帳號:guest(3.12.71.134)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳楊晰
作者(外文):Chen, Yang-Hsi
論文名稱(中文):掃描探針方法研究分子拉伸對共軛高分子導電性的影響
論文名稱(外文):Study of the Effect of Molecular Stretching on the Conductivity of Conjugated Polymers Using Scanning Probe Techniques
指導教授(中文):楊長謀
指導教授(外文):Yang, Arnold C. M.
口試委員(中文):鄭智嘉
官振豐
口試委員(外文):Cheng, Chi-Chia
Kuan, Zhen-Feng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:110031604
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:85
中文關鍵詞:共軛高分子光電高分子分子應力
外文關鍵詞:conjugatedpolymermolecularstress
相關次數:
  • 推薦推薦:0
  • 點閱點閱:5
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近幾年的研究顯示,共軛高分子薄膜在經過強烈單一方向拉伸後,共軛聚合物主鏈的扭轉運動會受限,這能夠抑制光激發電子態的自我捕獲現象( self-trapping ),導致材料光電量子效率顯著提升[1~4];我們認為此電子態與聚合物鏈的機械運動的耦合行為,很可能會影響到聚合物中電子激發態的導電性。因此在本實驗中,我們採用了光激發分子束縛方法,選擇了10% 聚苯乙烯 PS(polystryene)和共軛聚合物P3HT(poly[3-hexylthiophene-2,5-diyl), regioregular )的混合物製成薄膜。且利用非導電PS薄膜的在強力拉伸下會產生頸縮現象的特性,在雙層膜結構下對混摻PS的P3HT薄膜進行局部變形區域的拉伸,使其達到約400%的工程應變,並探討機械拉伸對導電性的影響。
為了方便觀察樣品電性,我們在P3HT薄膜上事先掺雜了5%的碘,並經由四點探針測量證實摻雜後樣品導電性顯著提高。樣品經過機械拉伸後,我們使用 SPM tuna( Peakforce Tunneling AFM)在固定偏壓下對P3HT膜進行單點電流的測量。發現局部變形區域內的導電性比變形區域外高出1.4~1.6倍,相差約為α~3%。這一結果與變形區增加的光電效率行為一致。接著分析在測量pf-tuna 時改變電極的施加方式使電壓以相對機械拉伸方向垂直或平行流經樣品來使電流以不同方向到達纖化區的結果來分析形變方向與薄膜表面電子運動方向之間的關聯性,以解釋對於拉伸方向而言不同電流流向時得到的訊號強度差異;並以改變樣品厚度的方式來觀察厚度效應對於樣品空間電荷激發程度所造成的影響。
Recent studies have shown that after undergoing intense uniaxial stretching, the twisting motion of the main chains in conjugated polymer films is restricted, which can suppress the phenomenon of self-trapping of photoexcited electronic states. This leads to a significant enhancement in the photoelectric quantum efficiency of the materials[1~4]. We hypothesize that the coupling behavior between this electronic state and the mechanical motion of the polymer chains could likely affect the conductivity of the excited electronic states within the polymer. Therefore, in this experiment, we employed the method of photoexcited molecular confinement to fabricate thin films from a mixture of 10% polystyrene (PS) and the conjugated polymer P3HT (poly[3-hexylthiophene-2,5-diyl], regioregular). Utilizing the characteristic necking phenomenon of non-conductive PS films under strong stretching, we applied localized deformation to the P3HT films mixed with PS in a bilayer structure, achieving approximately 400% engineering strain, to investigate the impact of mechanical stretching on conductivity.

To facilitate the observation of the electrical properties of the samples, we pre-doped the P3HT films with 5% iodine, and the enhanced conductivity of the doped samples was confirmed through four-point probe measurements. After mechanical stretching, we used SPM TUNA (PeakForce Tunneling AFM) to measure the single-point current of the P3HT film under a fixed bias voltage. It was found that the conductivity within the locally deformed area was 1.4~1.6 times higher than outside the deformation area, with a difference of approximately α~3%. This result is consistent with the behavior of increased photoelectric efficiency in the deformed area. Further analysis was conducted on the effect of changing the application mode of the electrodes during pf-TUNA measurements, altering the voltage direction to be perpendicular or parallel to the mechanical stretching direction across the sample, to analyze the relationship between the deformation direction and the direction of electron movement on the film surface. This was done to explain the difference in signal strength observed with different current flow directions relative to the stretching direction. Additionally, the effect of sample thickness on the degree of space charge excitation was observed by altering the thickness of the sample.
摘要
Abstract
致謝
目錄
圖目錄
第 1 章 第一章 簡介 1
第 2 章 第二章 文獻回顧 3
2-1高分子薄膜機械性質及應變機制 3
2-1-1局部形變(local deformation) 3
2-1-2 彈性形變區 4
2-1-3 纖化區(craze)介紹 5
2-1-4 微頸縮機制介紹 10
2-2 共軛高分子 11
2-2-1 共軛高分子P3HT 13
2-2-2 共軛高分子拉伸影響放光效率 16
2-2-3 共軛高分子雙層系統拉伸 17
2-3 碘摻雜共軛高分子薄膜 18
2-3-1 共軛高分子碘摻雜機制 19
2-3-2 摻雜程度(doping level)計算 20
2-3-3 摻雜程度對共軛高分子薄膜電導影響 21
2-4高分子薄膜空間電荷限制電流(space charge limited currnt, SCLC)計算 21
2-4-1 平行板薄膜SCLC計算 22
第 3 章 第三章 實驗方法 24
3-1 實驗材料 24
3-1-1 高分子材料 24
3-1-2 碘摻雜材料 25
3-1-3 有機溶劑 25
3-1-4 實驗用基材 26
3-1-5 銅網熱處理 26
3-2 試片製備 27
3-2-1 主要機械拉伸層2MPS 27
3-2-2 P3HT共軛高分子薄膜層 27
3-2-3 P3HT共軛高分子碘摻雜 28
3-3 實驗方法 30
3-3-1 銅網拉伸實驗 30
3-3-2 peakforce tuna 測量附著電極 31
3-4 儀器介紹 31
3-4-1 光學顯微鏡 31
3-4-2 原子力顯微鏡 32
3-4-3 peakforce tunneling AFM模式 34
3-4-4 螢光光譜儀 36
第 4 章 第四章 結果與討論 38
4-1高濃度共軛高分子薄膜經經機械拉伸放光行為 38
4-1-1玻璃態高分子薄膜經拉伸纖化區的產生與成長 38
4-1-2溶劑對共軛高分子薄膜表面形貌影響 39
4-1-3雙層薄膜經機械拉伸後表面形貌 40
4-1-4雙層薄膜經機械拉伸後光致發光之變化 41
4-2 碘摻雜於共軛高分子薄膜行為 44
4-2-1 高分子厚膜之碘摻雜程度測量 44
4-2-2 薄膜摻雜與sims結果 45
4-3 peakforce tuna 樣品表面電性分析 47
4-3-1 共軛高分子P3HT雙層薄膜經機械拉伸後之電性變化 47
4-3-2 共軛高分子P3HT雙層薄膜經機械拉伸後tuna 電流強度與薄膜厚度之關連性 56
4-3-3 peak force tuna模式下觀察到之電流圖出現低訊號點之研究 57
4-3-4 共軛高分子P3HT雙層薄膜經機械拉伸後tuna 電流強度與薄膜厚度之關連性 59
4-4 使用SCLC計算樣品載子遷移率 71
4-4-1 SCLC計算 71
4-4-2 遷移率與厚度效應 75
第五章 結論 78
第六章 參考文獻 80

1. K. P. Tung, C. C. Chen; P. Lee, Y. W. Liu, T. M. Hong, K. C. Hwang, J. H. Hsu, J. D. White, A. C. M. Yang, ACS Nano 2011, 5, 7296-7302.
2. P. T. Chen, Y. W. Yang, G. Reiter, A. C. M. Yang, Polymer 2020, 204, 122753.
3. K. S. Shih, C. C. Chen, P.-T. Chen, Y. W. Yang, J. D. White, Y.-M. Chang, A. C. M. Yang, ACS Photonics 2015, 2, 33-42.
4. P. Lee, W. C. Li, B. J. Chen, C.-W. Yang, C. C. Chang, I. Botiz, G. Reiter, T. L. Lin, J. Tang, A. C.M. Yang, ACS Nano 2013, 7, 6658-6666.
5. I. M. Ward, Mechanical Properties of Solid polymers, 2nd ed. (john Wiley&Sons Press: New York 1983).
6. E. J. Kramer, L. L. Berger, Adv. Polym. Sci. 1990, 91/92, 1.
7. J. H. Lin, A. C. M. Yang, Macromolecules 2001,34, 3698.
8. E. J. Kramer, Adv. Polym. Sci. 1983 52/53, 1
9. A. N. Gent, In The Mechanics of fracture, AMD; (F. Erdogon, ed., ASME: New York 19, 55 1976).
10. A. C. M. Yang, R. C. Wang, M. S. Kunz, J. Polym. Sci., Polym. Phys. Ed, 1996, 34, 1141.
11. H. H. Kaush, Polymer Fracture, (Spring-Verlag: Heidel-berg, Germany 1978).
12. 蕭志郡, 清華大學材料系碩士論文, 奈米碳管表面接枝苯乙烯聚合體在聚苯乙烯薄膜內之奈米微觀機械行為研究 (2004).
13. C. H. Lin; A. C.-M. Yang, J. Mater. Sci. 2000, 35, 4231.
14. E. J. Kramer, Adv. Polym. Sci. 1983, 52/53, 1.
15. M. Kawagoe, M. Kitagawa, J. Polym. Sci.Polym. Phys. 1981, 19, 1423.
16. R. J. Fields; M. F. Ashby, Philos. Mag. 1976, 33, 33
17. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B, 1997, 101, 9463.
18. M. C. Schlamp, X. Peng, A. P. Alivisatos, J. Appl. Phys. 1997, 82, 1.
19. A. C.-M. Yang, E. J. Kramer, J. Polym. Sci., Polym. Phys. Ed. 1985, 23,1353.
20. A. C.-M. Yang, E. J. Kramer, C. C. Kuo, S. L. Phoenix,
21. A. C.-M. Yang, M. S. Kunz, J. A. Logan, Macromolecules 1993, 26, 1767.
22. J.–H. Lin, A. C.–M. Yang, Macromolecules 34, 3698 (2001)
23. I. M. Ward, Mechanical Properties of Solid polymers, 2nd ed. (john Wiley&Sons Press: New York 1983).
24. E. Collini, G. D. Scholes, Science 2009, 323, 369-373.
25. T. M. Figueira-Duarte, P. G. Del Rosso, R. Trattnig, S. Sax, E. J. W. List, K. Müllen, Adv. Mater. 2010 22, 990-993.
26. L. J. Rothberg, M. Yan, S. Son, M. E. Galvin, E. W. Kwock, T. M. Miller, H. E. Katz, R. C. Haddon, F. Papadimitrakopoulos, Synth. Met. 1996 78, 231-236.
27. M. Yan, L. J. Rothberg, E. W. Kwock, T. M. Miller, Phys. Rev. Lett. 1995 75, 1992-1995.
28. G. He, Y. Li, J. Liu, Y. Yang, Appl. Phys. Lett. 2002 80, 4247-4249.
29. K. M. Nimith, M. N. Satyanarayan, G. Umesh, Opt. Mater. 2018 80, 143-148.
30. T. M. Swager, Acc. Chem. Res. 2008 41, 1181-1189.
31. Y. H. Liu, C. C. Huang, C. C. Cheng, A. C. M. Yang, Mater. Chem. Phys. 2022, 277, 125505.
32. J. W. P. Lin, L. P. J. Dudek, Polym. Sci., Polym. Chem. Ed. 1980, 18, 2869.
33. K. Y. Jen, G. G. Miller, R. L. J. Elsenbaumer, Chem. Soc.,Chem Commum. 1986, 17, 1346.
34. D. L. Elsenbaumer, K. Y. Jen, R. Oboodi, Synth. Met. 1986, 15, 169.
35. V. V. Kislyuk, O. P. Dimitriev, A. A. Pud, J. Lautru, I. Ledoux-Rak, J. Phys.: Conf. Ser. 2011, 286, 012009.
36. T. Adachi, J. Brazard, R. J. Ono, B. Hanson, M. C. Traub, Z. Q. Wu, Z. Li, J. C. Bolinger, V. Ganesan, C. W. Bielawski, D. A. V. Bout, P. F. Barbara, J. Phys. Chem. Lett. 2011, 2, 12, 1400–1404
37. 童冠博, 清華大學材料系碩士論文, 奈米塑性形變引致共軛高分子單分子發光之重大增益現象與研究 (2008).
38. 張智鴻, 清華大學材料系碩士論文, 共軛高分子P3HT分子拉伸與光電效率提升之研究: 局部形變和薄膜除潤 (2012).
39. 魯宣, 清華大學材料系碩士論文, 抑制自縛增進高分子光電量子效率以及介面電場量子點激發電荷之交互作用 (2022)
40. G. Reiiter, Langmuir 1993, 9, 1344.
41. Neamen, Donald A. Semiconductor Physics and Devices: Basic Principles (3rd ed.). McGraw-Hill Higher Education. 2003.
42. Eunhee Lim, Kelly A. Peterson, Gregory M. Su, and Michael L.Chabinyc, Chem. Mater. 2018, 30, 3, 998–1010
43. Sota UKAI, Hiroshi ITO, Kazuhiro MARUMOTO and Shin-ichi KURODA, Journal of the Physical Society of JapanVol. 74, No. 12, December, 2005, pp. 3314–3319
44. Turley, Jim. The Essential Guide to Semiconductors. Prentice Hall PTR. 2002
45. Harold O. Lee III1 and Sam-Shajing Sun Materials Science, 5(3): 479–493
46. M.T. Loponen , T. Taka, J. Laakso, K. Väkiparta , K. Suuronen, P. Valkeinen, J.-E. Österholm, Synthetic Metals, Volume 41, Issues 1–2, 30 April 1991, Pages 479-484
47. R. Paschotta, article on "Doping Concentration" in the RP Photonics Encyclopedia, retrieved 2024-03-31
48. P. Pingel; R. Schwarzl; D. Neher, Appl. Phys. Lett. 100, 143303(2012)
49. Zuliang Zhuo, Fujun Zhang, Jian Wang, Jin Wang, Xiaowei Xu, Zheng Xu, Yongsheng Wang, and Weihua Tang, Solid-State ElectronicsVolume 63, Issue 1, September 2011, Pages 83-88
50. Grinberg, Anatoly A., et al. "Space-charge-limited current in a film." IEEE Transactions on Electron Devices 36.6 (1989): 1162-1170.
51. Geoghegan, Mark, and Georges Hadziioannou. Polymer electronics. Vol. 22. Oxford Master Physics, 2013.
52. R. J. Umstattd; C. G. Carr; C. L. Frenzen; J. W. Luginsland; Y. Y. Lau, Am. J. Phys. 73, 160–163 (2005)
53. Obadiah G. Reid, Keiko Munechika, and David S. Ginger*Nano Lett. 2008, 8, 6, 1602–1609Publication Date:May 1, 2008
54. Chen, Si. Dielectric constant measurement of P3HT, polystyrene, and polyethylene. Diss. Faculty of Science and Engineering, 2017.
55. Jason A Röhr et al 2018 J. Phys.: Condens. Matter 30 105901
56. Multimode SPM instruction manual ver. 4.31, Digital Instruments, Veeco Metrology Group.
57. 林鶴南, 李龍正, 劉克迅, 原子力顯微鏡及其在半導體研究上的應用,科儀新知 17, 13 (1996)
58. 汪建民主編, 材料分析,中國材料科學學會 (1998)
59. Hanlin Hu , Kui Zhao , Nikhil Fernandes , Pierre Boufflet , James H. Bannock , Liyang Yu , John C. de Mello , Natalie Stingelin , Martin Heeneyc, Emmanuel P. Giannelis and Aram Amassian , J. Mater. Chem. C, 2015, 3, 7394-7404
60. "Solubility in the Coatings Industry", Skand. Tidskr. Färg och Lack, Vol. 17, Nº 4,1971, pp. 69-77
61. 危險化學品安全技術全書.第一卷/張海峯主編.—2版.北京;化學工業出版社,2007.6 ISBN 978-7-122-00165-8
62. Rossberg, Manfred; Lendle, Wilhelm; Pfleiderer, Gerhard; Tögel, Adolf; Dreher, Eberhard-Ludwig; Langer, Ernst; Rassaerts, Heinz; Kleinschmidt, Peter; Strack, Heinz; Cook, Richard; Beck, Uwe; Lipper, Karl-August; Torkelson, Theodore R.; Löser, Eckhard; Beutel, Klaus K.; Mann, Trevor. Chlorinated Hydrocarbons. Ullmann's Encyclopedia of Industrial Chemistry. 2006.
63. Haynes, William M. CRC Handbook of Chemistry and Physics 92nd. CRC Press. 2011.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *