|
1. Kim, T.K., J.K. Kim, and O.C. Jeong, Measurement of nonlinear mechanical properties of PDMS elastomer. Microelectronic Engineering, 2011. 88(8): 1982-1985. 2. Van Poll, M.L., F. Zhou, M. Ramstedt, L. Hu, and W.T. Huck, A Self‐Assembly Approach to Chemical Micropatterning of Poly (dimethylsiloxane). Angewandte Chemie, 2007. 119(35): 6754-6757. 3. Berthier, E., E.W. Young, and D. Beebe, Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab on a Chip, 2012. 12(7): 1224-1237. 4. Merkel, T., V. Bondar, K. Nagai, B. Freeman, and I. Pinnau, Gas sorption, diffusion, and permeation in poly (dimethylsiloxane). Journal of Polymer Science Part B: Polymer Physics, 2000. 38(3): p. 415-434. 5. Kuddannaya, S., J. Bao, and Y. Zhang, Enhanced in vitro biocompatibility of chemically modified poly (dimethylsiloxane) surfaces for stable adhesion and long-term investigation of brain cerebral cortex cells. ACS Applied Materials & Interfaces, 2015. 7(45): 25529-25538. 6. Lee, S., H.-J. Shin, S.-M. Yoon, D.K. Yi, J.-Y. Choi, and U. Paik, Refractive index engineering of transparent ZrO 2–polydimethylsiloxane nanocomposites. Journal of Materials Chemistry, 2008. 18(15): 1751-1755. 7. Kim, S.-J., D.-S. Lee, I.-G. Kim, D.-W. Sohn, J.-Y. Park, B.-K. Choi, et al., Evaluation of the biocompatibility of a coating material for an implantable bladder volume sensor. The Kaohsiung Journal of Medical Sciences, 2012. 28(3): 123-129. 8. Carta, R., P. Jourand, B. Hermans, J. Thoné, D. Brosteaux, T. Vervust, et al., Design and implementation of advanced systems in a flexible-stretchable technology for biomedical applications. Sensors and Actuators A: Physical, 2009. 156(1): 79-87. 9. Bozukova, D., C. Pagnoulle, R. Jérôme, and C. Jérôme, Polymers in modern ophthalmic implants—Historical background and recent advances. Materials Science and Engineering: R: Reports, 2010. 69(6): 63-83. 10. Yu, H., G. Zhou, S.K. Sinha, F.S. Chau, and S. Wang, Lens integrated with self-aligned variable aperture using pneumatic actuation method. Sensors and Actuators A: Physical, 2010. 159(1): 105-110. 11. Wu, X., S.-H. Kim, C.-H. Ji, and M.G. Allen, A solid hydraulically amplified piezoelectric microvalve. Journal of Micromechanics and Microengineering, 2011. 21(9): 095003. 12. Johnston, I., M. Tracey, J. Davis, and C. Tan, Micro throttle pump employing displacement amplification in an elastomeric substrate. Journal of Micromechanics and Microengineering, 2005. 15(10): 1831. 13. Fujii, T., PDMS-based microfluidic devices for biomedical applications. Microelectronic Engineering, 2002. 61: p. 907-914. 14. Chen, W., R.H. Lam, and J. Fu, Photolithographic surface micromachining of polydimethylsiloxane (PDMS). Lab on a Chip, 2012. 12(2): 391-395. 15. Zhou, J., A.V. Ellis, and N.H. Voelcker, Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis, 2010. 31(1): 2-16. 16. Dardouri, M., A. Bettencourt, V. Martin, F.A. Carvalho, C. Santos, N. Monge, et al., Using plasma-mediated covalent functionalization of rhamnolipids on polydimethylsiloxane towards the antimicrobial improvement of catheter surfaces. Biomaterials Advances, 2022. 134: 112563. 17. Kumar, R. and A.K. Sahani, Role of superhydrophobic coatings in biomedical applications. Materials Today: Proceedings, 2021. 45: 5655-5659. 18. Doutel, E., N. Viriato, J. Carneiro, J.B. Campos, and J.M. Miranda, Geometrical effects in the hemodynamics of stenotic and non‐stenotic left coronary arteries—numerical and in vitro approaches. International Journal for Numerical Methods in Biomedical Engineering, 2019. 35(8): 3207. 19. Usmani, A.Y. and K. Muralidhar, Flow in an intracranial aneurysm model: effect of parent artery orientation. Journal of Visualization, 2018. 21: 795-818. 20. Weibel, D.B., W.R. DiLuzio, and G.M. Whitesides, Microfabrication meets microbiology. Nature Reviews Microbiology, 2007. 5(3): 209-218. 21. Mata, A., A.J. Fleischman, and S. Roy, Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomedical Microdevices, 2005. 7: 281-293. 22. Hu, S., X. Ren, M. Bachman, C.E. Sims, G. Li, and N. Allbritton, Surface modification of poly (dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Analytical Chemistry, 2002. 74(16): 4117-4123. 23. Gokaltun, A., M.L. Yarmush, A. Asatekin, and O.B. Usta, Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology. Technology, 2017. 5(01): 1-12. 24. Shalaby, S. W., Reichmanis, E., Frank, C. W., & O’Donnell, J. H. Irradiation of Polymeric Materials. In: ACS Symposium Series. USA. 1993. p. 315. 25. Naikwadi, A.T., B.K. Sharma, K.D. Bhatt, and P.A. Mahanwar, Gamma radiation processed polymeric materials for high performance applications: A review. Frontiers in Chemistry, 2022. 10: 837111. 26. Borcia, C., G. Borcia, and N. Dumitrascu, Surface treatment of polymers by plasma and UV radiation. Romanian Journal in Physics, 2011. 56(1-2): 224-232. 27. Castro Vidaurre, E., C. Achete, F. Gallo, D. Garcia, R. Simão, and A. Habert, Surface modification of polymeric materials by plasma treatment. Materials Research, 2002. 5: 37-41. 28. Inagaki, N. and Y. Kubokawa, Plasma polymerization of ethylene glycol monomethylether and water‐vapor permeability. Journal of Polymer Science Part A: Polymer Chemistry, 1989. 27(3): 795-805. 29. Gancarz, I., G. Poźniak, M. Bryjak, and A. Frankiewicz, Modification of polysulfone membranes. 2. Plasma grafting and plasma polymerization of acrylic acid. Acta polymerica, 1999. 50(9): 317-326. 30. Lee, K.-R., M.-Y. Teng, H.-H. Lee, and J.-Y. Lai, Dehydration of ethanol/water mixtures by pervaporation with composite membranes of polyacrylic acid and plasma-treated polycarbonate. Journal of Membrane Science, 2000. 164(1-2): 13-23. 31. Lee, E., G. Rao, M. Lewis, and L. Mansur, Ion beam application for improved polymer surface properties. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1993. 74(1-2): 326-330. 32. Egitto, F.D. and L.J. Matienzo, Plasma modification of polymer surfaces for adhesion improvement. IBM Journal of Research and Development, 1994. 38(4): 423-439. 33. Atta, A., Y.H. Fawzy, A. Bek, H.M. Abdel-Hamid, and M.M. El-Oker, Modulation of structure, morphology and wettability of polytetrafluoroethylene surface by low energy ion beam irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013. 300: 46-53. 34. Dong, H. and T. Bell, State-of-the-art overview: ion beam surface modification of polymers towards improving tribological properties. Surface and Coatings Technology, 1999. 111(1): 29-40. 35. Lyatskaya, Y., D. Gersappe, N.A. Gross, and A.C. Balazs, Designing compatibilizers to reduce interfacial tension in polymer blends. The Journal of Physical Chemistry, 1996. 100(5): 1449-1458. 36. Khoshkava, V. and M. Kamal, Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites. Biomacromolecules, 2013. 14(9): 3155-3163. 37. Tsui, O.K.C., T. P. Russell, and C. J. Hawker, Effect of interfacial interactions on the glass transition of polymer thin films. Macromolecules, 2001. 34(16): 5535-5539. 38. Owens, D.K. and R. Wendt, Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 1969. 13(8): 1741-1747. 39. Kim, J., R. Friend, and F. Cacialli, Surface energy and polarity of treated indium–tin–oxide anodes for polymer light-emitting diodes studied by contact-angle measurements. Journal of Applied Physics, 1999. 86(5): 2774-2778. 40. Silberberg, A., The role of matrix mechanical stress in swelling equilibrium and transport through networks. Macromolecules, 1980. 13(3): 742-748. 41. Alfrey Jr, T., E. Gurnee, and W. Lloyd. Diffusion in glassy polymers. in Journal of Polymer Science Part C: Polymer Symposia. New York: Wiley Subscription Services, Inc., A Wiley Company, 1966. p. 249-261. 42. Vrentas, J. and J. Duda, Diffusion in polymer–solvent systems. III. Construction of Deborah number diagrams. Journal of Polymer Science: Polymer Physics Edition, 1977. 15(3): 441-453. 43. Wang, T. T., T. K. Kwei, and H. L. Frisch, Diffusion in glassy polymers. III. Journal of Polymer Science Part A‐2: Polymer Physics, 1969. 7(12): 2019-2028. 44. Wang, T.T. and T. K. Kwei, Diffusion in glassy polymers. Reexamination of vapor sorption data. Macromolecules, 1973. 6(6): 919-921. 45. Frisch, H., T. T. Wang, and T. K. Kwei, Diffusion in glassy polymers. II. Journal of Polymer Science Part A‐2: Polymer Physics, 1969. 7(5): 879-887. 46. Kwei, T. K. and H. M. Zupko, Diffusion in glassy polymers. I. Journal of Polymer Science Part A‐2: Polymer Physics, 1969. 7(5): 867-877. 47. Wolf, M.P., G.B. Salieb-Beugelaar, and P. Hunziker, PDMS with designer functionalities—Properties, modifications strategies, and applications. Progress in Polymer Science, 2018. 83: 97-134. 48. Berens, A.R. and H.B. Hopfenberg, Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters. Polymer, 1978. 19(5): 489-496. 49. Jasso-Gastinel, C., Gradients in Homopolymers, blends, and copolymers, in Modification of Polymer Properties. William Andrew Publishing, New York, USA: 2017, 185-210. 50. Car, A., P. Baumann, J.T. Duskey, M. Chami, N. Bruns, and W. Meier, pH-responsive PDMS-b-PDMAEMA micelles for intracellular anticancer drug delivery. Biomacromolecules, 2014. 15(9): 3235-3245. 51. Yeom, C., S. Lee, H. Song, and J. Lee, Vapor permeations of a series of VOCs/N2 mixtures through PDMS membrane. Journal of Membrane Science, 2002. 198(1): 129-143. 52. Raj M, K. and S. Chakraborty, PDMS microfluidics: A mini review. Journal of Applied Polymer Science, 2020. 137(27): 48958. 53. Li, L., Z. Xiao, S. Tan, L. Pu, and Z. Zhang, Composite PDMS membrane with high flux for the separation of organics from water by pervaporation. Journal of Membrane Science, 2004. 243(1-2): 177-187. 54. Fowler, W. B., The imperfect solid—color centers in ionic crystals. Defects in Solids. Springer, Boston, MA, 1975, 133-181. 55. Kittel, C., Introduction to solid state physics. John Wiley, Hoboken, New Jersey, USA: Eighth edition, 2005. 56. Lin, H.-Y., Y.-Z. Tsai, and S. Lee, Evolution of hardness and transmittance in irradiated LiF single crystals at elevated temperatures. Journal of Materials Research, 1992. 7(10): 2833-2839. 57. Sugak, D., A. Matkovskii, A. Durygin, A. Suchocki, I. Solskii, S. Ubizskii, et al., Influence of color centers on optical and lasing properties of the gadolinium gallium garnet single crystals doped with Nd3+ ions. Journal of Luminescence, 1999. 82(1): 9-15. 58. Deng, Q., Z. Yin, and R.-y. Zhu, Radiation-induced color centers in La-doped PbWO4 crystals. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999. 438(2-3): 415-420. 59. Nadeau, J. and W. Johnston, Hardening of lithium fluoride crystals by irradiation. Journal of Applied Physics, 1961. 32(12): 2563-2565. 60. Wallace, J., M. Sinclair, K. Gillen, and R. Clough, Color center annealing in γ-irradiated polystyrene, under vacuum and air atmospheres. Radiation Physics and Chemistry, 1993. 41(1-2): 85-100. 61. Clough, R., G. Malone, K. Gillen, J. Wallace, and M. Sinclair, Discoloration and subsequent recovery of optical polymers exposed to ionizing radiation. Polymer Degradation and Stability, 1995. 49(2): 305-313. 62. Clough, R., K. Gillen, G. Malone, and J. Wallace, Color formation in irradiated polymers. Radiation Physics and Chemistry, 1996. 48(5): 583-594. 63. C. K. Liu, C. J. Tsai, C. T. Hu, and S. Lee, Annihilation kinetics of color center in irradiated syndiotactic polystyrene at elevated temperatures. Polymer, 2005. 46(15): 5645-5655. 64. J. S. Peng, C. M. Hsu, S. H. Yeh, and S. Lee, Annihilation kinetics of color center in polycarbonate irradiated with gamma ray at elevated temperatures. Polymer Engineering & Science, 2012. 52(11): 2391-2395. 65. K. P. Lu, S. Lee, and C. P. Cheng, Transmittance in irradiated poly (methyl methacrylate) at elevated temperatures. Journal of Applied Physics, 2000. 88(9): 5022-5027. 66. K. P. Lu, S. Lee, and C. C. Han, Transmission in irradiated hydroxyethyl methacrylate copolymer at elevated temperatures. Journal of Materials Research, 2002. 17(9): 2260-2265. 67. J. S. Peng, K. F. Chou, C. L. Li, and S. Lee, Generation kinetics of color centers in irradiated poly (4-methyl-1-pentene). Journal of Applied Physics, 2011. 110(6). 68. P. Y. Huang, Y. L. Zhang, H. Ouyang, F. Yang, and S. Lee, Photo-response of polylactide-poly (methyl methacrylate) blends: Effect of ultraviolet irradiation. Materials Chemistry and Physics, 2022. 277: 125528. 69. M. Y. Li, Y. F. Chuang, F. Yang, and S. Lee, Evolution of color centers in UV-irradiated syndiotactic polystyrene at elevated temperatures. Materials Research Express, 2017. 4(2): 025301. 70. Fowkes, F.M., Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. The Journal of Physical Chemistry, 1962. 66(2): 382-382. 71. Żenkiewicz, M., Methods for the calculation of surface free energy of solids. Journal of Achievements in Materials and Manufacturing Engineering, 2007. 24(1): 137-145. 72. Calcagno, L.; Compagnini, G.; Foti, G. Structural modification of polymer films by ion irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1992, 65.1-4: IN7-422. 73. Butrón-García, M.I., J.A. Jofre-Reche, and J.M. Martín-Martínez, Use of statistical design of experiments in the optimization of Ar–O2 low-pressure plasma treatment conditions of polydimethylsiloxane (PDMS) for increasing polarity and adhesion, and inhibiting hydrophobic recovery. Applied Surface Science, 2015. 332: 1-11. 74. Webb, H.K., V.K. Truong, J. Hasan, C. Fluke, R.J. Crawford, and E.P. Ivanova, Roughness parameters for standard description of surface nanoarchitecture. Scanning, 2012. 34(4): 257-263. 75. Hoehne, K. and R. Sizmann, Volume and surface self‐diffusion measurements on copper by thermal surface smoothing. physica Status Solidi (a), 1971. 5(3): 577-589. 76. Blakely, J. and H. Mykura, Surface self diffusion and surface energy measurements on platinum by the multiple scratch method. Acta Metallurgica, 1962. 10(5): 565-572. 77. Chen, I.-J. and E. Lindner, The stability of radio-frequency plasma-treated polydimethylsiloxane surfaces. Langmuir, 2007. 23(6): 3118-3122. 78. Morra, M., E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, On the aging of oxygen plasma-treated polydimethylsiloxane surfaces. Journal of Colloid and Interface Science, 1990. 137(1): 11-24. 79. Bodas, D., J.-Y. Rauch, and C. Khan-Malek, Surface modification and aging studies of addition-curing silicone rubbers by oxygen plasma. European Polymer Journal, 2008. 44(7): 2130-2139. 80. Bhattacharya, S., A. Datta, J.M. Berg, and S. Gangopadhyay, Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. Journal of Microelectromechanical Systems, 2005. 14(3): 590-597. 81. Santra, R.N., S. Roy, A.K. Bhowmick, and G. Nando, Studies on miscibility of blends of ethylene methyl acrylate and polydimethyl siloxane rubber. Polymer Engineering & Science, 1993. 33(20): 1352-1359. 82. Juárez-Moreno, J., A. Ávila-Ortega, A. Oliva, F. Avilés, and J. Cauich-Rodríguez, Effect of wettability and surface roughness on the adhesion properties of collagen on PDMS films treated by capacitively coupled oxygen plasma. Applied Surface Science, 2015. 349: 763-773. 83. Hollahan, John R., and George L. Carlson. "Hydroxylation of polymethylsiloxane surfaces by oxidizing plasmas." Journal of Applied Polymer Science, 1970. 14(10): 2499-2508. 84. De Menezes Atayde, C. and I. Doi, Highly stable hydrophilic surfaces of PDMS thin layer obtained by UV radiation and oxygen plasma treatments. Physica Status Solidi C, 2010. 7(2): 189-192. 85. Kozbial, A., Z. Li, C. Conaway, R. McGinley, S. Dhingra, V. Vahdat, et al., Study on the surface energy of graphene by contact angle measurements. Langmuir, 2014. 30(28): 8598-8606. 86. Vudayagiri, S., M.D. Junker, and A.L. Skov, Factors affecting the surface and release properties of thin polydimethylsiloxane films. Polymer Journal, 2013. 45(8): 871-878. 87. Genzer, J. and K. Efimenko, Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling, 2006. 22(5): 339-360. 88. Murakami, T., S.-i. Kuroda, and Z. Osawa, Dynamics of polymeric solid surfaces treated with oxygen plasma: Effect of aging media after plasma treatment. Journal of Colloid and Interface Science, 1998. 202(1): 37-44. 89. Lee, J.N., C. Park, and G.M. Whitesides, Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices. Analytical Chemistry, 2003. 75(23): 6544-6554. 90. Yang, Bing-Hong. Solvent-Induced Crack Growth of PMMA/FGs Composites: Effect of Ultraviolet Irradiatio. Master Thesis. Department of Materials Science and Engineering, National Tsing Hua University, 2023. 91. Crank, J., The mathematics of diffusion. Oxford University Press, Oxford, England, Second edition, 1979. 92. Hansen, C.M., The three dimensional solubility parameter. Danish Technical: Copenhagen, 1967. 14: 13-28. 93. Martin, A., P. Wu, Z. Liron, and S. Cohen, Dependence of solute solubility parameters on solvent polarity. Journal of Pharmaceutical Sciences, 1985. 74(6): 638-642.
|