帳號:guest(3.147.66.250)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李杰恩
作者(外文):Lee, Jie-En
論文名稱(中文):離子照射對聚二甲基矽氧烷的表面性質、質傳及紫外光譜之影響
論文名稱(外文):The Effect of Ion Irradiation on Surface Properties, Mass Transfer, and UV Spectrum of Polydimethylsiloxane
指導教授(中文):李三保
張守一
指導教授(外文):Lee, Sanboh
Chang, Shou-Yi
口試委員(中文):蔣東堯
歐陽浩
周晟
口試委員(外文):JIANG, DONG-YAO
OU YANG, HAO
ZHOU, CHENG
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:110031601
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:133
中文關鍵詞:聚二甲基矽氧烷離子改質質傳色心紫外光心傅立葉轉換紅外光譜儀紫外光-可見光光譜動力學
外文關鍵詞:PolydimethylsiloxaneIon irradiationMass transportColor centerUV centerFTIRUV-vis spectroscopyDynamics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:158
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究致力於研究離子照射對聚二甲基矽氧烷(PDMS)表面的影響,並了解表面性質的改變對擴散動力學及缺陷動力學的影響。我們使用頻率為13.56 MHz的射頻離子槍進行離子改質,在高真空下,以48W的低功率電離氬氣與氧氣的混合氣體產生離子,並用800 V的加速電壓射出60 mA電流的3 cm直徑離子束並照射在PDMS上。
我們發現原是疏水性的PDMS在離子照射後會顯著的變成親水性,隨著離子照射劑量增加,PDMS的親水性、粗糙度、表面能都線性的增加;然而PDMS因離子照射而改變的親水性、表面能與粗糙度並非穩定,會隨著時間老化並回復,且此過程受老化環境影響甚鉅。在FTIR-ATR分析中,極性官能基團出現在離子照射過後的PDMS表面,然而這些極性官能基團存放在空氣中會消失。這些發現解釋了PDMS在離子照射後親水性的改變以及老化後疏水性回復的行為。
在溶劑質傳實驗中,我們用介電係數來區分溶劑的極性,並用Hansen溶解度係數來解釋溶劑與PDMS之間的相容性。我們發現非極性溶劑與PDMS之間親和性較高,Hansen溶解度係數差值較小,擁有較高的擴散係數及溶漲比例。值得注意的是,我們透過離子改質將PDMS的表面極性增加使極性溶劑丁酮在PDMS中的擴散係數增加,擴散活化能減小;非極性溶劑甲苯在PDMS中的擴散係數下降,擴散活化能上升,並且兩溶劑的擴散活化能與離子照射後的PDMS表面能呈現線性關係。然而溶漲比例與混合熱卻不會因為離子照射而改變。我們推測此現象是因離子照射使PDMS與溶劑之間形成一道化學能障,擴散會受到此表面化學能障的影響而改變,而溶漲則是由PDMS的整體塊材性質所主導,受表面影響較少。
我們用紫外光-可見光光譜儀分析PDMS的光學性質,發現PDMS在離子照射後對220奈米波長的紫外光出現吸收峰,源自於離子照射在PDMS表面產生的缺陷,此缺陷吸收特定波長的紫外光,此缺陷稱為”UV center”。將離子照射後的PDMS試片置於高溫退火環境中,UV center會湮滅而使220奈米紫外光穿透度隨著時間回覆。我們發現UV center的湮滅符合一階動力學模型的預測,隨著離子照射劑量增加,UV center湮滅反應速率下降、活化能上升、平衡濃度上升、生成能下降,代表越高的離子劑量會促進UV center的生成,並使能障更高。
總結來說,本研究探討了離子改質對PDMS表面性質的影響,並確認了表面能對溶劑擴散行為有重要影響。再藉由光學性質的改變,探討了UV center的動力學。此研究有助於更透徹了解離子改質技術對PDMS的影響,並拓展了PDMS材料在微流體、生醫等領域的應用潛力。
This study focuses on the effects of ion irradiation on the surface properties of Polydimethylsiloxane (PDMS) and understanding how these changes impact diffusion behavior and UV center kinetics. We use a 13.56 MHz radio frequency (RF) ion gun to generate ions. Under high vacuum, a mixture of argon and oxygen gases was used to produce ions, and a 3 cm diameter ion beam with an electric current of 60 mA and an acceleration voltage of 800 V, corresponding to a low power of 48 W, was irradiated on the PDMS surface.
We observed a significant change from the hydrophobic nature of PDMS to hydrophilicity after ion irradiation. As the ion dose increased, the hydrophilicity, roughness, and surface energy of PDMS showed a linear increase. However, the change of hydrophilicity, surface energy, and roughness of PDMS induced by ion irradiation were not stable and exhibited aging and recovery, which were greatly influenced by the aging environment.
FTIR-ATR analysis revealed the presence of polar functional groups on the ion-irradiated PDMS surface. However, these polar functional groups could not be detected in aged samples. These findings explain the alteration of hydrophilicity in PDMS after ion irradiation and the recovery of hydrophobicity after aging.
In solvent diffusion, we used the solubility parameter to differentiate polar from non-polar solvents and employed Hansen solubility parameters to explain the compatibility between solvents and PDMS. We found that non-polar solvents showed smaller differences in Hansen solubility parameters with non-polar PDMS, resulting in higher diffusivity and swelling ratios. In contrast, polar solvents exhibited less affinity with PDMS, leading to lower diffusion coefficients and swelling ratios. Importantly, we increased the surface polarity of PDMS via ion modification, which increased the diffusivity and decreased the diffusion activation energy of the polar solvent (butanone), while decreasing the diffusivity and diffusion activation energy of the non-polar solvent (toluene). Both solvents showed a linear relationship between their diffusion activation energies and the surface energy of ion-modified PDMS. However, the swelling ratio and enthalpy of mixing were not affected by ion modification. We speculate that ion irradiation forms a chemical barrier on surface of PDMS, influencing the diffusion behavior, while swelling is dominated by the bulk material and is less affected by the surface.
UV-Vis spectroscopy shows an absorption peak at 220 nm for ion-irradiated PDMS, suggesting the presence of defects, named “UV center”, which absorbs light of 220 nm wavelength in UV region. UV centers are annihilated by high-temperature annealing, restoring light transmittance at 220 nm over time. The annihilation follows a first-order kinetic model. Higher ion dose creates more UV centers and slows their annihilation.
In conclusion, this study elucidates the optimal parameters for PDMS ion modification, impacts on surface properties, diffusion kinetics, and UV center kinetics. Our findings contribute to a comprehensive understanding of the impact of ion irradiation on PDMS and extend its potential applications in microfluidic and biomedical fields, etc.
Chapter 1 . Introduction--1
Chapter 2 . Experiments--9
2.1 Materials--9
2.2 Specimen preparation--9
2.2-1 Polydimethylsiloxane preparation--9
2.2-2 Ion irradiation of PDMS--10
2.3 Confocal laser scanning microscopy measurements--11
2.4 Contact angle measurement--12
2.4-1 Wettability test--12
2.4-2 Surface energy measurement--12
2.5 Fourier Transform Infrared Spectroscopy Measurement--13
2.6 Mass transport--14
2.7 UV – visible spectroscopy--15
Chapter 3 . Results and discussion--16
3.1 Ion Irradiation--16
3.1-1 The effect of acceleration voltage on ion irradiation--16
3.1-2 The effect of electric current on ion irradiation--16
3.1-3 The effect of gas ratio on ion irradiation--19
3.2 Wettability Changes Resulting From Ion Irradiation--20
3.2-1 Wettability--20
3.2-2 Aging of wettability--21
3.3 Roughness Changes Resulting from Ion Irradiation--23
3.4 Fourier Transform Infrared Spectroscopy--24
3.5 Surface Energy--28
3.5-1 The effect of ion irradiation on the surface energy of PDMS 28
3.5-2 Aging of surface energy--30
3.6 Mass Transport--33
3.6-1 The effect of Hansen solubility parameter on solvents mass transport.--35
3.6-2 The effect of ion irradiation on solvents mass transport.--38
3.6-3 The effect of ion treatment on THF, Toluene, Propanol, and butanone transport in PDMS.--39
3.6-4 The effect of ion irradiation dose on butanone or toluene transport in PDMS.--42
3.6-5 The effect of aging on toluene and butanone transport in ion-irradiated PDMS.--46
3.7 UV-vis Spectroscopy--50
3.7-1 UV-Vis spectroscopy of ion-irradiated PDMS--50
3.7-2 UV-vis spectroscopy of annealing PDMS--53
3.7-3 Arrhenius equation fitting--56
3.7-4 Van ‘t Hoff fitting--57
Chapter 4 . Conclusions--59
Tables--63
Figures--85
References--125
Appendix B--133
1. Kim, T.K., J.K. Kim, and O.C. Jeong, Measurement of nonlinear mechanical properties of PDMS elastomer. Microelectronic Engineering, 2011. 88(8): 1982-1985.
2. Van Poll, M.L., F. Zhou, M. Ramstedt, L. Hu, and W.T. Huck, A Self‐Assembly Approach to Chemical Micropatterning of Poly (dimethylsiloxane). Angewandte Chemie, 2007. 119(35): 6754-6757.
3. Berthier, E., E.W. Young, and D. Beebe, Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab on a Chip, 2012. 12(7): 1224-1237.
4. Merkel, T., V. Bondar, K. Nagai, B. Freeman, and I. Pinnau, Gas sorption, diffusion, and permeation in poly (dimethylsiloxane). Journal of Polymer Science Part B: Polymer Physics, 2000. 38(3): p. 415-434.
5. Kuddannaya, S., J. Bao, and Y. Zhang, Enhanced in vitro biocompatibility of chemically modified poly (dimethylsiloxane) surfaces for stable adhesion and long-term investigation of brain cerebral cortex cells. ACS Applied Materials & Interfaces, 2015. 7(45): 25529-25538.
6. Lee, S., H.-J. Shin, S.-M. Yoon, D.K. Yi, J.-Y. Choi, and U. Paik, Refractive index engineering of transparent ZrO 2–polydimethylsiloxane nanocomposites. Journal of Materials Chemistry, 2008. 18(15): 1751-1755.
7. Kim, S.-J., D.-S. Lee, I.-G. Kim, D.-W. Sohn, J.-Y. Park, B.-K. Choi, et al., Evaluation of the biocompatibility of a coating material for an implantable bladder volume sensor. The Kaohsiung Journal of Medical Sciences, 2012. 28(3): 123-129.
8. Carta, R., P. Jourand, B. Hermans, J. Thoné, D. Brosteaux, T. Vervust, et al., Design and implementation of advanced systems in a flexible-stretchable technology for biomedical applications. Sensors and Actuators A: Physical, 2009. 156(1): 79-87.
9. Bozukova, D., C. Pagnoulle, R. Jérôme, and C. Jérôme, Polymers in modern ophthalmic implants—Historical background and recent advances. Materials Science and Engineering: R: Reports, 2010. 69(6): 63-83.
10. Yu, H., G. Zhou, S.K. Sinha, F.S. Chau, and S. Wang, Lens integrated with self-aligned variable aperture using pneumatic actuation method. Sensors and Actuators A: Physical, 2010. 159(1): 105-110.
11. Wu, X., S.-H. Kim, C.-H. Ji, and M.G. Allen, A solid hydraulically amplified piezoelectric microvalve. Journal of Micromechanics and Microengineering, 2011. 21(9): 095003.
12. Johnston, I., M. Tracey, J. Davis, and C. Tan, Micro throttle pump employing displacement amplification in an elastomeric substrate. Journal of Micromechanics and Microengineering, 2005. 15(10): 1831.
13. Fujii, T., PDMS-based microfluidic devices for biomedical applications. Microelectronic Engineering, 2002. 61: p. 907-914.
14. Chen, W., R.H. Lam, and J. Fu, Photolithographic surface micromachining of polydimethylsiloxane (PDMS). Lab on a Chip, 2012. 12(2): 391-395.
15. Zhou, J., A.V. Ellis, and N.H. Voelcker, Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis, 2010. 31(1): 2-16.
16. Dardouri, M., A. Bettencourt, V. Martin, F.A. Carvalho, C. Santos, N. Monge, et al., Using plasma-mediated covalent functionalization of rhamnolipids on polydimethylsiloxane towards the antimicrobial improvement of catheter surfaces. Biomaterials Advances, 2022. 134: 112563.
17. Kumar, R. and A.K. Sahani, Role of superhydrophobic coatings in biomedical applications. Materials Today: Proceedings, 2021. 45: 5655-5659.
18. Doutel, E., N. Viriato, J. Carneiro, J.B. Campos, and J.M. Miranda, Geometrical effects in the hemodynamics of stenotic and non‐stenotic left coronary arteries—numerical and in vitro approaches. International Journal for Numerical Methods in Biomedical Engineering, 2019. 35(8): 3207.
19. Usmani, A.Y. and K. Muralidhar, Flow in an intracranial aneurysm model: effect of parent artery orientation. Journal of Visualization, 2018. 21: 795-818.
20. Weibel, D.B., W.R. DiLuzio, and G.M. Whitesides, Microfabrication meets microbiology. Nature Reviews Microbiology, 2007. 5(3): 209-218.
21. Mata, A., A.J. Fleischman, and S. Roy, Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomedical Microdevices, 2005. 7: 281-293.
22. Hu, S., X. Ren, M. Bachman, C.E. Sims, G. Li, and N. Allbritton, Surface modification of poly (dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Analytical Chemistry, 2002. 74(16): 4117-4123.
23. Gokaltun, A., M.L. Yarmush, A. Asatekin, and O.B. Usta, Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology. Technology, 2017. 5(01): 1-12.
24. Shalaby, S. W., Reichmanis, E., Frank, C. W., & O’Donnell, J. H. Irradiation of Polymeric Materials. In: ACS Symposium Series. USA. 1993. p. 315.
25. Naikwadi, A.T., B.K. Sharma, K.D. Bhatt, and P.A. Mahanwar, Gamma radiation processed polymeric materials for high performance applications: A review. Frontiers in Chemistry, 2022. 10: 837111.
26. Borcia, C., G. Borcia, and N. Dumitrascu, Surface treatment of polymers by plasma and UV radiation. Romanian Journal in Physics, 2011. 56(1-2): 224-232.
27. Castro Vidaurre, E., C. Achete, F. Gallo, D. Garcia, R. Simão, and A. Habert, Surface modification of polymeric materials by plasma treatment. Materials Research, 2002. 5: 37-41.
28. Inagaki, N. and Y. Kubokawa, Plasma polymerization of ethylene glycol monomethylether and water‐vapor permeability. Journal of Polymer Science Part A: Polymer Chemistry, 1989. 27(3): 795-805.
29. Gancarz, I., G. Poźniak, M. Bryjak, and A. Frankiewicz, Modification of polysulfone membranes. 2. Plasma grafting and plasma polymerization of acrylic acid. Acta polymerica, 1999. 50(9): 317-326.
30. Lee, K.-R., M.-Y. Teng, H.-H. Lee, and J.-Y. Lai, Dehydration of ethanol/water mixtures by pervaporation with composite membranes of polyacrylic acid and plasma-treated polycarbonate. Journal of Membrane Science, 2000. 164(1-2): 13-23.
31. Lee, E., G. Rao, M. Lewis, and L. Mansur, Ion beam application for improved polymer surface properties. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1993. 74(1-2): 326-330.
32. Egitto, F.D. and L.J. Matienzo, Plasma modification of polymer surfaces for adhesion improvement. IBM Journal of Research and Development, 1994. 38(4): 423-439.
33. Atta, A., Y.H. Fawzy, A. Bek, H.M. Abdel-Hamid, and M.M. El-Oker, Modulation of structure, morphology and wettability of polytetrafluoroethylene surface by low energy ion beam irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013. 300: 46-53.
34. Dong, H. and T. Bell, State-of-the-art overview: ion beam surface modification of polymers towards improving tribological properties. Surface and Coatings Technology, 1999. 111(1): 29-40.
35. Lyatskaya, Y., D. Gersappe, N.A. Gross, and A.C. Balazs, Designing compatibilizers to reduce interfacial tension in polymer blends. The Journal of Physical Chemistry, 1996. 100(5): 1449-1458.
36. Khoshkava, V. and M. Kamal, Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites. Biomacromolecules, 2013. 14(9): 3155-3163.
37. Tsui, O.K.C., T. P. Russell, and C. J. Hawker, Effect of interfacial interactions on the glass transition of polymer thin films. Macromolecules, 2001. 34(16): 5535-5539.
38. Owens, D.K. and R. Wendt, Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 1969. 13(8): 1741-1747.
39. Kim, J., R. Friend, and F. Cacialli, Surface energy and polarity of treated indium–tin–oxide anodes for polymer light-emitting diodes studied by contact-angle measurements. Journal of Applied Physics, 1999. 86(5): 2774-2778.
40. Silberberg, A., The role of matrix mechanical stress in swelling equilibrium and transport through networks. Macromolecules, 1980. 13(3): 742-748.
41. Alfrey Jr, T., E. Gurnee, and W. Lloyd. Diffusion in glassy polymers. in Journal of Polymer Science Part C: Polymer Symposia. New York: Wiley Subscription Services, Inc., A Wiley Company, 1966. p. 249-261.
42. Vrentas, J. and J. Duda, Diffusion in polymer–solvent systems. III. Construction of Deborah number diagrams. Journal of Polymer Science: Polymer Physics Edition, 1977. 15(3): 441-453.
43. Wang, T. T., T. K. Kwei, and H. L. Frisch, Diffusion in glassy polymers. III. Journal of Polymer Science Part A‐2: Polymer Physics, 1969. 7(12): 2019-2028.
44. Wang, T.T. and T. K. Kwei, Diffusion in glassy polymers. Reexamination of vapor sorption data. Macromolecules, 1973. 6(6): 919-921.
45. Frisch, H., T. T. Wang, and T. K. Kwei, Diffusion in glassy polymers. II. Journal of Polymer Science Part A‐2: Polymer Physics, 1969. 7(5): 879-887.
46. Kwei, T. K. and H. M. Zupko, Diffusion in glassy polymers. I. Journal of Polymer Science Part A‐2: Polymer Physics, 1969. 7(5): 867-877.
47. Wolf, M.P., G.B. Salieb-Beugelaar, and P. Hunziker, PDMS with designer functionalities—Properties, modifications strategies, and applications. Progress in Polymer Science, 2018. 83: 97-134.
48. Berens, A.R. and H.B. Hopfenberg, Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters. Polymer, 1978. 19(5): 489-496.
49. Jasso-Gastinel, C., Gradients in Homopolymers, blends, and copolymers, in Modification of Polymer Properties. William Andrew Publishing, New York, USA: 2017, 185-210.
50. Car, A., P. Baumann, J.T. Duskey, M. Chami, N. Bruns, and W. Meier, pH-responsive PDMS-b-PDMAEMA micelles for intracellular anticancer drug delivery. Biomacromolecules, 2014. 15(9): 3235-3245.
51. Yeom, C., S. Lee, H. Song, and J. Lee, Vapor permeations of a series of VOCs/N2 mixtures through PDMS membrane. Journal of Membrane Science, 2002. 198(1): 129-143.
52. Raj M, K. and S. Chakraborty, PDMS microfluidics: A mini review. Journal of Applied Polymer Science, 2020. 137(27): 48958.
53. Li, L., Z. Xiao, S. Tan, L. Pu, and Z. Zhang, Composite PDMS membrane with high flux for the separation of organics from water by pervaporation. Journal of Membrane Science, 2004. 243(1-2): 177-187.
54. Fowler, W. B., The imperfect solid—color centers in ionic crystals. Defects in Solids. Springer, Boston, MA, 1975, 133-181.
55. Kittel, C., Introduction to solid state physics. John Wiley, Hoboken, New Jersey, USA: Eighth edition, 2005.
56. Lin, H.-Y., Y.-Z. Tsai, and S. Lee, Evolution of hardness and transmittance in irradiated LiF single crystals at elevated temperatures. Journal of Materials Research, 1992. 7(10): 2833-2839.
57. Sugak, D., A. Matkovskii, A. Durygin, A. Suchocki, I. Solskii, S. Ubizskii, et al., Influence of color centers on optical and lasing properties of the gadolinium gallium garnet single crystals doped with Nd3+ ions. Journal of Luminescence, 1999. 82(1): 9-15.
58. Deng, Q., Z. Yin, and R.-y. Zhu, Radiation-induced color centers in La-doped PbWO4 crystals. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999. 438(2-3): 415-420.
59. Nadeau, J. and W. Johnston, Hardening of lithium fluoride crystals by irradiation. Journal of Applied Physics, 1961. 32(12): 2563-2565.
60. Wallace, J., M. Sinclair, K. Gillen, and R. Clough, Color center annealing in γ-irradiated polystyrene, under vacuum and air atmospheres. Radiation Physics and Chemistry, 1993. 41(1-2): 85-100.
61. Clough, R., G. Malone, K. Gillen, J. Wallace, and M. Sinclair, Discoloration and subsequent recovery of optical polymers exposed to ionizing radiation. Polymer Degradation and Stability, 1995. 49(2): 305-313.
62. Clough, R., K. Gillen, G. Malone, and J. Wallace, Color formation in irradiated polymers. Radiation Physics and Chemistry, 1996. 48(5): 583-594.
63. C. K. Liu, C. J. Tsai, C. T. Hu, and S. Lee, Annihilation kinetics of color center in irradiated syndiotactic polystyrene at elevated temperatures. Polymer, 2005. 46(15): 5645-5655.
64. J. S. Peng, C. M. Hsu, S. H. Yeh, and S. Lee, Annihilation kinetics of color center in polycarbonate irradiated with gamma ray at elevated temperatures. Polymer Engineering & Science, 2012. 52(11): 2391-2395.
65. K. P. Lu, S. Lee, and C. P. Cheng, Transmittance in irradiated poly (methyl methacrylate) at elevated temperatures. Journal of Applied Physics, 2000. 88(9): 5022-5027.
66. K. P. Lu, S. Lee, and C. C. Han, Transmission in irradiated hydroxyethyl methacrylate copolymer at elevated temperatures. Journal of Materials Research, 2002. 17(9): 2260-2265.
67. J. S. Peng, K. F. Chou, C. L. Li, and S. Lee, Generation kinetics of color centers in irradiated poly (4-methyl-1-pentene). Journal of Applied Physics, 2011. 110(6).
68. P. Y. Huang, Y. L. Zhang, H. Ouyang, F. Yang, and S. Lee, Photo-response of polylactide-poly (methyl methacrylate) blends: Effect of ultraviolet irradiation. Materials Chemistry and Physics, 2022. 277: 125528.
69. M. Y. Li, Y. F. Chuang, F. Yang, and S. Lee, Evolution of color centers in UV-irradiated syndiotactic polystyrene at elevated temperatures. Materials Research Express, 2017. 4(2): 025301.
70. Fowkes, F.M., Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. The Journal of Physical Chemistry, 1962. 66(2): 382-382.
71. Żenkiewicz, M., Methods for the calculation of surface free energy of solids. Journal of Achievements in Materials and Manufacturing Engineering, 2007. 24(1): 137-145.
72. Calcagno, L.; Compagnini, G.; Foti, G. Structural modification of polymer films by ion irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1992, 65.1-4: IN7-422.
73. Butrón-García, M.I., J.A. Jofre-Reche, and J.M. Martín-Martínez, Use of statistical design of experiments in the optimization of Ar–O2 low-pressure plasma treatment conditions of polydimethylsiloxane (PDMS) for increasing polarity and adhesion, and inhibiting hydrophobic recovery. Applied Surface Science, 2015. 332: 1-11.
74. Webb, H.K., V.K. Truong, J. Hasan, C. Fluke, R.J. Crawford, and E.P. Ivanova, Roughness parameters for standard description of surface nanoarchitecture. Scanning, 2012. 34(4): 257-263.
75. Hoehne, K. and R. Sizmann, Volume and surface self‐diffusion measurements on copper by thermal surface smoothing. physica Status Solidi (a), 1971. 5(3): 577-589.
76. Blakely, J. and H. Mykura, Surface self diffusion and surface energy measurements on platinum by the multiple scratch method. Acta Metallurgica, 1962. 10(5): 565-572.
77. Chen, I.-J. and E. Lindner, The stability of radio-frequency plasma-treated polydimethylsiloxane surfaces. Langmuir, 2007. 23(6): 3118-3122.
78. Morra, M., E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, On the aging of oxygen plasma-treated polydimethylsiloxane surfaces. Journal of Colloid and Interface Science, 1990. 137(1): 11-24.
79. Bodas, D., J.-Y. Rauch, and C. Khan-Malek, Surface modification and aging studies of addition-curing silicone rubbers by oxygen plasma. European Polymer Journal, 2008. 44(7): 2130-2139.
80. Bhattacharya, S., A. Datta, J.M. Berg, and S. Gangopadhyay, Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. Journal of Microelectromechanical Systems, 2005. 14(3): 590-597.
81. Santra, R.N., S. Roy, A.K. Bhowmick, and G. Nando, Studies on miscibility of blends of ethylene methyl acrylate and polydimethyl siloxane rubber. Polymer Engineering & Science, 1993. 33(20): 1352-1359.
82. Juárez-Moreno, J., A. Ávila-Ortega, A. Oliva, F. Avilés, and J. Cauich-Rodríguez, Effect of wettability and surface roughness on the adhesion properties of collagen on PDMS films treated by capacitively coupled oxygen plasma. Applied Surface Science, 2015. 349: 763-773.
83. Hollahan, John R., and George L. Carlson. "Hydroxylation of polymethylsiloxane surfaces by oxidizing plasmas." Journal of Applied Polymer Science, 1970. 14(10): 2499-2508.
84. De Menezes Atayde, C. and I. Doi, Highly stable hydrophilic surfaces of PDMS thin layer obtained by UV radiation and oxygen plasma treatments. Physica Status Solidi C, 2010. 7(2): 189-192.
85. Kozbial, A., Z. Li, C. Conaway, R. McGinley, S. Dhingra, V. Vahdat, et al., Study on the surface energy of graphene by contact angle measurements. Langmuir, 2014. 30(28): 8598-8606.
86. Vudayagiri, S., M.D. Junker, and A.L. Skov, Factors affecting the surface and release properties of thin polydimethylsiloxane films. Polymer Journal, 2013. 45(8): 871-878.
87. Genzer, J. and K. Efimenko, Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling, 2006. 22(5): 339-360.
88. Murakami, T., S.-i. Kuroda, and Z. Osawa, Dynamics of polymeric solid surfaces treated with oxygen plasma: Effect of aging media after plasma treatment. Journal of Colloid and Interface Science, 1998. 202(1): 37-44.
89. Lee, J.N., C. Park, and G.M. Whitesides, Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices. Analytical Chemistry, 2003. 75(23): 6544-6554.
90. Yang, Bing-Hong. Solvent-Induced Crack Growth of PMMA/FGs Composites: Effect of Ultraviolet Irradiatio. Master Thesis. Department of Materials Science and Engineering, National Tsing Hua University, 2023.
91. Crank, J., The mathematics of diffusion. Oxford University Press, Oxford, England, Second edition, 1979.
92. Hansen, C.M., The three dimensional solubility parameter. Danish Technical: Copenhagen, 1967. 14: 13-28.
93. Martin, A., P. Wu, Z. Liron, and S. Cohen, Dependence of solute solubility parameters on solvent polarity. Journal of Pharmaceutical Sciences, 1985. 74(6): 638-642.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *