鍵而釋放出來,然後結合到腫瘤表面的PD-L1軸上進行免疫檢查點阻斷。進行BNCT治療後,大部分原發腫瘤被破壞而釋放出腫瘤特異性抗原,隨後在宿主中啟動可持續的免疫反應循環。根據我們的結果,mPEG-b-(PVB-r-PVBE) 微胞與 BPA 相比,顯示出更長的5.4天的腫瘤生長延遲(TGD)。此外,mPEG-b-(PVB-r-PVBE) 微胞和 anti-PD-L1@mPEG-b-(PVB-r-PVBE) 微胞在 BNCT 和免疫療法聯合治療中表現出更長的 6.6 天和 5.2 天的 TGD。這些結果表明在聯合治療中,mPEG-b-(PVB-r-PVBE) 微胞和 anti-PD-L1@mPEG-b-(PVB-r-PVBE) 微胞對於抑制腫瘤具有優越的效果,相比單獨進行的BNCT或BPA聯合治療效果更好。這表明這些新型富硼聚酯兩親性嵌段共聚物微胞具有潛在的應用前景,可用作硼載體和免疫療法藥物,以增強癌症治療效果並潛在地加強免疫療法的效果。
Over the past few decades, research on cancer has progressed rapidly, with many studies focusing on the mechanisms of cancer development, the growth and metastasis of cancer cells, and the interaction between surrounding environment and cancer cells, and how to prevent the cancer. Many studies also concentrate on cancer treatment, developing new drugs and treatment methods, including gene therapy, cell therapy, boron neutron capture therapy, immunotherapy, and others, to improve the effectiveness and survival rates of cancer treatment. One of the mentioned therapies, boron neutron capture therapy (BNCT) is a radio-therapeutic technique that depends on the specific delivery of non-radioactive boron-10 (10B) isotope to the tumor site. Upon thermal irradiation of neutrons, the B atoms will undergo nuclear fission reactions yielding highly energetic alpha particles that can specifically destroy the cancer cells locally. However, the current boron drugs exhibit low tumor accumulation and poor distribution throughout a solid tumor which resulted in cancer recurrent after BNCT.
To overcome this challenge, our group is developing boron-rich polyboronate ester polymer micelles for combinatorial therapy of BNCT and checkpoint PD-1/PD-L1 (programmed death-1/programmed death-1 ligand) blockade immunotherapy, which has been shown to reverse the T-cell suppression effectively and enhance endogenous antitumor immunity. Specifically, the boron-rich polymer micelles were prepared via the self-assembly of poly(ethylene glycol)-b-[(poly(3-vinylbenzaldehyde)-r-poly (4-vinylphenylboronate ester)) (mPEG-b-(PVB-r-PVBE)). In this approach, the PBA repeating units served as both the neutron capture and the hydrophobic segment in inducing the self-assembly of the micellar structure in selective solvent. Moreover, the benzaldehyde moieties are installed to conjugate anti-mouse PD-L1 monoclonal antibodies (mAbs) via the Schiff’s base bond linker. In this co-therapy, anti-PD-L1 conjugated on the micellar structure will be released and subsequently bind to the PD-L1 axis on the surface of the tumor cells upon entering the tumor microenvironment (TME), as the acid labile Schiff’s base bond is cleaved under slightly acidic pH value. Upon BNCT monotherapy treatment, most of the primary tumor is destroyed and thus releasing tumor specific antigens and subsequently initiates a sustainable cycle of immune response in the host. In our results, mPEG-b-(PVB-r-PVBE) micelle demonstrated more tumor suppression with 5.4 days of tumor growth delay (TGD) compared to BPA with 3.3 days of TGD. Furthermore, both mPEG-b-(PVB-r-PVBE) micelle and anti-PD-L1@mPEG-b-(PVB-r-PVBE) micelle exhibited further tumor suppression with 6.6 days and 5.2 days of TGD in the BNCT and immunotherapy combined therapy. These results indicate that mPEG-b-(PVB-r-PVBE) micelle and anti-PD-L1@mPEG-b-(PVB-r-PVBE) micelle have superior tumor inhibition effects in the combined therapy compared to either BNCT monotherapy or BPA combined therapy. This suggests the potential application of these novel polyboronate ester amphiphilic block copolymer micelles as boron carriers and immunotherapy drug to enhance cancer treatment efficacy and potentiate immunotherapy.
Abstract------------------------------------------------------I
摘要----------------------------------------------------------III
Acknowledgment------------------------------------------------VI
Table of Content----------------------------------------------VII
Figures, Schemes and Table------------------------------------X
Chapter 1 Introduction----------------------------------------1
Chapter 2 Literature Review-----------------------------------4
2.1 Radiotherapy and Boron Neutron Capture Therapy------------4
2.1.1 Radiotherapy--------------------------------------------4
2.1.2 Boron Neutron Capture Therapy---------------------------5
2.2 Immunotherapy---------------------------------------------9
2.3 Nanocarrier for immunotherapy-----------------------------17
2.4 Boron agent of BNCT and future development----------------19
2.4 Combination therapy of boron neutron capture therapy and immunotherapy-------------------------------------------------24
Chapter 3 Materials, Methods, and Instruments-----------------28
3.1 Materials and instruments---------------------------------28
3.2 Preparation of anti-PD-L1 conjugated poly(ethylene glycol)-b-[(poly(3-vinylbenzaldehyde)-r-poly(4-vinylphenylboronate ester)) anti-PD-L1@mPEG-b-(PVB-r-PVBE) polymer micelle---------------------31
3.2.1 Preparation of poly (ethylene glycol) methyl ether 2-bromoisobutyrate mPEG-Br macroinitiator-----------------------31
3.2.2 Protection of 4-vinylphenylboronic acid-----------------32
3.2.3 Synthesis of poly(ethylene glycol)-b-[(poly(3-vinylbenzaldehyde)-r-poly(4-vinylphenylboronate ester)) mPEG-b-(PVB-r-PVBE) amphiphilic block copolymer-----------------------------32
3.2.4 Synthesis of anti-PD-L1 conjugated mPEG-b-(PVB-r-PVBE) amphiphilic block copolymer-----------------------------------34
3.2.5 Preparation of anti-PD-L1@mPEG-b-(PVB-r-PVBE) polymer micelle-----------------------------------------------------------------35
3.2.6 Quantification of anti-PD-L1 in anti-PD-L1@mPEG-b-(PVB-r-PVBE) polymer micelle-----------------------------------------------35
3.3 In vitro assay--------------------------------------------37
3.3.1 In vitro cytotoxicity assay-----------------------------37
3.3.2 In vitro cellular boron uptake--------------------------38
3.3.3 In vitro Boron Neutron Capture Therapy treatment--------39
3.4 In vivo assay---------------------------------------------40
3.4.1 In vivo tumor models------------------------------------40
3.4.2 In vivo biodistribution of boron content----------------41
3.4.3 In vivo boron neutron capture therapy combine with immunotherapy treatment-----------------------------------------------------43
Chapter 4 Results and Discussion------------------------------47
4.1 Characterization of anti-PD-L1@mPEG-b-(PVB-r-PVBE) polymer micelle-------------------------------------------------------47
4.1.1 Characterization of mPEG-b-(PVB-r-PVBE) amphiphilic block copolymer using nuclear magnetic resonance (NMR) spectrum-----49
4.1.2 Characterization of mPEG-b-(PVB-r-PVBE) amphiphilic block copolymer using Fourier-transform infrared spectroscopy (FT-IR)--52
4.1.3 Gel permeation chromatography (GPC) of mPEG-b-(PVB-r-PVBE) amphiphilic block copolymer-----------------------------------54
4.1.4 Size distribution and TEM morphology--------------------55
4.1.5 Enzyme-linked immunosorbent assay (ELISA)---------------57
4.2 In vitro assay against B16-F10 melanoma cells-------------58
4.2.1 Cytotoxic studies of polymeric micelles-----------------58
4.2.2 Boron uptake of B16-F10 melanoma cells------------------60
4.2.3 Cell viability after BNCT treatment---------------------64
4.3 In vivo assay---------------------------------------------66
4.3.1 Biodistribution of boron content in B16-F10 melanoma tumor-bearing mice--------------------------------------------------66
4.3.2 Synergistic therapy of BNCT and immunotherapy-----------68
Chapter 5 Conclusion------------------------------------------79
Chapter 6 Prospective-----------------------------------------81
References----------------------------------------------------83
(1) Zhu, Y.; Hosmane, N. Applications and Perspectives of Boron-Enriched Nanocomposites in Cancer Therapy. Future Med. Chem. 2013, 5, 705–714. https://doi.org/10.4155/fmc.13.47.
(2) Moss, R. L. Critical Review, with an Optimistic Outlook, on Boron Neutron Capture Therapy (BNCT). Appl. Radiat. Isot. 2014, 88, 2–11. https://doi.org/10.1016/j.apradiso.2013.11.109.
(3) Barth, R. F.; Soloway, A. H.; Goodman, J. H.; Gahbauer, R. A.; Gupta, N.; Blue, T. E.; Yang, W.; Tjarks, W. Boron Neutron Capture Therapy of Brain Tumors: An Emerging Therapeutic Modality. Neurosurgery 1999, 44 (3), 433.
(4) Coderre, J. A.; Morris, G. M. The Radiation Biology of Boron Neutron Capture Therapy. Radiat. Res. 1999, 151 (1), 1–18. https://doi.org/10.2307/3579742.
(5) Jin, W. H.; Seldon, C.; Butkus, M.; Sauerwein, W.; Giap, H. B. A Review of Boron Neutron Capture Therapy: Its History and Current Challenges. Int. J. Part. Ther. 2022, 9 (1), 71–82. https://doi.org/10.14338/IJPT-22-00002.1.
(6) Nedunchezhian, K.; Aswath, N.; Thiruppathy, M.; Thirugnanamurthy, S. Boron Neutron Capture Therapy - A Literature Review. J. Clin. Diagn. Res. JCDR 2016, 10 (12), ZE01–ZE04. https://doi.org/10.7860/JCDR/2016/19890.9024.
(7) Barth, R. F.; Coderre, J. A.; Vicente, M. G. H.; Blue, T. E. Boron Neutron Capture Therapy of Cancer: Current Status and Future Prospects. Clin. Cancer Res. 2005, 11 (11), 3987–4002. https://doi.org/10.1158/1078-0432.CCR-05-0035.
(8) Miyatake, S.-I.; Kawabata, S.; Hiramatsu, R.; Kuroiwa, T.; Suzuki, M.; Ono, K. Boron Neutron Capture Therapy of Malignant Gliomas. 2018. https://doi.org/10.1159/000469679.
(9) Kawabata, S.; Miyatake, S.-I.; Nonoguchi, N.; Hiramatsu, Ry.; Iida, K.; Miyata, S.; Yokoyama, K.; Doi, A.; Kuroda, Y.; Kuroiwa, T.; Michiue, H.; Kumada, H.; Kirihata, M.; Imahori, Y.; Maruhashi, A.; Sakurai, Y.; Suzuki, M.; Masunaga, S.-I.; Ono, K. Survival Benefit from Boron Neutron Capture Therapy for the Newly Diagnosed Glioblastoma Patients. Appl. Radiat. Isot. 2009, 67 (7, Supplement), S15–S18. https://doi.org/10.1016/j.apradiso.2009.03.015.
(10) Wang, L. W.; Wang, S. J.; Chu, P. Y.; Ho, C. Y.; Jiang, S. H.; Liu, Y. W. H.; Liu, Y. H.; Liu, H. M.; Peir, J. J.; Chou, F. I.; Yen, S. H.; Lee, Y. L.; Chang, C. W.; Liu, C. S.; Chen, Y. W.; Ono, K. BNCT for Locally Recurrent Head and Neck Cancer: Preliminary Clinical Experience from a Phase I/II Trial at Tsing Hua Open-Pool Reactor. Appl. Radiat. Isot. 2011, 69 (12), 1803–1806. https://doi.org/10.1016/j.apradiso.2011.03.008.
(11) Aihara, T.; Morita, N. BNCT for Advanced or Recurrent Head and Neck Cancer. In Neutron Capture Therapy: Principles and Applications; Sauerwein, W., Wittig, A., Moss, R., Nakagawa, Y., Eds.; Springer: Berlin, Heidelberg, 2012; pp 417–424. https://doi.org/10.1007/978-3-642-31334-9_24.
(12) Suzuki, M.; Kato, I.; Aihara, T.; Hiratsuka, J.; Yoshimura, K.; Niimi, M.; Kimura, Y.; Ariyoshi, Y.; Haginomori, S.; Sakurai, Y.; Kinashi, Y.; Masunaga, S.; Fukushima, M.; Ono, K.; Maruhashi, A. Boron Neutron Capture Therapy Outcomes for Advanced or Recurrent Head and Neck Cancer. J. Radiat. Res. (Tokyo) 2014, 55 (1), 146–153. https://doi.org/10.1093/jrr/rrt098.
(13) Yanagie, H.; Higashi, S.; Seguchi, K.; Ikushima, I.; Fujihara, M.; Nonaka, Y.; Oyama, K.; Maruyama, S.; Hatae, R.; Suzuki, M.; Masunaga, S.; Kinashi, T.; Sakurai, Y.; Tanaka, H.; Kondo, N.; Narabayashi, M.; Kajiyama, T.; Maruhashi, A.; Ono, K.; Nakajima, J.; Ono, M.; Takahashi, H.; Eriguchi, M. Pilot Clinical Study of Boron Neutron Capture Therapy for Recurrent Hepatic Cancer Involving the Intra-Arterial Injection of a 10BSH-Containing WOW Emulsion. Appl. Radiat. Isot. 2014, 88, 32–37. https://doi.org/10.1016/j.apradiso.2014.01.014.
(14) Trivillin, V. A.; Pozzi, E. C. C.; Colombo, L. L.; Thorp, S. I.; Garabalino, M. A.; Monti Hughes, A.; González, S. J.; Farías, R. O.; Curotto, P.; Santa Cruz, G. A.; Carando, D. G.; Schwint, A. E. Abscopal Effect of Boron Neutron Capture Therapy (BNCT): Proof of Principle in an Experimental Model of Colon Cancer. Radiat. Environ. Biophys. 2017, 56 (4), 365–375. https://doi.org/10.1007/s00411-017-0704-7.
(15) González, S. J.; Bonomi, M. R.; Santa Cruz, G. A.; Blaumann, H. R.; Larrieu, O. A. C.; Menéndez, P.; Rebagliati, R. J.; Longhino, J.; Feld, D. B.; Dagrosa, M. A.; Argerich, C.; Castiglia, S. G.; Batistoni, D. A.; Liberman, S. J.; Roth, B. M. C. First BNCT Treatment of a Skin Melanoma in Argentina: Dosimetric Analysis and Clinical Outcome. Appl. Radiat. Isot. 2004, 61 (5), 1101–1105. https://doi.org/10.1016/j.apradiso.2004.05.060.
(16) Menéndez, P. R.; Roth, B. M. C.; Pereira, M. D.; Casal, M. R.; González, S. J.; Feld, D. B.; Santa Cruz, G. A.; Kessler, J.; Longhino, J.; Blaumann, H.; Jiménez Rebagliati, R.; Calzetta Larrieu, O. A.; Fernández, C.; Nievas, S. I.; Liberman, S. J. BNCT for Skin Melanoma in Extremities: Updated Argentine Clinical Results. Appl. Radiat. Isot. 2009, 67 (7, Supplement), S50–S53. https://doi.org/10.1016/j.apradiso.2009.03.020.
(17) Fukuda, H. Boron Neutron Capture Therapy (BNCT) for Cutaneous Malignant Melanoma Using 10B-p-Boronophenylalanine (BPA) with Special Reference to the Radiobiological Basis and Clinical Results. Cells 2021, 10 (11), 2881. https://doi.org/10.3390/cells10112881.
(18) Carpano, M.; Perona, M.; Rodriguez, C.; Nievas, S.; Olivera, M.; Santa Cruz, G. A.; Brandizzi, D.; Cabrini, R.; Pisarev, M.; Juvenal, G. J.; Dagrosa, M. A. Experimental Studies of Boronophenylalanine (10BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment. Int. J. Radiat. Oncol. 2015, 93 (2), 344–352. https://doi.org/10.1016/j.ijrobp.2015.05.039.
(19) Mishima, Y. Selective Thermal Neutron Capture Therapy of Cancer Cells Using Their Specific Metabolic Activities—Melanoma as Prototype. In Cancer Neutron Capture Therapy; Mishima, Y., Ed.; Springer US: Boston, MA, 1996; pp 1–26. https://doi.org/10.1007/978-1-4757-9567-7_1.
(20) Coderre, J. A.; Glass, J. D.; Fairchild, R. G.; Roy, U.; Cohen, S.; Fand, I. Selective Targeting of Boronophenylalanine to Melanoma in BALB/c Mice for Neutron Capture Therapy1. Cancer Res. 1987, 47 (23), 6377–6383.
(21) Sznol, M.; Hodi, F. S.; Margolin, K.; McDermott, D. F.; Ernstoff, M. S.; Kirkwood, J. M.; Wojtaszek, C.; Feltquate, D.; Logan, T. Phase I Study of BMS-663513, a Fully Human Anti-CD137 Agonist Monoclonal Antibody, in Patients (Pts) with Advanced Cancer (CA). J. Clin. Oncol. 2008, 26 (15_suppl), 3007–3007. https://doi.org/10.1200/jco.2008.26.15_suppl.3007.
(22) Old, L. J. Immunotherapy for Cancer. Sci. Am. 1996, 275 (3), 136–143.
(23) Xie, Y.; Xie, F.; Zhang, L.; Zhou, X.; Huang, J.; Wang, F.; Jin, J.; Zhang, L.; Zeng, L.; Zhou, F. Targeted Anti-Tumor Immunotherapy Using Tumor Infiltrating Cells. Adv. Sci. 2021, 8 (22), 2101672. https://doi.org/10.1002/advs.202101672.
(24) Pardoll, D. M. The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nat. Rev. Cancer 2012, 12 (4), 252–264. https://doi.org/10.1038/nrc3239.
(25) Seidel, J. A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front. Oncol. 2018, 8.
(26) Sharabi, A. B.; Lim, M.; DeWeese, T. L.; Drake, C. G. Radiation and Checkpoint Blockade Immunotherapy: Radiosensitisation and Potential Mechanisms of Synergy. Lancet Oncol. 2015, 16 (13), e498–e509. https://doi.org/10.1016/S1470-2045(15)00007-8.
(27) Mohme, M.; Riethdorf, S.; Pantel, K. Circulating and Disseminated Tumour Cells — Mechanisms of Immune Surveillance and Escape. Nat. Rev. Clin. Oncol. 2017, 14 (3), 155–167. https://doi.org/10.1038/nrclinonc.2016.144.
(28) Khair, D. O.; Bax, H. J.; Mele, S.; Crescioli, S.; Pellizzari, G.; Khiabany, A.; Nakamura, M.; Harris, R. J.; French, E.; Hoffmann, R. M.; Williams, I. P.; Cheung, A.; Thair, B.; Beales, C. T.; Touizer, E.; Signell, A. W.; Tasnova, N. L.; Spicer, J. F.; Josephs, D. H.; Geh, J. L.; MacKenzie Ross, A.; Healy, C.; Papa, S.; Lacy, K. E.; Karagiannis, S. N. Combining Immune Checkpoint Inhibitors: Established and Emerging Targets and Strategies to Improve Outcomes in Melanoma. Front. Immunol. 2019, 10.
(29) Ribas, A.; Wolchok, J. D. Cancer Immunotherapy Using Checkpoint Blockade. Science 2018, 359 (6382), 1350–1355. https://doi.org/10.1126/science.aar4060.
(30) Baxi, S.; Yang, A.; Gennarelli, R. L.; Khan, N.; Wang, Z.; Boyce, L.; Korenstein, D. Immune-Related Adverse Events for Anti-PD-1 and Anti-PD-L1 Drugs: Systematic Review and Meta-Analysis. BMJ 2018, 360, k793. https://doi.org/10.1136/bmj.k793.
(31) Chen, Q.; Li, T.; Yue, W. Drug Response to PD-1/PD-L1 Blockade: Based on Biomarkers. OncoTargets Ther. 2018, 11, 4673–4683. https://doi.org/10.2147/OTT.S168313.
(32) Sgambato, A.; Casaluce, F.; Gridelli, C. The Role of Checkpoint Inhibitors Immunotherapy in Advanced Non-Small Cell Lung Cancer in the Elderly. Expert Opin. Biol. Ther. 2017, 17 (5), 565–571. https://doi.org/10.1080/14712598.2017.1294157.
(33) Xiong, W.; Zhao, Y.; Du, H.; Guo, X. Current Status of Immune Checkpoint Inhibitor Immunotherapy for Lung Cancer. Front. Oncol. 2021, 11.
(34) Langer, C. J. Emerging Immunotherapies in the Treatment of Non–Small Cell Lung Cancer (NSCLC): The Role of Immune Checkpoint Inhibitors. Am. J. Clin. Oncol. 2015, 38 (4), 422. https://doi.org/10.1097/COC.0000000000000059.
(35) Dogan, V.; Rieckmann, T.; Münscher, A.; Busch, C.-J. Current Studies of Immunotherapy in Head and Neck Cancer. Clin. Otolaryngol. 2018, 43 (1), 13–21. https://doi.org/10.1111/coa.12895.
(36) Zolkind, P.; Uppaluri, R. Checkpoint Immunotherapy in Head and Neck Cancers. Cancer Metastasis Rev. 2017, 36 (3), 475–489. https://doi.org/10.1007/s10555-017-9694-9.
(37) Kao, H.-F.; Lou, P.-J. Immune Checkpoint Inhibitors for Head and Neck Squamous Cell Carcinoma: Current Landscape and Future Directions. Head Neck 2019, 41 (S1), 4–18. https://doi.org/10.1002/hed.25930.
(38) Brahmer, J. R.; Pardoll, D. M. Immune Checkpoint Inhibitors: Making Immunotherapy a Reality for the Treatment of Lung Cancer. Cancer Immunol. Res. 2013, 1 (2), 85–91. https://doi.org/10.1158/2326-6066.CIR-13-0078.
(39) Lopez-Beltran, A.; Cimadamore, A.; Blanca, A.; Massari, F.; Vau, N.; Scarpelli, M.; Cheng, L.; Montironi, R. Immune Checkpoint Inhibitors for the Treatment of Bladder Cancer. Cancers 2021, 13 (1), 131. https://doi.org/10.3390/cancers13010131.
(40) Biomedicines | Free Full-Text | Immune-Checkpoint Inhibitors in Advanced Bladder Cancer: Seize the Day. https://www.mdpi.com/2227-9059/10/2/411 (accessed 2023-06-24).
(41) Huang, A. C.; Zappasodi, R. A Decade of Checkpoint Blockade Immunotherapy in Melanoma: Understanding the Molecular Basis for Immune Sensitivity and Resistance. Nat. Immunol. 2022, 23 (5), 660–670. https://doi.org/10.1038/s41590-022-01141-1.
(42) Carlino, M. S.; Larkin, J.; Long, G. V. Immune Checkpoint Inhibitors in Melanoma. The Lancet 2021, 398 (10304), 1002–1014. https://doi.org/10.1016/S0140-6736(21)01206-X.
(43) De Risi, I.; Sciacovelli, A. M.; Guida, M. Checkpoint Inhibitors Immunotherapy in Metastatic Melanoma: When to Stop Treatment? Biomedicines 2022, 10 (10), 2424. https://doi.org/10.3390/biomedicines10102424.
(44) Barazzuol, L.; Coppes, R. P.; van Luijk, P. Prevention and Treatment of Radiotherapy-Induced Side Effects. Mol. Oncol. 2020, 14 (7), 1538–1554. https://doi.org/10.1002/1878-0261.12750.
(45) Zhou, Z.; Guan, B.; Xia, H.; Zheng, R.; Xu, B. Particle Radiotherapy in the Era of Radioimmunotherapy. Cancer Lett. 2023, 567, 216268. https://doi.org/10.1016/j.canlet.2023.216268.
(46) Nguyen, H. Q.; To, N. H.; Zadigue, P.; Kerbrat, S.; De La Taille, A.; Le Gouvello, S.; Belkacemi, Y. Ionizing Radiation-Induced Cellular Senescence Promotes Tissue Fibrosis after Radiotherapy. A Review. Crit. Rev. Oncol. Hematol. 2018, 129, 13–26. https://doi.org/10.1016/j.critrevonc.2018.06.012.
(47) Derer, A.; Deloch, L.; Rubner, Y.; Fietkau, R.; Frey, B.; Gaipl, U. S. Radio-Immunotherapy-Induced Immunogenic Cancer Cells as Basis for Induction of Systemic Anti-Tumor Immune Responses – Pre-Clinical Evidence and Ongoing Clinical Applications. Front. Immunol. 2015, 6.
(48) Bentzen, S. M. Preventing or Reducing Late Side Effects of Radiation Therapy: Radiobiology Meets Molecular Pathology. Nat. Rev. Cancer 2006, 6 (9), 702–713. https://doi.org/10.1038/nrc1950.
(49) Seneviratne, D.; Advani, P.; Trifiletti, D. M.; Chumsri, S.; Beltran, C. J.; Bush, A. F.; Vallow, L. A. Exploring the Biological and Physical Basis of Boron Neutron Capture Therapy (BNCT) as a Promising Treatment Frontier in Breast Cancer. Cancers 2022, 14 (12), 3009. https://doi.org/10.3390/cancers14123009.
(50) Suzuki, M. Boron Neutron Capture Therapy (BNCT): A Unique Role in Radiotherapy with a View to Entering the Accelerator-Based BNCT Era. Int. J. Clin. Oncol. 2020, 25 (1), 43–50. https://doi.org/10.1007/s10147-019-01480-4.
(51) Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, H. Clinical Results of Boron Neutron Capture Therapy (BNCT) for Glioblastoma. Appl. Radiat. Isot. 2011, 69 (12), 1823–1825. https://doi.org/10.1016/j.apradiso.2011.05.029.
(52) Omerhodzic, I.; Arnautovic, K. Glioma: Contemporary Diagnostic and Therapeutic Approaches; BoD – Books on Demand, 2019.
(53) Biology | Free Full-Text | Clinical Veterinary Boron Neutron Capture Therapy (BNCT) Studies in Dogs with Head and Neck Cancer: Bridging the Gap between Translational and Clinical Studies. https://www.mdpi.com/2079-7737/9/10/327 (accessed 2023-06-26).
(54) Kato, I.; Ono, K.; Sakurai, Y.; Ohmae, M.; Maruhashi, A.; Imahori, Y.; Kirihata, M.; Nakazawa, M.; Yura, Y. Effectiveness of BNCT for Recurrent Head and Neck Malignancies. Appl. Radiat. Isot. 2004, 61 (5), 1069–1073. https://doi.org/10.1016/j.apradiso.2004.05.059.
(55) Koivunoro, H.; Kankaanranta, L.; Seppälä, T.; Haapaniemi, A.; Mäkitie, A.; Joensuu, H. Boron Neutron Capture Therapy for Locally Recurrent Head and Neck Squamous Cell Carcinoma: An Analysis of Dose Response and Survival. Radiother. Oncol. 2019, 137, 153–158. https://doi.org/10.1016/j.radonc.2019.04.033.
(56) Barth, R. F.; Zhang, Z.; Liu, T. A Realistic Appraisal of Boron Neutron Capture Therapy as a Cancer Treatment Modality. Cancer Commun. 2018, 38 (1), 36. https://doi.org/10.1186/s40880-018-0280-5.
(57) Mitin, V. N.; Kulakov, V. N.; Khokhlov, V. F.; Sheino, I. N.; Arnopolskaya, A. M.; Kozlovskaya, N. G.; Zaitsev, K. N.; Portnov, A. A. Comparison of BNCT and GdNCT Efficacy in Treatment of Canine Cancer. Appl. Radiat. Isot. 2009, 67 (7, Supplement), S299–S301. https://doi.org/10.1016/j.apradiso.2009.03.067.
(58) Li, L.; Dai, K.; Li, J.; Shi, Y.; Zhang, Z.; Liu, T.; Jun Xie; Ruiping Zhang; Liu, Z. A Boron-10 Nitride Nanosheet for Combinational Boron Neutron Capture Therapy and Chemotherapy of Tumor. Biomaterials 2021, 268, 120587. https://doi.org/10.1016/j.biomaterials.2020.120587.
(59) Cells | Free Full-Text | A Boronated Derivative of Temozolomide Showing Enhanced Efficacy in Boron Neutron Capture Therapy of Glioblastoma. https://www.mdpi.com/2073-4409/11/7/1173 (accessed 2023-06-26).
(60) Chen, J.; Dai, Q.; Yang, Q.; Bao, X.; Zhou, Y.; Zhong, H.; Wu, L.; Wang, T.; Zhang, Z.; Lu, Y.; Zhang, Z.; Lin, M.; Han, M.; Wei, Q. Therapeutic Nucleus-Access BNCT Drug Combined CD47-Targeting Gene Editing in Glioblastoma. J. Nanobiotechnology 2022, 20 (1), 102. https://doi.org/10.1186/s12951-022-01304-0.
(61) Hiratsuka, J.; Kamitani, N.; Tanaka, R.; Tokiya, R.; Yoden, E.; Sakurai, Y.; Suzuki, M. Long-Term Outcome of Cutaneous Melanoma Patients Treated with Boron Neutron Capture Therapy (BNCT). J. Radiat. Res. (Tokyo) 2020, 61 (6), 945–951. https://doi.org/10.1093/jrr/rraa068.
(62) Anagnostou, V. K.; Brahmer, J. R. Cancer Immunotherapy: A Future Paradigm Shift in the Treatment of Non–Small Cell Lung Cancer. Clin. Cancer Res. 2015, 21 (5), 976–984. https://doi.org/10.1158/1078-0432.CCR-14-1187.
(63) Steven, A.; Fisher, S. A.; Robinson, B. W. Immunotherapy for Lung Cancer. Respirology 2016, 21 (5), 821–833. https://doi.org/10.1111/resp.12789.
(64) Doroshow, D. B.; Sanmamed, M. F.; Hastings, K.; Politi, K.; Rimm, D. L.; Chen, L.; Melero, I.; Schalper, K. A.; Herbst, R. S. Immunotherapy in Non–Small Cell Lung Cancer: Facts and Hopes. Clin. Cancer Res. 2019, 25 (15), 4592–4602. https://doi.org/10.1158/1078-0432.CCR-18-1538.
(65) Raez, L. E.; Fein, S.; Podack, E. R. Lung Cancer Immunotherapy. Clin. Med. Res. 2005, 3 (4), 221–228. https://doi.org/10.3121/cmr.3.4.221.
(66) Cramer, J. D.; Burtness, B.; Ferris, R. L. Immunotherapy for Head and Neck Cancer: Recent Advances and Future Directions. Oral Oncol. 2019, 99, 104460. https://doi.org/10.1016/j.oraloncology.2019.104460.
(67) Bauml, J. M.; Aggarwal, C.; Cohen, R. B. Immunotherapy for Head and Neck Cancer: Where Are We Now and Where Are We Going? Ann. Transl. Med. 2019, 7 (Suppl 3), S75. https://doi.org/10.21037/atm.2019.03.58.
(68) Ling, D. C.; Bakkenist, C. J.; Ferris, R. L.; Clump, D. A. Role of Immunotherapy in Head and Neck Cancer. Semin. Radiat. Oncol. 2018, 28 (1), 12–16. https://doi.org/10.1016/j.semradonc.2017.08.009.
(69) Fuge, O.; Vasdev, N.; Allchorne, P.; Green, J. S. Immunotherapy for Bladder Cancer. Res. Rep. Urol. 2015, 7, 65–79. https://doi.org/10.2147/RRU.S63447.
(70) Wołącewicz, M.; Hrynkiewicz, R.; Grywalska, E.; Suchojad, T.; Leksowski, T.; Roliński, J.; Niedźwiedzka-Rystwej, P. Immunotherapy in Bladder Cancer: Current Methods and Future Perspectives. Cancers 2020, 12 (5), 1181. https://doi.org/10.3390/cancers12051181.
(71) Rhea, L. P.; Mendez-Marti, S.; Kim, D.; Aragon-Ching, J. B. Role of Immunotherapy in Bladder Cancer. Cancer Treat. Res. Commun. 2021, 26, 100296. https://doi.org/10.1016/j.ctarc.2020.100296.
(72) Redman, J. M.; Gibney, G. T.; Atkins, M. B. Advances in Immunotherapy for Melanoma. BMC Med. 2016, 14 (1), 20. https://doi.org/10.1186/s12916-016-0571-0.
(73) Albittar, A. A.; Alhalabi, O.; Glitza Oliva, I. C. Immunotherapy for Melanoma. In Immunotherapy; Naing, A., Hajjar, J., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, 2020; pp 51–68. https://doi.org/10.1007/978-3-030-41008-7_3.
(74) Franklin, C.; Livingstone, E.; Roesch, A.; Schilling, B.; Schadendorf, D. Immunotherapy in Melanoma: Recent Advances and Future Directions. Eur. J. Surg. Oncol. EJSO 2017, 43 (3), 604–611. https://doi.org/10.1016/j.ejso.2016.07.145.
(75) Sanlorenzo, M.; Vujic, I.; Posch, C.; Dajee, A.; Yen, A.; Kim, S.; Ashworth, M.; Rosenblum, M. D.; Algazi, A.; Osella-Abate, S.; Quaglino, P.; Daud, A.; Ortiz-Urda, S. Melanoma Immunotherapy. Cancer Biol. Ther. 2014, 15 (6), 665–674. https://doi.org/10.4161/cbt.28555.
(76) June, C. H.; O’Connor, R. S.; Kawalekar, O. U.; Ghassemi, S.; Milone, M. C. CAR T Cell Immunotherapy for Human Cancer. Science 2018, 359 (6382), 1361–1365. https://doi.org/10.1126/science.aar6711.
(77) Feins, S.; Kong, W.; Williams, E. F.; Milone, M. C.; Fraietta, J. A. An Introduction to Chimeric Antigen Receptor (CAR) T-Cell Immunotherapy for Human Cancer. Am. J. Hematol. 2019, 94 (S1), S3–S9. https://doi.org/10.1002/ajh.25418.
(78) Gubin, M. M.; Zhang, X.; Schuster, H.; Caron, E.; Ward, J. P.; Noguchi, T.; Ivanova, Y.; Hundal, J.; Arthur, C. D.; Krebber, W.-J.; Mulder, G. E.; Toebes, M.; Vesely, M. D.; Lam, S. S. K.; Korman, A. J.; Allison, J. P.; Freeman, G. J.; Sharpe, A. H.; Pearce, E. L.; Schumacher, T. N.; Aebersold, R.; Rammensee, H.-G.; Melief, C. J. M.; Mardis, E. R.; Gillanders, W. E.; Artyomov, M. N.; Schreiber, R. D. Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens. Nature 2014, 515 (7528), 577–581. https://doi.org/10.1038/nature13988.
(79) Sheykhhasan, M.; Manoochehri, H.; Dama, P. Use of CAR T-Cell for Acute Lymphoblastic Leukemia (ALL) Treatment: A Review Study. Cancer Gene Ther. 2022, 29 (8), 1080–1096. https://doi.org/10.1038/s41417-021-00418-1.
(80) Singh, N.; Frey, N. V.; Grupp, S. A.; Maude, S. L. CAR T Cell Therapy in Acute Lymphoblastic Leukemia and Potential for Chronic Lymphocytic Leukemia. Curr. Treat. Options Oncol. 2016, 17 (6), 28. https://doi.org/10.1007/s11864-016-0406-4.
(81) Wei, J.; Liu, Y.; Wang, C.; Zhang, Y.; Tong, C.; Dai, G.; Wang, W.; Rasko, J. E. J.; Melenhorst, J. J.; Qian, W.; Liang, A.; Han, W. The Model of Cytokine Release Syndrome in CAR T-Cell Treatment for B-Cell Non-Hodgkin Lymphoma. Signal Transduct. Target. Ther. 2020, 5 (1), 1–9. https://doi.org/10.1038/s41392-020-00256-x.
(82) Marofi, F.; Rahman, H. S.; Achmad, M. H.; Sergeevna, K. N.; Suksatan, W.; Abdelbasset, W. K.; Mikhailova, M. V.; Shomali, N.; Yazdanifar, M.; Hassanzadeh, A.; Ahmadi, M.; Motavalli, R.; Pathak, Y.; Izadi, S.; Jarahian, M. A Deep Insight Into CAR-T Cell Therapy in Non-Hodgkin Lymphoma: Application, Opportunities, and Future Directions. Front. Immunol. 2021, 12.
(83) Wang, L.; Ma, Q.; Yao, R.; Liu, J. Current Status and Development of Anti-PD-1/PD-L1 Immunotherapy for Lung Cancer. Int. Immunopharmacol. 2020, 79, 106088. https://doi.org/10.1016/j.intimp.2019.106088.
(84) Sun, R.; Limkin, E. J.; Vakalopoulou, M.; Dercle, L.; Champiat, S.; Han, S. R.; Verlingue, L.; Brandao, D.; Lancia, A.; Ammari, S.; Hollebecque, A.; Scoazec, J.-Y.; Marabelle, A.; Massard, C.; Soria, J.-C.; Robert, C.; Paragios, N.; Deutsch, E.; Ferté, C. A Radiomics Approach to Assess Tumour-Infiltrating CD8 Cells and Response to Anti-PD-1 or Anti-PD-L1 Immunotherapy: An Imaging Biomarker, Retrospective Multicohort Study. Lancet Oncol. 2018, 19 (9), 1180–1191. https://doi.org/10.1016/S1470-2045(18)30413-3.
(85) Zhao, J.; Chen, A. X.; Gartrell, R. D.; Silverman, A. M.; Aparicio, L.; Chu, T.; Bordbar, D.; Shan, D.; Samanamud, J.; Mahajan, A.; Filip, I.; Orenbuch, R.; Goetz, M.; Yamaguchi, J. T.; Cloney, M.; Horbinski, C.; Lukas, R. V.; Raizer, J.; Rae, A. I.; Yuan, J.; Canoll, P.; Bruce, J. N.; Saenger, Y. M.; Sims, P.; Iwamoto, F. M.; Sonabend, A. M.; Rabadan, R. Immune and Genomic Correlates of Response to Anti-PD-1 Immunotherapy in Glioblastoma. Nat. Med. 2019, 25 (3), 462–469. https://doi.org/10.1038/s41591-019-0349-y.
(86) Moreira, R. S.; Bicker, J.; Musicco, F.; Persichetti, A.; Pereira, A. M. P. T. Anti-PD-1 Immunotherapy in Advanced Metastatic Melanoma: State of the Art and Future Challenges. Life Sci. 2020, 240, 117093. https://doi.org/10.1016/j.lfs.2019.117093.
(87) Gopalakrishnan, V.; Spencer, C. N.; Nezi, L.; Reuben, A.; Andrews, M. C.; Karpinets, T. V.; Prieto, P. A.; Vicente, D.; Hoffman, K.; Wei, S. C.; Cogdill, A. P.; Zhao, L.; Hudgens, C. W.; Hutchinson, D. S.; Manzo, T.; Petaccia de Macedo, M.; Cotechini, T.; Kumar, T.; Chen, W. S.; Reddy, S. M.; Szczepaniak Sloane, R.; Galloway-Pena, J.; Jiang, H.; Chen, P. L.; Shpall, E. J.; Rezvani, K.; Alousi, A. M.; Chemaly, R. F.; Shelburne, S.; Vence, L. M.; Okhuysen, P. C.; Jensen, V. B.; Swennes, A. G.; McAllister, F.; Marcelo Riquelme Sanchez, E.; Zhang, Y.; Le Chatelier, E.; Zitvogel, L.; Pons, N.; Austin-Breneman, J. L.; Haydu, L. E.; Burton, E. M.; Gardner, J. M.; Sirmans, E.; Hu, J.; Lazar, A. J.; Tsujikawa, T.; Diab, A.; Tawbi, H.; Glitza, I. C.; Hwu, W. J.; Patel, S. P.; Woodman, S. E.; Amaria, R. N.; Davies, M. A.; Gershenwald, J. E.; Hwu, P.; Lee, J. E.; Zhang, J.; Coussens, L. M.; Cooper, Z. A.; Futreal, P. A.; Daniel, C. R.; Ajami, N. J.; Petrosino, J. F.; Tetzlaff, M. T.; Sharma, P.; Allison, J. P.; Jenq, R. R.; Wargo, J. A. Gut Microbiome Modulates Response to Anti–PD-1 Immunotherapy in Melanoma Patients. Science 2018, 359 (6371), 97–103. https://doi.org/10.1126/science.aan4236.
(88) Hao, C.; Tian, J.; Liu, H.; Li, F.; Niu, H.; Zhu, B. Efficacy and Safety of Anti-PD-1 and Anti-PD-1 Combined with Anti-CTLA-4 Immunotherapy to Advanced Melanoma. Medicine (Baltimore) 2017, 96 (26), e7325. https://doi.org/10.1097/MD.0000000000007325.
(89) Peng, Z.; Cheng, S.; Kou, Y.; Wang, Z.; Jin, R.; Hu, H.; Zhang, X.; Gong, J.; Li, J.; Lu, M.; Wang, X.; Zhou, J.; Lu, Z.; Zhang, Q.; Tzeng, D. T. W.; Bi, D.; Tan, Y.; Shen, L. The Gut Microbiome Is Associated with Clinical Response to Anti–PD-1/PD-L1 Immunotherapy in Gastrointestinal Cancer. Cancer Immunol. Res. 2020, 8 (10), 1251–1261. https://doi.org/10.1158/2326-6066.CIR-19-1014.
(90) Pol, J.; Kroemer, G. Anti-CTLA-4 Immunotherapy: Uncoupling Toxicity and Efficacy. Cell Res. 2018, 28 (5), 501–502. https://doi.org/10.1038/s41422-018-0031-9.
(91) Peggs, K. S.; Quezada, S. A.; Korman, A. J.; Allison, J. P. Principles and Use of Anti-CTLA4 Antibody in Human Cancer Immunotherapy. Curr. Opin. Immunol. 2006, 18 (2), 206–213. https://doi.org/10.1016/j.coi.2006.01.011.
(92) Callahan, M. K.; Wolchok, J. D.; Allison, J. P. Anti–CTLA-4 Antibody Therapy: Immune Monitoring During Clinical Development of a Novel Immunotherapy. Semin. Oncol. 2010, 37 (5), 473–484. https://doi.org/10.1053/j.seminoncol.2010.09.001.
(93) Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study - The Lancet Oncology. https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(09)70334-1/fulltext (accessed 2023-06-27).
(94) Schadendorf, D.; Hodi, F. S.; Robert, C.; Weber, J. S.; Margolin, K.; Hamid, O.; Patt, D.; Chen, T.-T.; Berman, D. M.; Wolchok, J. D. Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J. Clin. Oncol. 2015, 33 (17), 1889–1894. https://doi.org/10.1200/JCO.2014.56.2736.
(95) Liang, S. C.; Latchman, Y. E.; Buhlmann, J. E.; Tomczak, M. F.; Horwitz, B. H.; Freeman, G. J.; Sharpe, A. H. Regulation of PD-1, PD-L1, and PD-L2 Expression during Normal and Autoimmune Responses. Eur. J. Immunol. 2003, 33 (10), 2706–2716. https://doi.org/10.1002/eji.200324228.
(96) Latchman, Y.; Wood, C. R.; Chernova, T.; Chaudhary, D.; Borde, M.; Chernova, I.; Iwai, Y.; Long, A. J.; Brown, J. A.; Nunes, R.; Greenfield, E. A.; Bourque, K.; Boussiotis, V. A.; Carter, L. L.; Carreno, B. M.; Malenkovich, N.; Nishimura, H.; Okazaki, T.; Honjo, T.; Sharpe, A. H.; Freeman, G. J. PD-L2 Is a Second Ligand for PD-1 and Inhibits T Cell Activation. Nat. Immunol. 2001, 2 (3), 261–268. https://doi.org/10.1038/85330.
(97) Frearson, J. A.; Alexander, D. R. The Phosphotyrosine Phosphatase SHP-2 Participates in a Multimeric Signaling Complex and Regulates T Cell Receptor (TCR) Coupling to the Ras/Mitogen-Activated Protein Kinase (MAPK) Pathway in Jurkat T Cells. J. Exp. Med. 1998, 187 (9), 1417–1426. https://doi.org/10.1084/jem.187.9.1417.
(98) Betts, G.; Jones, E.; Junaid, S.; El-Shanawany, T.; Scurr, M.; Mizen, P.; Kumar, M.; Jones, S.; Rees, B.; Williams, G.; Gallimore, A.; Godkin, A. Suppression of Tumour-Specific CD4 + T Cells by Regulatory T Cells Is Associated with Progression of Human Colorectal Cancer. Gut 2012, 61 (8), 1163–1171. https://doi.org/10.1136/gutjnl-2011-300970.
(99) Ishida, M.; Iwai, Y.; Tanaka, Y.; Okazaki, T.; Freeman, G. J.; Minato, N.; Honjo, T. Differential Expression of PD-L1 and PD-L2, Ligands for an Inhibitory Receptor PD-1, in the Cells of Lymphohematopoietic Tissues. Immunol. Lett. 2002, 84 (1), 57–62. https://doi.org/10.1016/S0165-2478(02)00142-6.
(100) Frucht, D. M.; Fukao, T.; Bogdan, C.; Schindler, H.; O’Shea, J. J.; Koyasu, S. IFN-γ Production by Antigen-Presenting Cells: Mechanisms Emerge. Trends Immunol. 2001, 22 (10), 556–560. https://doi.org/10.1016/S1471-4906(01)02005-1.
(101) van Hall, T.; Sijts, A.; Camps, M.; Offringa, R.; Melief, C.; Kloetzel, P.-M.; Ossendorp, F. Differential Influence on Cytotoxic T Lymphocyte Epitope Presentation by Controlled Expression of Either Proteasome Immunosubunits or Pa28. J. Exp. Med. 2000, 192 (4), 483–494. https://doi.org/10.1084/jem.192.4.483.
(102) Lu, C.; Ma, H.; Song, L.; Wang, H.; Wang, L.; Li, S.; Lagana, S. M.; Sepulveda, A. R.; Hoebe, K.; Pan, S. S.; Yang, Y.-G.; Lentzsch, S.; Mapara, M. Y. IFN-γR/STAT1 Signaling in Recipient Hematopoietic Antigen-Presenting Cells Suppresses Graft-versus-Host Disease. J. Clin. Invest. 2023, 133 (3). https://doi.org/10.1172/JCI125986.
(103) Sorich, M. J.; Rowland, A.; Karapetis, C. S.; Hopkins, A. M. Evaluation of the Lung Immune Prognostic Index for Prediction of Survival and Response in Patients Treated With Atezolizumab for NSCLC: Pooled Analysis of Clinical Trials. J. Thorac. Oncol. 2019, 14 (8), 1440–1446. https://doi.org/10.1016/j.jtho.2019.04.006.
(104) Jacquelot, N.; Roberti, M. P.; Enot, D. P.; Rusakiewicz, S.; Ternès, N.; Jegou, S.; Woods, D. M.; Sodré, A. L.; Hansen, M.; Meirow, Y.; Sade-Feldman, M.; Burra, A.; Kwek, S. S.; Flament, C.; Messaoudene, M.; Duong, C. P. M.; Chen, L.; Kwon, B. S.; Anderson, A. C.; Kuchroo, V. K.; Weide, B.; Aubin, F.; Borg, C.; Dalle, S.; Beatrix, O.; Ayyoub, M.; Balme, B.; Tomasic, G.; Di Giacomo, A. M.; Maio, M.; Schadendorf, D.; Melero, I.; Dréno, B.; Khammari, A.; Dummer, R.; Levesque, M.; Koguchi, Y.; Fong, L.; Lotem, M.; Baniyash, M.; Schmidt, H.; Svane, I. M.; Kroemer, G.; Marabelle, A.; Michiels, S.; Cavalcanti, A.; Smyth, M. J.; Weber, J. S.; Eggermont, A. M.; Zitvogel, L. Predictors of Responses to Immune Checkpoint Blockade in Advanced Melanoma. Nat. Commun. 2017, 8 (1), 592. https://doi.org/10.1038/s41467-017-00608-2.
(105) Koyama, S.; Akbay, E. A.; Li, Y. Y.; Herter-Sprie, G. S.; Buczkowski, K. A.; Richards, W. G.; Gandhi, L.; Redig, A. J.; Rodig, S. J.; Asahina, H.; Jones, R. E.; Kulkarni, M. M.; Kuraguchi, M.; Palakurthi, S.; Fecci, P. E.; Johnson, B. E.; Janne, P. A.; Engelman, J. A.; Gangadharan, S. P.; Costa, D. B.; Freeman, G. J.; Bueno, R.; Hodi, F. S.; Dranoff, G.; Wong, K.-K.; Hammerman, P. S. Adaptive Resistance to Therapeutic PD-1 Blockade Is Associated with Upregulation of Alternative Immune Checkpoints. Nat. Commun. 2016, 7 (1), 10501. https://doi.org/10.1038/ncomms10501.
(106) De Henau, O.; Rausch, M.; Winkler, D.; Campesato, L. F.; Liu, C.; Cymerman, D. H.; Budhu, S.; Ghosh, A.; Pink, M.; Tchaicha, J.; Douglas, M.; Tibbitts, T.; Sharma, S.; Proctor, J.; Kosmider, N.; White, K.; Stern, H.; Soglia, J.; Adams, J.; Palombella, V. J.; McGovern, K.; Kutok, J. L.; Wolchok, J. D.; Merghoub, T. Overcoming Resistance to Checkpoint Blockade Therapy by Targeting PI3Kγ in Myeloid Cells. Nature 2016, 539 (7629), 443–447. https://doi.org/10.1038/nature20554.
(107) Mei, Z.; Huang, J.; Qiao, B.; Lam, A. K. Immune Checkpoint Pathways in Immunotherapy for Head and Neck Squamous Cell Carcinoma. Int. J. Oral Sci. 2020, 12 (1), 1–9. https://doi.org/10.1038/s41368-020-0084-8.
(108) O’ Donovan, D. H.; Mao, Y.; Mele, D. A. The Next Generation of Pattern Recognition Receptor Agonists: Improving Response Rates in Cancer Immunotherapy. Curr. Med. Chem. 2020, 27 (34), 5654–5674. https://doi.org/10.2174/0929867326666190620103105.
(109) Wu, D.; Wang, D. C.; Cheng, Y.; Qian, M.; Zhang, M.; Shen, Q.; Wang, X. Roles of Tumor Heterogeneity in the Development of Drug Resistance: A Call for Precision Therapy. Semin. Cancer Biol. 2017, 42, 13–19. https://doi.org/10.1016/j.semcancer.2016.11.006.
(110) Liu, Y.; Cao, X. Immunosuppressive Cells in Tumor Immune Escape and Metastasis. J. Mol. Med. 2016, 94 (5), 509–522. https://doi.org/10.1007/s00109-015-1376-x.
(111) Bauché, D.; Mauze, S.; Kochel, C.; Grein, J.; Sawant, A.; Zybina, Y.; Blumenschein, W.; Yang, P.; Annamalai, L.; Yearley, J. H.; Punnonen, J.; Bowman, E. P.; Chackerian, A.; Laface, D. Antitumor Efficacy of Combined CTLA4/PD-1 Blockade without Intestinal Inflammation Is Achieved by Elimination of FcγR Interactions. J. Immunother. Cancer 2020, 8 (2), e001584. https://doi.org/10.1136/jitc-2020-001584.
(112) Ahern, E.; Harjunpää, H.; O’Donnell, J. S.; Allen, S.; Dougall, W. C.; Teng, M. W. L.; Smyth, M. J. RANKL Blockade Improves Efficacy of PD1-PD-L1 Blockade or Dual PD1-PD-L1 and CTLA4 Blockade in Mouse Models of Cancer. OncoImmunology 2018, 7 (6), e1431088. https://doi.org/10.1080/2162402X.2018.1431088.
(113) Puzanov, I.; Milhem, M. M.; Minor, D.; Hamid, O.; Li, A.; Chen, L.; Chastain, M.; Gorski, K. S.; Anderson, A.; Chou, J.; Kaufman, H. L.; Andtbacka, R. H. I. Talimogene Laherparepvec in Combination With Ipilimumab in Previously Untreated, Unresectable Stage IIIB-IV Melanoma. J. Clin. Oncol. 2016, 34 (22), 2619–2626. https://doi.org/10.1200/JCO.2016.67.1529.
(114) Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J. J.; Cowey, C. L.; Lao, C. D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; Ferrucci, P. F.; Hill, A.; Wagstaff, J.; Carlino, M. S.; Haanen, J. B.; Maio, M.; Marquez-Rodas, I.; McArthur, G. A.; Ascierto, P. A.; Long, G. V.; Callahan, M. K.; Postow, M. A.; Grossmann, K.; Sznol, M.; Dreno, B.; Bastholt, L.; Yang, A.; Rollin, L. M.; Horak, C.; Hodi, F. S.; Wolchok, J. D. Combined Nivolumab and Ipilimumab or Monotherapy in Previously Untreated Melanoma. N. Engl. J. Med. 2015, 373 (1), 23–34. https://doi.org/10.1056/NEJMoa1504030.
(115) Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J. J.; Cowey, C. L.; Lao, C. D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; Ferrucci, P. F.; Hill, A.; Wagstaff, J.; Carlino, M. S.; Haanen, J. B.; Maio, M.; Marquez-Rodas, I.; McArthur, G. A.; Ascierto, P. A.; Long, G. V.; Callahan, M. K.; Postow, M. A.; Grossmann, K.; Sznol, M.; Dreno, B.; Bastholt, L.; Yang, A.; Rollin, L. M.; Horak, C.; Hodi, F. S.; Wolchok, J. D. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373 (1), 23–34. https://doi.org/10.1056/NEJMoa1504030.
(116) Lu, Q.; Ye, H.; Wang, K.; Zhao, J.; Wang, H.; Song, J.; Fan, X.; Lu, Y.; Cao, L.; Wan, B.; Zhang, H.; He, Z.; Sun, J. Bioengineered Platelets Combining Chemotherapy and Immunotherapy for Postsurgical Melanoma Treatment: Internal Core-Loaded Doxorubicin and External Surface-Anchored Anti-PD-L1 Antibody Backpacks. Nano Lett. 2022, 22 (7), 3141–3150. https://doi.org/10.1021/acs.nanolett.2c00907.
(117) Su, Z.; Xiao, Z.; Wang, Y.; Huang, J.; An, Y.; Wang, X.; Shuai, X. Codelivery of Anti-PD-1 Antibody and Paclitaxel with Matrix Metalloproteinase and PH Dual-Sensitive Micelles for Enhanced Tumor Chemoimmunotherapy. Small 2020, 16 (7), 1906832. https://doi.org/10.1002/smll.201906832.
(118) Pham, L. M.; Poudel, K.; Ou, W.; Phung, C. D.; Nguyen, H. T.; Nguyen, B. L.; Karmacharya, P.; Pandit, M.; Chang, J.-H.; Jeong, J.-H.; Ku, S. K.; Yong, C. S.; Choi, H.-G.; Kim, J. O. Combination Chemotherapeutic and Immune-Therapeutic Anticancer Approach via Anti-PD-L1 Antibody Conjugated Albumin Nanoparticles. Int. J. Pharm. 2021, 605, 120816. https://doi.org/10.1016/j.ijpharm.2021.120816.
(119) Li, L.; Li, Y.; Yang, C.-H.; Radford, D. C.; Wang, J.; Janát-Amsbury, M.; Kopeček, J.; Yang, J. Inhibition of Immunosuppressive Tumors by Polymer-Assisted Inductions of Immunogenic Cell Death and Multivalent PD-L1 Crosslinking. Adv. Funct. Mater. 2020, 30 (12), 1908961. https://doi.org/10.1002/adfm.201908961.
(120) Wei, J.; Long, Y.; Guo, R.; Liu, X.; Tang, X.; Rao, J.; Yin, S.; Zhang, Z.; Li, M.; He, Q. Multifunctional Polymeric Micelle-Based Chemo-Immunotherapy with Immune Checkpoint Blockade for Efficient Treatment of Orthotopic and Metastatic Breast Cancer. Acta Pharm. Sin. B 2019, 9 (4), 819–831. https://doi.org/10.1016/j.apsb.2019.01.018.
(121) Vatner, R. E.; Cooper, B. T.; Vanpouille-Box, C.; Demaria, S.; Formenti, S. C. Combinations of Immunotherapy and Radiation in Cancer Therapy. Front. Oncol. 2014, 4.
(122) Dewan, M. Z.; Galloway, A. E.; Kawashima, N.; Dewyngaert, J. K.; Babb, J. S.; Formenti, S. C.; Demaria, S. Fractionated but Not Single-Dose Radiotherapy Induces an Immune-Mediated Abscopal Effect When Combined with Anti–CTLA-4 Antibody. Clin. Cancer Res. 2009, 15 (17), 5379–5388. https://doi.org/10.1158/1078-0432.CCR-09-0265.
(123) Teng, F.; Kong, L.; Meng, X.; Yang, J.; Yu, J. Radiotherapy Combined with Immune Checkpoint Blockade Immunotherapy: Achievements and Challenges. Cancer Lett. 2015, 365 (1), 23–29. https://doi.org/10.1016/j.canlet.2015.05.012.
(124) Trivillin, V. A.; Langle, Y. V.; Palmieri, M. A.; Pozzi, E. C. C.; Thorp, S. I.; Benitez Frydryk, D. N.; Garabalino, M. A.; Monti Hughes, A.; Curotto, P. M.; Colombo, L. L.; Santa Cruz, I. S.; Ramos, P. S.; Itoiz, M. E.; Argüelles, C.; Eiján, A. M.; Schwint, A. E. Evaluation of Local, Regional and Abscopal Effects of Boron Neutron Capture Therapy (BNCT) Combined with Immunotherapy in an Ectopic Colon Cancer Model. Br. J. Radiol. 2021, 94 (1128), 20210593. https://doi.org/10.1259/bjr.20210593.
(125) Shi, Y.; Guo, Z.; Fu, Q.; Shen, X.; Zhang, Z.; Sun, W.; Wang, J.; Sun, J.; Zhang, Z.; Liu, T.; Gu, Z.; Liu, Z. Localized Nuclear Reaction Breaks Boron Drug Capsules Loaded with Immune Adjuvants for Cancer Immunotherapy. Nat. Commun. 2023, 14 (1), 1884. https://doi.org/10.1038/s41467-023-37253-x.
(126) Ladoire, S.; Hannani, D.; Vetizou, M.; Locher, C.; Aymeric, L.; Apetoh, L.; Kepp, O.; Kroemer, G.; Ghiringhelli, F.; Zitvogel, L. Cell-Death-Associated Molecular Patterns As Determinants of Cancer Immunogenicity. Antioxid. Redox Signal. 2014, 20 (7), 1098–1116. https://doi.org/10.1089/ars.2012.5133.
(127) Sheng, W.-Y.; Huang, L. Cancer Immunotherapy and Nanomedicine. Pharm. Res. 2011, 28 (2), 200–214. https://doi.org/10.1007/s11095-010-0258-8.
(128) Nichols, J. W.; Bae, Y. H. EPR: Evidence and Fallacy. J. Controlled Release 2014, 190, 451–464. https://doi.org/10.1016/j.jconrel.2014.03.057.
(129) Analysis of nanoparticle delivery to tumours | Nature Reviews Materials. https://www.nature.com/articles/natrevmats201614 (accessed 2023-07-03).
(130) Florence, A. T. “Targeting” Nanoparticles: The Constraints of Physical Laws and Physical Barriers. J. Controlled Release 2012, 164 (2), 115–124. https://doi.org/10.1016/j.jconrel.2012.03.022.
(131) Bazak, R.; Houri, M.; El Achy, S.; Kamel, S.; Refaat, T. Cancer Active Targeting by Nanoparticles: A Comprehensive Review of Literature. J. Cancer Res. Clin. Oncol. 2015, 141 (5), 769–784. https://doi.org/10.1007/s00432-014-1767-3.
(132) Singh, M. S.; Bhaskar, S. Nanocarrier-Based Immunotherapy in Cancer Management and Research. ImmunoTargets Ther. 2014, 3, 121–134. https://doi.org/10.2147/ITT.S62471.
(133) Baeza, A. Tumor Targeted Nanocarriers for Immunotherapy. Molecules 2020, 25 (7), 1508. https://doi.org/10.3390/molecules25071508.
(134) Suk, J. S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. https://doi.org/10.1016/j.addr.2015.09.012.
(135) Li, Y.; Zhang, X.; Liu, X.; Pan, W.; Li, N.; Tang, B. Intelligent Stimuli-Responsive Nano Immunomodulators for Cancer Immunotherapy. Chem. Sci. 2021, 12 (9), 3130–3145. https://doi.org/10.1039/D0SC06557A.
(136) Mao, L.; Ma, P.; Luo, X.; Cheng, H.; Wang, Z.; Ye, E.; Loh, X. J.; Wu, Y.-L.; Li, Z. Stimuli-Responsive Polymeric Nanovaccines Toward Next-Generation Immunotherapy. ACS Nano 2023, 17 (11), 9826–9849. https://doi.org/10.1021/acsnano.3c02273.
(137) Banstola, A.; Poudel, K.; Kim, J. O.; Jeong, J.-H.; Yook, S. Recent Progress in Stimuli-Responsive Nanosystems for Inducing Immunogenic Cell Death. J. Controlled Release 2021, 337, 505–520. https://doi.org/10.1016/j.jconrel.2021.07.038.
(138) Ismail, E. A.; Devnarain, N.; Govender, T.; Omolo, C. A. Stimuli-Responsive and Biomimetic Delivery Systems for Sepsis and Related Complications. J. Controlled Release 2022, 352, 1048–1070. https://doi.org/10.1016/j.jconrel.2022.11.013.
(139) Qin, J.; Sun, M.; Hu, W.; Cheng, J.; Fan, Z.; Du, J. Stimuli-Responsive Hydrogels for Cancer Immunotherapy. Polym. Chem. 2023, 14 (7), 793–802. https://doi.org/10.1039/D2PY01308H.
(140) Delfi, M.; Sartorius, R.; Ashrafizadeh, M.; Sharifi, E.; Zhang, Y.; De Berardinis, P.; Zarrabi, A.; Varma, R. S.; Tay, F. R.; Smith, B. R.; Makvandi, P. Self-Assembled Peptide and Protein Nanostructures for Anti-Cancer Therapy: Targeted Delivery, Stimuli-Responsive Devices and Immunotherapy. Nano Today 2021, 38, 101119. https://doi.org/10.1016/j.nantod.2021.101119.
(141) Barth, R. F.; H Vicente, Mg.; Harling, O. K.; Kiger, W.; Riley, K. J.; Binns, P. J.; Wagner, F. M.; Suzuki, M.; Aihara, T.; Kato, I.; Kawabata, S. Current Status of Boron Neutron Capture Therapy of High Grade Gliomas and Recurrent Head and Neck Cancer. Radiat. Oncol. 2012, 7 (1), 146. https://doi.org/10.1186/1748-717X-7-146.
(142) Kato, I.; Fujita, Y.; Maruhashi, A.; Kumada, H.; Ohmae, M.; Kirihata, M.; Imahori, Y.; Suzuki, M.; Sakrai, Y.; Sumi, T.; Iwai, S.; Nakazawa, M.; Murata, I.; Miyamaru, H.; Ono, K. Effectiveness of Boron Neutron Capture Therapy for Recurrent Head and Neck Malignancies. Appl. Radiat. Isot. 2009, 67 (7, Supplement), S37–S42. https://doi.org/10.1016/j.apradiso.2009.03.103.
(143) Mehta, S. C.; Lu, D. R. Targeted Drug Delivery for Boron Neutron Capture Therapy. Pharm. Res. 1996, 13 (3), 344–351. https://doi.org/10.1023/A:1016076022267.
(144) Drugs for BNCT: BSH and BPA | SpringerLink. https://link.springer.com/chapter/10.1007/978-3-642-31334-9_8 (accessed 2023-06-29).
(145) Yokoyama, K.; Miyatake, S.-I.; Kajimoto, Y.; Kawabata, S.; Doi, A.; Yoshida, T.; Asano, T.; Kirihata, M.; Ono, K.; Kuroiwa, T. Pharmacokinetic Study of BSH and BPA in Simultaneous Use for BNCT. J. Neurooncol. 2006, 78 (3), 227–232. https://doi.org/10.1007/s11060-005-9099-4.
(146) Wongthai, P.; Hagiwara, K.; Miyoshi, Y.; Wiriyasermkul, P.; Wei, L.; Ohgaki, R.; Kato, I.; Hamase, K.; Nagamori, S.; Kanai, Y. Boronophenylalanine, a Boron Delivery Agent for Boron Neutron Capture Therapy, Is Transported by ATB0,+, LAT1 and LAT2. Cancer Sci. 2015, 106 (3), 279–286. https://doi.org/10.1111/cas.12602.
(147) Lin, Y.-C.; Chou, F.-I.; Yang, B.-H.; Chang, C.-W.; Chen, Y.-W.; Hwang, J.-J. Similar T/N Ratio between 18F-FBPA Diagnostic and BPA Therapeutic Dosages for Boron Neutron Capture Therapy in Orthotropic Tongue Cancer Model. Ann. Nucl. Med. 2020, 34 (1), 58–64. https://doi.org/10.1007/s12149-019-01415-z.
(148) Heikkinen, S.; Savolainen, S.; Melkko, P. In Vitro Studies on Stability of L-p-Boronophenylalanine–Fructose Complex (BPA-F). J. Radiat. Res. (Tokyo) 2011, 52 (3), 360–364. https://doi.org/10.1269/jrr.10138.
(149) Bendel, P.; Anderson, C.; Kabalka, G. W. Structure of the BPA-Fructose Complex. In Frontiers in Neutron Capture Therapy: Volume 1; Hawthorne, M. F., Shelly, K., Wiersema, R. J., Eds.; Springer US: Boston, MA, 2001; pp 869–874. https://doi.org/10.1007/978-1-4615-1285-1_130.
(150) Chen, B.-G.; Zhang, M.-Y.; Zhao, Y.-Y.; Zhang, J.; Sun, C.-C. Structural and Electronic Properties of BPA-Fructose Complex Used in Boron Neutron Capture Therapy. J. Mol. Struct. THEOCHEM 2006, 766 (1), 35–40. https://doi.org/10.1016/j.theochem.2006.04.003.
(151) Yoshino, K.; Yabe, T.; Hattori, T.; Saito, K.; Ishikawa, A.; Ohki, H. 10B-NMR Determination of 10B-BPA, 10B-BPA–Fructose Complex and Total 10B in Blood for BNCT. Appl. Radiat. Isot. 2014, 88, 74–77. https://doi.org/10.1016/j.apradiso.2013.12.020.
(152) Fukuda, H.; Hiratsuka, J.; Honda, C.; Kobayashi, T.; Yoshino, K.; Karashima, H.; Takahashi, J.; Abe, Y.; Kanda, K.; Ichihashi, M. Boron Neutron Capture Therapy of Malignant Melanoma Using 10B-Paraboronophenylalanine with Special Reference to Evaluation of Radiation Dose and Damage to the Normal Skin. Radiat. Res. 1994, 138 (3), 435–442. https://doi.org/10.2307/3578693.
(153) Chadha, M.; Capala, J.; Coderre, J. A.; Elowitz, E. H.; Iwai, J.; Joel, D. D.; Liu, H. B.; Wielopolski, L.; Chanana, A. D. Boron Neutron-Capture Therapy (BNCT) for Glioblastoma Multiforme (GBM) Using the Epithermal Neutron Beam at the Brookhaven National Laboratory. Int. J. Radiat. Oncol. 1998, 40 (4), 829–834. https://doi.org/10.1016/S0360-3016(97)00891-2.
(154) Ishiwata, K.; Ido, T.; Mejia, A. A.; Ichihashi, M.; Mishima, Y. Synthesis and Radiation Dosimetry of 4-Borono-2-[18F]Fluoro-d,l-Phenylalanine: A Target Compound for PET and Boron Neutron Capture Therapy. Int. J. Rad. Appl. Instrum. [A] 1991, 42 (4), 325–328. https://doi.org/10.1016/0883-2889(91)90133-L.
(155) Vähätalo, J. K.; Eskola, O.; Bergman, J.; Forsback, S.; Lehikoinen, P.; Jääskeläinen, J.; Solin, O. Synthesis of 4-Dihydroxyboryl-2-[18F]Fluorophenylalanine with Relatively High-Specific Activity. J. Label. Compd. Radiopharm. 2002, 45 (8), 697–704. https://doi.org/10.1002/jlcr.600.
(156) Watabe, T.; Hanaoka, K.; Naka, S.; Kanai, Y.; Ikeda, H.; Aoki, M.; Shimosegawa, E.; Kirihata, M.; Hatazawa, J. Practical Calculation Method to Estimate the Absolute Boron Concentration in Tissues Using 18F-FBPA PET. Ann. Nucl. Med. 2017, 31 (6), 481–485. https://doi.org/10.1007/s12149-017-1172-5.
(157) Dymova, M. A.; Taskaev, S. Y.; Richter, V. A.; Kuligina, E. V. Boron Neutron Capture Therapy: Current Status and Future Perspectives. Cancer Commun. 2020, 40 (9), 406–421. https://doi.org/10.1002/cac2.12089.
(158) Yoshimoto, M.; Kurihara, H.; Honda, N.; Kawai, K.; Ohe, K.; Fujii, H.; Itami, J.; Arai, Y. Predominant Contribution of L-Type Amino Acid Transporter to 4-Borono-2-18F-Fluoro-Phenylalanine Uptake in Human Glioblastoma Cells. Nucl. Med. Biol. 2013, 40 (5), 625–629. https://doi.org/10.1016/j.nucmedbio.2013.02.010.
(159) Ali, F.; S Hosmane, N.; Zhu, Y. Boron Chemistry for Medical Applications. Molecules 2020, 25 (4), 828. https://doi.org/10.3390/molecules25040828.
(160) Matsumoto, Y.; Fukumitsu, N.; Ishikawa, H.; Nakai, K.; Sakurai, H. A Critical Review of Radiation Therapy: From Particle Beam Therapy (Proton, Carbon, and BNCT) to Beyond. J. Pers. Med. 2021, 11 (8), 825. https://doi.org/10.3390/jpm11080825.
(161) Maeda, H. The 35th Anniversary of the Discovery of EPR Effect: A New Wave of Nanomedicines for Tumor-Targeted Drug Delivery—Personal Remarks and Future Prospects. J. Pers. Med. 2021, 11 (3), 229. https://doi.org/10.3390/jpm11030229.
(162) Torchilin, V. Tumor Delivery of Macromolecular Drugs Based on the EPR Effect. Adv. Drug Deliv. Rev. 2011, 63 (3), 131–135. https://doi.org/10.1016/j.addr.2010.03.011.
(163) Fang, J.; Nakamura, H.; Maeda, H. The EPR Effect: Unique Features of Tumor Blood Vessels for Drug Delivery, Factors Involved, and Limitations and Augmentation of the Effect. Adv. Drug Deliv. Rev. 2011, 63 (3), 136–151. https://doi.org/10.1016/j.addr.2010.04.009.
(164) Maruyama, K. Intracellular Targeting Delivery of Liposomal Drugs to Solid Tumors Based on EPR Effects. Adv. Drug Deliv. Rev. 2011, 63 (3), 161–169. https://doi.org/10.1016/j.addr.2010.09.003.
(165) Wang, J.; Mao, W.; Lock, L. L.; Tang, J.; Sui, M.; Sun, W.; Cui, H.; Xu, D.; Shen, Y. The Role of Micelle Size in Tumor Accumulation, Penetration, and Treatment. ACS Nano 2015, 9 (7), 7195–7206. https://doi.org/10.1021/acsnano.5b02017.
(166) Kang, H.; Rho, S.; Stiles, W. R.; Hu, S.; Baek, Y.; Hwang, D. W.; Kashiwagi, S.; Kim, M. S.; Choi, H. S. Size-Dependent EPR Effect of Polymeric Nanoparticles on Tumor Targeting. Adv. Healthc. Mater. 2020, 9 (1), 1901223. https://doi.org/10.1002/adhm.201901223.
(167) Barth, R. F.; Mi, P.; Yang, W. Boron Delivery Agents for Neutron Capture Therapy of Cancer. Cancer Commun. 2018, 38 (1), 35. https://doi.org/10.1186/s40880-018-0299-7.
(168) Metallacarboranes on the Road to Anticancer Therapies: Cellular Uptake, DNA Interaction, and Biological Evaluation of Cobaltabisdicarbollide [COSAN]− - Fuentes - 2018 - Chemistry – A European Journal - Wiley Online Library. https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/chem.201803178 (accessed 2023-06-30).
(169) Chen, W.; Mehta, S. C.; Lu, D. R. Selective Boron Drug Delivery to Brain Tumors for Boron Neutron Capture Therapy. Adv. Drug Deliv. Rev. 1997, 26 (2), 231–247. https://doi.org/10.1016/S0169-409X(97)00037-9.
(170) He, T.; Chittur, S. V.; Musah, R. A. Impact on Glioblastoma U87 Cell Gene Expression of a Carborane Cluster-Bearing Amino Acid: Implications for Carborane Toxicity in Mammalian Cells. ACS Chem. Neurosci. 2019, 10 (3), 1524–1534. https://doi.org/10.1021/acschemneuro.8b00512.
(171) Novick, S.; Quastel, M. R.; Marcus, S.; Chipman, D.; Shani, G.; Barth, R. F.; Soloway, A. H. Linkage of Boronated Polylysine to Glycoside Moieties of Polyclonal Antibody; Boronated Antibodies as Potential Delivery Agents for Neutron Capture Therapy1 1Abbreviations: BNCT, Boron Neutron Capture Therapy; BPL, Boronated Poly-DL-Lysine; BSA, Bovine Serum Albumin; DMBA, p-Dimethylaminobenzaldehyde; DMF, Dimethylformamide; DMSO, Dimethyl Sulfoxide; DTT, Dithiothreitol; FTSC, Fluorescein Thiosemicarbazide; HRP, Horseradish Peroxidase; IgG, Immunoglobulin-G; IRMA, Immunoradiometric Assay; LET, Linear Energy Transfer; MB-Hydrazide, m-Maleimidobenzoyl Hydrazide; MW, Molecular Weight; PBS, Phosphate Buffered Saline; PL, Poly-DL-Lysine; SDS-PAGE, Sodium n-Dodecyl Sulfate Polyacrylamide Gel Electrophoresis; SPDP, N-Succinimidyl-3-(2 Pyridyldithio) Propionate; Sulfo-MBS, m-Maleimidobenzoyl-N-Hydroxysulfosuccinimide Ester; TRIZMA®, Tris (Hydroxymethyl) Aminomethane; TSH, Thyroid Stimulating Hormone. Nucl. Med. Biol. 2002, 29 (2), 159–167. https://doi.org/10.1016/S0969-8051(01)00297-9.
(172) Wu, G.; Barth, R. F.; Yang, W.; Chatterjee, M.; Tjarks, W.; Ciesielski, M. J.; Fenstermaker, R. A. Site-Specific Conjugation of Boron-Containing Dendrimers to Anti-EGF Receptor Monoclonal Antibody Cetuximab (IMC-C225) and Its Evaluation as a Potential Delivery Agent for Neutron Capture Therapy. Bioconjug. Chem. 2004, 15 (1), 185–194. https://doi.org/10.1021/bc0341674.
(173) Yang, W.; Barth, R. F.; Wu, G.; Huo, T.; Tjarks, W.; Ciesielski, M.; Fenstermaker, R. A.; Ross, B. D.; Wikstrand, C. J.; Riley, K. J.; Binns, P. J. Convection Enhanced Delivery of Boronated EGF as a Molecular Targeting Agent for Neutron Capture Therapy of Brain Tumors. J. Neurooncol. 2009, 95 (3), 355–365. https://doi.org/10.1007/s11060-009-9945-x.
(174) Wang, J.; Wu, W.; Jiang, X. Nanoscaled Boron-Containing Delivery Systems and Therapeutic Agents for Cancer Treatment. Nanomed. 2015, 10 (7), 1149–1163. https://doi.org/10.2217/nnm.14.213.
(175) Wu, C.-Y.; Lin, J.-J.; Chang, W.-Y.; Hsieh, C.-Y.; Wu, C.-C.; Chen, H.-S.; Hsu, H.-J.; Yang, A.-S.; Hsu, M.-H.; Kuo, W.-Y. Development of Theranostic Active-Targeting Boron-Containing Gold Nanoparticles for Boron Neutron Capture Therapy (BNCT). Colloids Surf. B Biointerfaces 2019, 183, 110387. https://doi.org/10.1016/j.colsurfb.2019.110387.
(176) Pitto-Barry, A. Polymers and Boron Neutron Capture Therapy (BNCT): A Potent Combination. Polym. Chem. 2021, 12 (14), 2035–2044. https://doi.org/10.1039/D0PY01392G.
(177) Gratton, S. E. A.; Parrott, M. C.; Adronov, A. Preparation of Carborane-Containing Polymers by Atom Transfer Radical Polymerization. J. Inorg. Organomet. Polym. Mater. 2005, 15 (4), 469–475. https://doi.org/10.1007/s10904-006-9000-8.
(178) Seneviratne, D. S.; Saifi, O.; Mackeyev, Y.; Malouff, T.; Krishnan, S. Next-Generation Boron Drugs and Rational Translational Studies Driving the Revival of BNCT. Cells 2023, 12 (10), 1398. https://doi.org/10.3390/cells12101398.
(179) Masunaga, S.; Sanada, Y.; Tano, K.; Sakurai, Y.; Tanaka, H.; Takata, T.; Suzuki, M.; Ono, K. An Attempt to Improve the Therapeutic Effect of Boron Neutron Capture Therapy Using Commonly Employed 10B-Carriers Based on Analytical Studies on the Correlation among Quiescent Tumor Cell Characteristics, Tumor Heterogeneity and Cancer Stemness. J. Radiat. Res. (Tokyo) 2020, 61 (6), 876–885. https://doi.org/10.1093/jrr/rraa048.
(180) Hader, M.; Frey, B.; Fietkau, R.; Hecht, M.; Gaipl, U. S. Immune Biological Rationales for the Design of Combined Radio- and Immunotherapies. Cancer Immunol. Immunother. 2020, 69 (2), 293–306. https://doi.org/10.1007/s00262-019-02460-3.
(181) Suzuki, M.; Endo, K.; Satoh, H.; Sakurai, Y.; Kumada, H.; Kimura, H.; Masunaga, S.; Kinashi, Y.; Nagata, K.; Maruhashi, A.; Ono, K. A Novel Concept of Treatment of Diffuse or Multiple Pleural Tumors by Boron Neutron Capture Therapy (BNCT). Radiother. Oncol. 2008, 88 (2), 192–195. https://doi.org/10.1016/j.radonc.2008.06.009.
(182) Aiyama, H.; Nakai, K.; Yamamoto, T.; Nariai, T.; Kumada, H.; Ishikawa, E.; Isobe, T.; Endo, K.; Takada, T.; Yoshida, F.; Shibata, Y.; Matsumura, A. A Clinical Trial Protocol for Second Line Treatment of Malignant Brain Tumors with BNCT at University of Tsukuba. Appl. Radiat. Isot. 2011, 69 (12), 1819–1822. https://doi.org/10.1016/j.apradiso.2011.04.031.
(183) Khan A. A.; Maitz C.; Quanyu C.; Hawthorne F. BNCT induced immunomodulatory effects contribute to mammary tumor inhibition. PLOS ONE 2019, 14 (9), e0222022. https://doi.org/10.1371/journal.pone.0222022.
(184) Hughes, A. M. Importance of Radiobiological Studies for the Advancement of Boron Neutron Capture Therapy (BNCT). Expert Rev. Mol. Med. 2022, 24, e14. https://doi.org/10.1017/erm.2022.7.
(185) Krysko, D. V.; Garg, A. D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic Cell Death and DAMPs in Cancer Therapy. Nat. Rev. Cancer 2012, 12 (12), 860–875. https://doi.org/10.1038/nrc3380.
(186) Obeid, M.; Tesniere, A.; Ghiringhelli, F.; Fimia, G. M.; Apetoh, L.; Perfettini, J.-L.; Castedo, M.; Mignot, G.; Panaretakis, T.; Casares, N.; Métivier, D.; Larochette, N.; van Endert, P.; Ciccosanti, F.; Piacentini, M.; Zitvogel, L.; Kroemer, G. Calreticulin Exposure Dictates the Immunogenicity of Cancer Cell Death. Nat. Med. 2007, 13 (1), 54–61. https://doi.org/10.1038/nm1523.
(187) Martins, I.; Wang, Y.; Michaud, M.; Ma, Y.; Sukkurwala, A. Q.; Shen, S.; Kepp, O.; Métivier, D.; Galluzzi, L.; Perfettini, J.-L.; Zitvogel, L.; Kroemer, G. Molecular Mechanisms of ATP Secretion during Immunogenic Cell Death. Cell Death Differ. 2014, 21 (1), 79–91. https://doi.org/10.1038/cdd.2013.75.
(188) Zonta, A.; Prati, U.; Roveda, L.; Ferrari, C.; Zonta, S.; Clerici, A.; Zonta, C.; Pinelli, T.; Fossati, F.; Altieri, S.; Bortolussi, S.; Bruschi, P.; Nano, R.; Barni, S.; Chiari, P.; Mazzini, G. Clinical Lessons from the First Applications of BNCT on Unresectable Liver Metastases. J. Phys. Conf. Ser. 2006, 41 (1), 484. https://doi.org/10.1088/1742-6596/41/1/054.
(189) Yamamoto, T.; Matsumura, A.; Nakai, K.; Shibata, Y.; Endo, K.; Sakurai, F.; Kishi, T.; Kumada, H.; Yamamoto, K.; Torii, Y. Current Clinical Results of the Tsukuba BNCT Trial. Appl. Radiat. Isot. 2004, 61 (5), 1089–1093. https://doi.org/10.1016/j.apradiso.2004.05.010.
(190) Chen, M.-F.; Chen, P.-T.; Hsieh, C.-C.; Wang, C.-C. Effect of Proton Therapy on Tumor Cell Killing and Immune Microenvironment for Hepatocellular Carcinoma. Cells 2023, 12 (2), 332. https://doi.org/10.3390/cells12020332.
(191) Asija, S.; Chatterjee, A.; Yadav, S.; Chekuri, G.; Karulkar, A.; Jaiswal, A. K.; Goda, J. S.; Purwar, R. Combinatorial Approaches to Effective Therapy in Glioblastoma (GBM): Current Status and What the Future Holds. Int. Rev. Immunol. 2022, 41 (6), 582–605. https://doi.org/10.1080/08830185.2022.2101647.
(192) Zhang, S.; Wang, J.; Kong, Z.; Sun, X.; He, Z.; Sun, B.; Luo, C.; Sun, J. Emerging Photodynamic Nanotherapeutics for Inducing Immunogenic Cell Death and Potentiating Cancer Immunotherapy. Biomaterials 2022, 282, 121433. https://doi.org/10.1016/j.biomaterials.2022.121433.
(193) Fifis, T.; Gamvrellis, A.; Crimeen-Irwin, B.; Pietersz, G. A.; Li, J.; Mottram, P. L.; McKenzie, I. F. C.; Plebanski, M. Size-Dependent Immunogenicity: Therapeutic and Protective Properties of Nano-Vaccines against Tumors1. J. Immunol. 2004, 173 (5), 3148–3154. https://doi.org/10.4049/jimmunol.173.5.3148.
(194) Tyrrell, Z. L.; Shen, Y.; Radosz, M. Fabrication of Micellar Nanoparticles for Drug Delivery through the Self-Assembly of Block Copolymers. Prog. Polym. Sci. 2010, 35 (9), 1128–1143. https://doi.org/10.1016/j.progpolymsci.2010.06.003.
(195) Hussain, Z.; Khan, S.; Imran, M.; Sohail, M.; Shah, S. W. A.; de Matas, M. PEGylation: A Promising Strategy to Overcome Challenges to Cancer-Targeted Nanomedicines: A Review of Challenges to Clinical Transition and Promising Resolution. Drug Deliv. Transl. Res. 2019, 9 (3), 721–734. https://doi.org/10.1007/s13346-019-00631-4.
(196) Florindo, H. F.; Pandit, S.; Lacerda, L.; Gonçalves, L. M. D.; Alpar, H. O.; Almeida, A. J. The Enhancement of the Immune Response against S. Equi Antigens through the Intranasal Administration of Poly-ɛ-Caprolactone-Based Nanoparticles. Biomaterials 2009, 30 (5), 879–891. https://doi.org/10.1016/j.biomaterials.2008.10.035.
(197) Zhao, W.; He, C.; Wang, H.; Su, B.; Sun, S.; Zhao, C. Improved Antifouling Property of Polyethersulfone Hollow Fiber Membranes Using Additive of Poly(Ethylene Glycol) Methyl Ether-b-Poly(Styrene) Copolymers. Ind. Eng. Chem. Res. 2011, 50 (6), 3295–3303. https://doi.org/10.1021/ie102251v.
(198) Xia, T.; Hao, W.; Shang, Y.; Xu, S.; Liu, H. Incorporation of Amphipathic Diblock Copolymer in Lipid Bilayer for Improving PH Responsiveness. Int. J. Polym. Sci. 2016, 2016, e5879428. https://doi.org/10.1155/2016/5879428.
(199) Yang, X.-L.; Luo, Y.-L.; Xu, F.; Chen, Y.-S. Thermosensitive MPEG-b-PA-g-PNIPAM Comb Block Copolymer Micelles: Effect of Hydrophilic Chain Length and Camptothecin Release Behavior. Pharm. Res. 2014, 31 (2), 291–304. https://doi.org/10.1007/s11095-013-1160-y.
(200) Kim, K. T.; Cornelissen, J. J. L. M.; Nolte, R. J. M.; van Hest, J. C. M. A Polymersome Nanoreactor with Controllable Permeability Induced by Stimuli-Responsive Block Copolymers. Adv. Mater. 2009, 21 (27), 2787–2791. https://doi.org/10.1002/adma.200900300.
(201) Qin, Y.; Sukul, V.; Pagakos, D.; Cui, C.; Jäkle, F. Preparation of Organoboron Block Copolymers via ATRP of Silicon and Boron-Functionalized Monomers. Macromolecules 2005, 38 (22), 8987–8990. https://doi.org/10.1021/ma051615p.
(202) Stubbs, E.; Laskowski, E.; Conor, P.; Heinze, D. A.; Karis, D.; Glogowski, E. M. Control of PH- and Temperature-Responsive Behavior of MPEG-b-PDMAEMA Copolymers through Polymer Composition. J. Macromol. Sci. Part A 2017, 54 (4), 228–235. https://doi.org/10.1080/10601325.2017.1282694.
(203) Dayananda, K.; Kim, M. S.; Kim, B. S.; Lee, D. S. Synthesis and Characterization of MPEG-b-PDPA Amphiphilic Block Copolymer via Atom Transfer Radical Polymerization and Its PH-Dependent Micellar Behavior. Macromol. Res. 2007, 15 (4), 385–391. https://doi.org/10.1007/BF03218803.
(204) Qin, S.; Saget, J.; Pyun, J.; Jia, S.; Kowalewski, T. Synthesis of Block, Statistical, and Gradient Copolymers from Octadecyl (Meth)Acrylates Using Atom Transfer Radical Polymerization. Macromolecules 2003, 36 (24), 8969–8977. https://doi.org/10.1021/ma0349985.
(205) Xin, Y.; Yuan, J. Schiff’s Base as a Stimuli-Responsive Linker in Polymer Chemistry. Polym. Chem. 2012, 3 (11), 3045–3055. https://doi.org/10.1039/C2PY20290E.
(206) Peng, J.; Chen, J.; Xie, F.; Bao, W.; Xu, H.; Wang, H.; Xu, Y.; Du, Z. Herceptin-Conjugated Paclitaxel Loaded PCL-PEG Worm-like Nanocrystal Micelles for the Combinatorial Treatment of HER2-Positive Breast Cancer. Biomaterials 2019, 222, 119420. https://doi.org/10.1016/j.biomaterials.2019.119420.
(207) Emami, F.; Banstola, A.; Vatanara, A.; Lee, S.; Kim, J. O.; Jeong, J.-H.; Yook, S. Doxorubicin and Anti-PD-L1 Antibody Conjugated Gold Nanoparticles for Colorectal Cancer Photochemotherapy. Mol. Pharm. 2019, 16 (3), 1184–1199. https://doi.org/10.1021/acs.molpharmaceut.8b01157.
(208) Di Tommaso, C.; Como, C.; Gurny, R.; Möller, M. Investigations on the Lyophilisation of MPEG–HexPLA Micelle Based Pharmaceutical Formulations. Eur. J. Pharm. Sci. 2010, 40 (1), 38–47. https://doi.org/10.1016/j.ejps.2010.02.006.
(209) Trimaille, T.; Mondon, K.; Gurny, R.; Möller, M. Novel Polymeric Micelles for Hydrophobic Drug Delivery Based on Biodegradable Poly(Hexyl-Substituted Lactides). Int. J. Pharm. 2006, 319 (1), 147–154. https://doi.org/10.1016/j.ijpharm.2006.03.036.
(210) Oh, K. T.; Bronich, T. K.; Kabanov, A. V. Micellar Formulations for Drug Delivery Based on Mixtures of Hydrophobic and Hydrophilic Pluronic® Block Copolymers. J. Controlled Release 2004, 94 (2), 411–422. https://doi.org/10.1016/j.jconrel.2003.10.018.
(211) Kwon, G. S.; Naito, M.; Kataoka, K.; Yokoyama, M.; Sakurai, Y.; Okano, T. Block Copolymer Micelles as Vehicles for Hydrophobic Drugs. Colloids Surf. B Biointerfaces 1994, 2 (4), 429–434. https://doi.org/10.1016/0927-7765(94)80007-3.
(212) IgG (Total) Rat Uncoated ELISA Kit with Plates - Invitrogen. https://www.thermofisher.com/elisa/product/IgG-Total-Rat-Uncoated-ELISA-Kit-with-Plates/88-50490-22?fbclid=IwAR1hxu2Pmp_gMFA1QTFsaaBaROALLf-j-68rFIvgc_gp5YLEa-2GVTx5GFM (accessed 2023-05-18).
(213) Zalba, S.; Contreras-Sandoval, A. M.; Martisova, E.; Debets, R.; Smerdou, C.; Garrido, M. J. Quantification of Pharmacokinetic Profiles of PD-1/PD-L1 Antibodies by Validated ELISAs. Pharmaceutics 2020, 12 (6), 595. https://doi.org/10.3390/pharmaceutics12060595.
(214) Chiang, C.-W.; Chien, Y.-C.; Yu, W.-J.; Ho, C.-Y.; Wang, C.-Y.; Wang, T.-W.; Chiang, C.-S.; Keng, P.-Y. Polymer-Coated Nanoparticles for Therapeutic and Diagnostic Non-10B Enriched Polymer-Coated Boron Carbon Oxynitride (BCNO) Nanoparticles as Potent BNCT Drug. Nanomaterials 2021, 11 (11), 2936. https://doi.org/10.3390/nano11112936.
(215) Akkapeddi, P.; Azizi, S.-A.; M. Freedy, A.; D. Cal, P. M. S.; P. Gois, P. M.; L. Bernardes, G. J. Construction of Homogeneous Antibody–Drug Conjugates Using Site-Selective Protein Chemistry. Chem. Sci. 2016, 7 (5), 2954–2963. https://doi.org/10.1039/C6SC00170J.
(216) Miozzari, G. F.; Niederberger, P.; Hu¨tter, R. Permeabilization of Microorganisms by Triton X-100. Anal. Biochem. 1978, 90 (1), 220–233. https://doi.org/10.1016/0003-2697(78)90026-X.
(217) Granada, J. R.; Dawidowski, J.; Mayer, R. E.; Gillette, V. H. Thermal Neutron Cross Section and Transport Properties of Polyethylene. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 1987, 261 (3), 573–578. https://doi.org/10.1016/0168-9002(87)90370-6.
(218) Ogawara, R.; Kusumoto, T.; Konishi, T.; Hamano, T.; Kodaira, S. Polyethylene Moderator Optimized for Increasing Thermal Neutron Flux in the NASBEE Accelerator-Based Neutron Field. Radiat. Meas. 2020, 137, 106358. https://doi.org/10.1016/j.radmeas.2020.106358.
(219) Rataj, J.; Suk, P.; Bílý, T.; Štefánik, M.; Frýbort, J. Characterisation of Neutron Field in the Polyethylene Neutron Irradiator. Appl. Radiat. Isot. 2021, 168, 109529. https://doi.org/10.1016/j.apradiso.2020.109529.
(220) Ferreira, T. H.; Miranda, M. C.; Rocha, Z.; Leal, A. S.; Gomes, D. A.; Sousa, E. M. B. An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy. Nanomaterials 2017, 7 (4), 82. https://doi.org/10.3390/nano7040082.
(221) Faustino-Rocha, A.; Oliveira, P. A.; Pinho-Oliveira, J.; Teixeira-Guedes, C.; Soares-Maia, R.; da Costa, R. G.; Colaço, B.; Pires, M. J.; Colaço, J.; Ferreira, R.; Ginja, M. Estimation of Rat Mammary Tumor Volume Using Caliper and Ultrasonography Measurements. Lab Anim. 2013, 42 (6), 217–224. https://doi.org/10.1038/laban.254.
(222) Kim, A.; Suzuki, M.; Matsumoto, Y.; Fukumitsu, N.; Nagasaki, Y. Non-Isotope Enriched Phenylboronic Acid-Decorated Dual-Functional Nano-Assembles for an Actively Targeting BNCT Drug. Biomaterials 2021, 268, 120551. https://doi.org/10.1016/j.biomaterials.2020.120551.
(223) Sayson, L. V.; Ortiz, D. M.; Lee, H. J.; Kim, M.; Custodio, R. J. P.; Yun, J.; Lee, C. H.; Lee, Y. S.; Cha, H. J.; Cheong, J. H.; Kim, H. J. Deletion of Cryab Increases the Vulnerability of Mice to the Addiction-like Effects of the Cannabinoid JWH-018 via Upregulation of Striatal NF-ΚB Expression. Front. Pharmacol. 2023, 14.
(224) Li, X.; He, C.; Matyjaszewski, K.; Pan, X. ATRP of MIDA Boronate-Containing Monomers as a Tool for Synthesizing Linear Phenolic and Functionalized Polymers. ACS Macro Lett. 2021, 10 (10), 1327–1332. https://doi.org/10.1021/acsmacrolett.1c00592.
(225) Bhat, K. L.; Markham, G. D.; Larkin, J. D.; Bock, C. W. Thermodynamics of Boroxine Formation from the Aliphatic Boronic Acid Monomers R–B(OH)2 (R = H, H3C, H2N, HO, and F): A Computational Investigation. J. Phys. Chem. A 2011, 115 (26), 7785–7793. https://doi.org/10.1021/jp202409m.
(226) Braunecker, W. A.; Matyjaszewski, K. Controlled/Living Radical Polymerization: Features, Developments, and Perspectives. Prog. Polym. Sci. 2007, 32 (1), 93–146. https://doi.org/10.1016/j.progpolymsci.2006.11.002.
(227) Man, Y.; Peng, G.; Lv, X.; Liang, Y.; Wang, Y.; Chen, Y.; Deng, Y. Microchip-Grafted P(NIPAAm-Co-VPBA) with Thermoresponsive Boronate Affinity for Capture–Release of Cis-Diol Biomolecules. Chromatographia 2015, 78 (3–4), 157–162. https://doi.org/10.1007/s10337-014-2821-7.
(228) Cambre, J. N.; Roy, D.; Gondi, S. R.; Sumerlin, B. S. Facile Strategy to Well-Defined Water-Soluble Boronic Acid (Co)Polymers. J. Am. Chem. Soc. 2007, 129 (34), 10348–10349. https://doi.org/10.1021/ja074239s.
(229) Abbasian, M.; Bonab, S. E. S.; Shoaeifar, P.; Entezami, A. A. Synthesis and Characterization of Amphiphilic Methoxypoly(Ethylene Glycol)-Polystyrene Diblock Copolymer by ATRP and NMRP Techniques. J. Elastomers Plast. 2012, 44 (2), 205–220. https://doi.org/10.1177/0095244311420537.
(230) Ryu, J.-H.; Jiwpanich, S.; Chacko, R.; Bickerton, S.; Thayumanavan, S. Surface-Functionalizable Polymer Nanogels with Facile Hydrophobic Guest Encapsulation Capabilities. J. Am. Chem. Soc. 2010, 132 (24), 8246–8247. https://doi.org/10.1021/ja102316a.
(231) Guo, Q.; Zhang, T.; An, J.; Wu, Z.; Zhao, Y.; Dai, X.; Zhang, X.; Li, C. Block versus Random Amphiphilic Glycopolymer Nanopaticles as Glucose-Responsive Vehicles. Biomacromolecules 2015, 16 (10), 3345–3356. https://doi.org/10.1021/acs.biomac.5b01020.
(232) Aitchison, T. J.; Ginic-Markovic, M.; Clarke, S.; Valiyaveettil, S. Polystyrene-Block-Poly(Methyl Methacrylate): Initiation Issues with Block Copolymer Formation Using ARGET ATRP. Macromol. Chem. Phys. 2012, 213 (1), 79–86. https://doi.org/10.1002/macp.201100478.
(233) Miller, T.; Rachel, R.; Besheer, A.; Uezguen, S.; Weigandt, M.; Goepferich, A. Comparative Investigations on In Vitro Serum Stability of Polymeric Micelle Formulations. Pharm. Res. 2012, 29 (2), 448–459. https://doi.org/10.1007/s11095-011-0555-x.
(234) Souza, T. G. F.; Ciminelli, V. S. T.; Mohallem, N. D. S. A Comparison of TEM and DLS Methods to Characterize Size Distribution of Ceramic Nanoparticles. J. Phys. Conf. Ser. 2016, 733 (1), 012039. https://doi.org/10.1088/1742-6596/733/1/012039.
(235) Phetphoung, T.; Malla, A.; Rattanapisit, K.; Pisuttinusart, N.; Damrongyot, N.; Joyjamras, K.; Chanvorachote, P.; Phakham, T.; Wongtangprasert, T.; Strasser, R.; Chaotham, C.; Phoolcharoen, W. Expression of Plant-Produced Anti-PD-L1 Antibody with Anoikis Sensitizing Activity in Human Lung Cancer Cells via., Suppression on Epithelial-Mesenchymal Transition. PLOS ONE 2022, 17 (11), e0274737. https://doi.org/10.1371/journal.pone.0274737.
(236) Becker, J. C.; Houben, R.; Schrama, D.; Voigt, H.; Ugurel, S.; Reisfeld, R. A. Mouse Models for Melanoma: A Personal Perspective. Exp. Dermatol. 2010, 19 (2), 157–164. https://doi.org/10.1111/j.1600-0625.2009.00986.x.
(237) Zaboronok, A.; Khaptakhanova, P.; Uspenskii, S.; Bekarevich, R.; Mechetina, L.; Volkova, O.; Mathis, B. J.; Kanygin, V.; Ishikawa, E.; Kasatova, A.; Kasatov, D.; Shchudlo, I.; Sycheva, T.; Taskaev, S.; Matsumura, A. Polymer-Stabilized Elemental Boron Nanoparticles for Boron Neutron Capture Therapy: Initial Irradiation Experiments. Pharmaceutics 2022, 14 (4), 761. https://doi.org/10.3390/pharmaceutics14040761.
(238) Ha, T.-J.; Im, D.-K.; Kim, S.-M.; Lee, J.-D. 1,2-Diphenyl-o-Carborane and Its Chromium Derivatives: Synthesis, Characterization, X-Ray Structural Studies, and Biological Evaluations. Molecules 2023, 28 (13), 4942. https://doi.org/10.3390/molecules28134942.
(239) Liberman, S. J.; Dagrosa, A.; Jiménez Rebagliati, R. A.; Bonomi, M. R.; Roth, B. M.; Turjanski, L.; Castiglia, S. I.; González, S. J.; Menéndez, P. R.; Cabrini, R.; Roberti, M. J.; Batistoni, D. A. Biodistribution Studies of Boronophenylalanine–Fructose in Melanoma and Brain Tumor Patients in Argentina. Appl. Radiat. Isot. 2004, 61 (5), 1095–1100. https://doi.org/10.1016/j.apradiso.2004.05.013.
(240) Coderre, J. A.; Chanana, A. D.; Joel, D. D.; Elowitz, E. H.; Micca, P. L.; Nawrocky, M. M.; Chadha, M.; Gebbers, J.-O.; Shady, M.; Peress, N. S.; Slatkin, D. N. Biodistribution of Boronophenylalanine in Patients with Glioblastoma Multiforme: Boron Concentration Correlates with Tumor Cellularity. Radiat. Res. 1998, 149 (2), 163–170. https://doi.org/10.2307/3579926.
(241) Detta, A.; Cruickshank, G. S. L-Amino Acid Transporter-1 and Boronophenylalanine-Based Boron Neutron Capture Therapy of Human Brain Tumors. Cancer Res. 2009, 69 (5), 2126–2132. https://doi.org/10.1158/0008-5472.CAN-08-2345.
(242) Fukuda, H.; Honda, C.; Wadabayashi, N.; Kobayashi, T.; Yoshino, K.; Hiratsuka, J.; Takahashi, J.; Akaizawa, T.; Abe, Y.; Ichihashi, M.; Mishima, Y. Pharmacokinetics of 10B-p-Boronophenylalanine in Tumours, Skin and Blood of Melanoma Patients: A Study of Boron Neutron Capture Therapy for Malignant Melanoma. Melanoma Res. 1999, 9 (1), 75.
(243) Rösler, A.; Vandermeulen, G. W. M.; Klok, H.-A. Advanced Drug Delivery Devices via Self-Assembly of Amphiphilic Block Copolymers. Adv. Drug Deliv. Rev. 2012, 64, 270–279. https://doi.org/10.1016/j.addr.2012.09.026.
(244) Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: A Review. J. Controlled Release 2000, 65 (1), 271–284. https://doi.org/10.1016/S0168-3659(99)00248-5.
(245) Phoenix, B.; Green, S.; Hill, M. A.; Jones, B.; Mill, A.; Stevens, D. L. Do the Various Radiations Present in BNCT Act Synergistically? Cell Survival Experiments in Mixed Alpha-Particle and Gamma-Ray Fields. Appl. Radiat. Isot. Data Instrum. Methods Use Agric. Ind. Med. 2009, 67 (7-8 Suppl), S318-320. https://doi.org/10.1016/j.apradiso.2009.03.097.
(246) Leach, J. K.; Van Tuyle, G.; Lin, P.-S.; Schmidt-Ullrich, R.; Mikkelsen, R. B. Ionizing Radiation-Induced, Mitochondria-Dependent Generation of Reactive Oxygen/Nitrogen1. Cancer Res. 2001, 61 (10), 3894–3901.
(247) Nordberg, J.; Arnér, E. S. J. Reactive Oxygen Species, Antioxidants, and the Mammalian Thioredoxin System1 1This Review Is Based on the Licentiate Thesis “Thioredoxin Reductase—Interactions with the Redox Active Compounds 1-Chloro-2,4-Dinitrobenzene and Lipoic Acid” by Jonas Nordberg, 2001, Karolinska Institute, Stockholm, ISBN 91-631-1064-4. Free Radic. Biol. Med. 2001, 31 (11), 1287–1312. https://doi.org/10.1016/S0891-5849(01)00724-9.
(248) Gao, Z.; Horiguchi, Y.; Nakai, K.; Matsumura, A.; Suzuki, M.; Ono, K.; Nagasaki, Y. Use of Boron Cluster-Containing Redox Nanoparticles with ROS Scavenging Ability in Boron Neutron Capture Therapy to Achieve High Therapeutic Efficiency and Low Adverse Effects. Biomaterials 2016, 104, 201–212. https://doi.org/10.1016/j.biomaterials.2016.06.046.
(249) Nikitaki, Z.; Velalopoulou, A.; Zanni, V.; Tremi, I.; Havaki, S.; Kokkoris, M.; Gorgoulis, V. G.; Koumenis, C.; Georgakilas, A. G. Key Biological Mechanisms Involved in High-LET Radiation Therapies with a Focus on DNA Damage and Repair. Expert Rev. Mol. Med. 2022, 24, e15. https://doi.org/10.1017/erm.2022.6.
(250) Alamón, C.; Dávila, B.; Cerecetto, H.; Couto, M. Exploring the Cell Death Mechanisms of Cytotoxic [1,2,3]Triazolylcarborane Lead Compounds against U87 MG Human Glioblastoma Cells. Chem. Biol. Drug Des. 2023, 101 (6), 1435–1445. https://doi.org/10.1111/cbdd.14208.
(251) Maeda, H.; Bharate, G. Y.; Daruwalla, J. Polymeric Drugs for Efficient Tumor-Targeted Drug Delivery Based on EPR-Effect. Eur. J. Pharm. Biopharm. 2009, 71 (3), 409–419. https://doi.org/10.1016/j.ejpb.2008.11.010.
(252) Kwon, G.; Suwa, S.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Kataoka, K. Enhanced Tumor Accumulation and Prolonged Circulation Times of Micelle-Forming Poly (Ethylene Oxide-Aspartate) Block Copolymer-Adriamycin Conjugates. J. Controlled Release 1994, 29 (1), 17–23. https://doi.org/10.1016/0168-3659(94)90118-X.
(253) Alexis, F.; Pridgen, E.; Molnar, L. K.; Farokhzad, O. C. Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. Mol. Pharm. 2008, 5 (4), 505–515. https://doi.org/10.1021/mp800051m.
(254) Gabizon, A.; Goren, D.; Horowitz, A. T.; Tzemach, D.; Lossos, A.; Siegal, T. Long-Circulating Liposomes for Drug Delivery in Cancer Therapy: A Review of Biodistribution Studies in Tumor-Bearing Animals. Adv. Drug Deliv. Rev. 1997, 24 (2), 337–344. https://doi.org/10.1016/S0169-409X(96)00476-0.
(255) Anselmo, A. C.; Gupta, V.; Zern, B. J.; Pan, D.; Zakrewsky, M.; Muzykantov, V.; Mitragotri, S. Delivering Nanoparticles to Lungs While Avoiding Liver and Spleen through Adsorption on Red Blood Cells. ACS Nano 2013, 7 (12), 11129–11137. https://doi.org/10.1021/nn404853z.
(256) Steinhauser, I.; Spänkuch, B.; Strebhardt, K.; Langer, K. Trastuzumab-Modified Nanoparticles: Optimisation of Preparation and Uptake in Cancer Cells. Biomaterials 2006, 27 (28), 4975–4983. https://doi.org/10.1016/j.biomaterials.2006.05.016.
(257) M. Cardoso, M.; N. Peca, I.; C. A. Roque, A. Antibody-Conjugated Nanoparticles for Therapeutic Applications. Curr. Med. Chem. 2012, 19 (19), 3103–3127. https://doi.org/10.2174/092986712800784667.
(258) Salahpour Anarjan, F. Active Targeting Drug Delivery Nanocarriers: Ligands. Nano-Struct. Nano-Objects 2019, 19, 100370. https://doi.org/10.1016/j.nanoso.2019.100370.
(259) Xiao, W.; Wang, Y.; Zhang, H.; Liu, Y.; Xie, R.; He, X.; Zhou, Y.; Liang, L.; Gao, H. The Protein Corona Hampers the Transcytosis of Transferrin-Modified Nanoparticles through Blood–Brain Barrier and Attenuates Their Targeting Ability to Brain Tumor. Biomaterials 2021, 274, 120888. https://doi.org/10.1016/j.biomaterials.2021.120888.
(260) Liu, J.; Shi, J.; Nie, W.; Wang, S.; Liu, G.; Cai, K. Recent Progress in the Development of Multifunctional Nanoplatform for Precise Tumor Phototherapy. Adv. Healthc. Mater. 2021, 10 (1), 2001207. https://doi.org/10.1002/adhm.202001207.
(261) Demidenko, E. Three Endpoints of in Vivo Tumour Radiobiology and Their Statistical Estimation. Int. J. Radiat. Biol. 2010, 86 (2), 164–173. https://doi.org/10.3109/09553000903419304.
(262) Henriksson, R.; Capala, J.; Michanek, A.; Lindahl, S.-Å.; Salford, L. G.; Franzén, L.; Blomquist, E.; Westlin, J.-E.; Bergenheim, A. T. Boron Neutron Capture Therapy (BNCT) for Glioblastoma Multiforme: A Phase II Study Evaluating a Prolonged High-Dose of Boronophenylalanine (BPA). Radiother. Oncol. 2008, 88 (2), 183–191. https://doi.org/10.1016/j.radonc.2006.04.015.
(263) Zhong, Y.; Meng, F.; Deng, C.; Zhong, Z. Ligand-Directed Active Tumor-Targeting Polymeric Nanoparticles for Cancer Chemotherapy. Biomacromolecules 2014, 15 (6), 1955–1969. https://doi.org/10.1021/bm5003009.
(264) Haeri, A.; Zalba, S.; ten Hagen, T. L. M.; Dadashzadeh, S.; Koning, G. A. EGFR Targeted Thermosensitive Liposomes: A Novel Multifunctional Platform for Simultaneous Tumor Targeted and Stimulus Responsive Drug Delivery. Colloids Surf. B Biointerfaces 2016, 146, 657–669. https://doi.org/10.1016/j.colsurfb.2016.06.012.
(265) Lee, D.; Mi Lee, Y.; Kim, J.; Kyu Lee, M.; Jong Kim, W. Enhanced Tumor-Targeted Gene Delivery by Bioreducible Polyethylenimine Tethering EGFR Divalent Ligands. Biomater. Sci. 2015, 3 (7), 1096–1104. https://doi.org/10.1039/C5BM00004A.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *