帳號:guest(3.145.12.5)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴郁庭
作者(外文):Lai, Yu-Ting
論文名稱(中文):以無電電鍍鎳作為雙晶銅奈米線電鍍晶種層之開發研究
論文名稱(外文):Development of Electroless Nickel Seed Layers for Electrodeposition of Nanotwinned Copper Nanowires
指導教授(中文):廖建能
指導教授(外文):Liao, Chien-Neng
口試委員(中文):陳翰儀
吳子嘉
口試委員(外文):Chen, Han-Yi
Wu, Tzu-Chia
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:110031581
出版年(民國):112
畢業學年度:112
語文別:英文
論文頁數:58
中文關鍵詞:無電電鍍鎳雙晶銅奈米線電鍍晶種層陽極氧化鋁電鍍銅奈米線
外文關鍵詞:Electroless NickelNanotwinned Copper NanowiresSeed LayersAnodic Aluminum OxideElectrodeposited Copper Nanowires
相關次數:
  • 推薦推薦:0
  • 點閱點閱:44
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
物理氣相沉積(PVD)是一種廣泛使用的金屬鍍膜技術,適用於沉積後續金屬薄膜電鍍製程的晶種層。然而,物理氣相沉積是一種昂貴且需要真空的過程,並且對於高深寬比多孔結構的填充能力較差。相較之下,無電鍍沉積具有比物理氣相沉積更快的沉積速率、易於處理、低成本等優點。本研究的目的是通過在陽極氧化鋁(AAO)模板上沉積無電鍍鎳種子層作為後續電鍍銅的背電極,以優化電鍍奈米雙晶銅奈米線的製程。在經兩階段擴孔製程後的 AAO 模板進行無電鍍鎳沉積,發現有鎳顆粒鑲嵌在 AAO模板孔壁中,使後續沉積的奈米銅導線晶相成長較不規則,變成具有較低 (111) 生長織構係數(TC(111) = 1.64)的多晶結構。通過調整AAO模板的擴孔製程,無電鍍沉積鎳在AAO孔壁上的鎳顆粒可被移除,後續電鍍沉積銅奈米線的 (111) 生長織構係數可大幅提升(TC(111) > 2.6),並具有高密度奈米雙晶結構。此研究也探討電流密度對於奈米銅導線晶相和微結構的影響。在適當地電流密度施加條件下,可以合成出具有高密度雙晶結構的銅奈米線,而在施加低和高電流密度下,前期會先以 (111) 方向成長,中後期則轉為 (220) 方向成長。本研究中的全濕式化學製程所製備之雙晶結構銅奈米線有機會可應用於電化學二氧化碳還原中的觸媒材料。
Physical vapor (PVD) is a widely used deposition technique to deposit thin seed layers for subsequent electrodeposition of metal films. However, the PVD is an expensive vacuum-based process and has poor filling capability for high aspect-ratio porous structures. Alternatively, electroless plating provides several advantages over the PVD such as fast deposition rate, facile process, low cost, and conformality. The objective of this work is to develop a simple and time-saving process to prepare electroless plated Ni seed layer on an anodic aluminum oxide (AAO) membrane in order to electrodeposit nanotwinned copper nanowires (nt-CuNWs) subsequently. Following a typical two-step pore widening process, it was found that some nickel particles were embedded inside the AAO pores, which affected the subsequent AAO-templated CuNWs electrodeposition. The electrodeposited CuNWs showed a polycrystalline microstructure with a relatively low (111) growth texture (TC(111) = 1.64). By adjusting the pore widening process, the nickel particles in the AAO pores were removed, and the electrodeposited CuNWs exhibited a high (111) growth texture (TC(111) > 2.6) along with dense nanoscale twin structures. The influence of electrodeposition current density on the crystallography and microstructure of the electrodeposited CuNWs was investigated. CuNWs with highly dense twin boundaries were discovered at a medium applied current density, while a (220)-dominated growth texture was found at both low and high current densities applied. The all-wet chemical process presented in this study shall be beneficial for preparing nt-CuNWs as CO2RR catalytic materials.
摘要-----------------------------------------------------------I
Abstract------------------------------------------------------II
誌謝----------------------------------------------------------III
Contents------------------------------------------------------IV
Content of Figures--------------------------------------------VI
Content of Tables---------------------------------------------IX
Chapter 1 Introduction-----------------------------------------1
1.1 Research Background----------------------------------------1
1.2 Electroless Plating----------------------------------------1
1.3 Motivation-------------------------------------------------2
Chapter 2 Literature Review------------------------------------4
2.1 Nanotwinned Copper Nanowires-------------------------------4
2.1.1 Nanotwinned Copper Structure-----------------------------4
2.1.2 Template-Assisted Electrodeposited Metal Nanowires-------11
2.2 Electroless Plating----------------------------------------18
2.2.1 Solution Components--------------------------------------18
2.2.2 Plating Mechanism----------------------------------------19
2.2.3 Plating Process------------------------------------------20
2.3 Electroless Nickel Plating---------------------------------21
Chapter 3 Experimental Section---------------------------------30
3.1 Experimental flow------------------------------------------30
3.2 Chemicals and Apparatuses----------------------------------31
3.3 Specimen Preparation---------------------------------------32
3.4 Analysis Techniques----------------------------------------34
3.4.1 X-ray Diffractometer (XRD)-------------------------------34
3.4.2 Field-Emission Scanning Electron Microscope (FE-SEM)-----35
3.4.3 Transmission Electron Microscopy (TEM)-------------------35
Chapter 4 Results and Discussion-------------------------------36
4.1 Process Optimization of AAO Templates----------------------36
4.1.1 AAO template with Electroless Ni(P) Back Electrode Coating- 36
4.1.2 AAO Pore Widening Process--------------------------------37
4.2 Effect of Current Densities on Copper Nanowires Growth Texture-42
4.2.1 Microstructure of Electrodeposited Cu Nanowires----------42
4.2.2 Texture of electrodeposited Cu nanowires-----------------47
Chapter 5 Conclusions------------------------------------------50
5.1 Conclusions------------------------------------------------50
5.2 Future Work------------------------------------------------50
References-----------------------------------------------------52
[1] Zhang, Y. Si, Z., Du, H., Deng, Y., Zhang, Q., Wang, Z., Yu, Q., & Xu, H. Selective CO2 Reduction To Ethylene Over A Wide Potential Window By Copper Nanowires With High Density Of Defects. Inorg. Chem. 61, 20666–20673 (2022).
[2] Zhu, W., Zhao, K., Liu, S., Liu, M., Peng, F., An, P., Qin, B., Zhou, H., Li, H., & He, Z. Low-Overpotential Selective Reduction Of CO2 To Ethanol On Electrodeposited Cuxauy Nanowire Arrays. J. Energy Chem. 37, 176–182 (2019).
[3] Cai, J., Zhao, Q., Hsu, W. Y., Choi, C., Liu, Y., Martirez, J. M. P., Chen, C., Huang, J., Carter, E. A., & Huang, Y. Highly Selective Electrochemical Reduction Of CO2 Into Methane On Nanotwinned Cu. J. Am. Chem. Soc. 145, 9136–9143 (2023).
[4] Shacham-Diamand, Y., Osaka, T., Okinaka, Y., Sugiyama, A., & Dubin, V. 30 Years Of Electroless Plating For Semiconductor And Polymer Micro-Systems. Microelectron. Eng. 132, 35–45 (2015).
[5] Muench, F. Electroless Plating Of Metal Nanomaterials. ChemElectroChem 8, 2993–3012 (2021).
[6] Yeh, C. N., Raidongia, K., Shao, J., Yang, Q. H., & Huang, J. On The Origin Of The Stability Of Graphene Oxide Membranes In Water. Nat. Chem. 7, 166–170 (2015).
[7] Aifantis, K. E., & Konstantinidis, A. A. Hall – Petch Revisited At The Nanoscale. 163, 139–144 (2009).
[8] Lu, L., Shen, Y., Chen, X., Qian, L., & Lu, K. Ultrahigh Strength And High Electrical Conductivity In Copper. Science 304, 422–426 (2004).
[9] Chen, K. C., Wu, W. W., Liao, C. N., Chen, L. J., & Tu, K. N. Observation Of Atomic Diffusion At Twin-Modified Grain Boundaries In Copper. Science 321, 1066–1069 (2008).
[10] Karimi, M., Tomkowski, T., Vidali, G., & Biham, O. Diffusion Of Cu On Cu Surfaces. Phys. Rev. B 52, 5364–5374 (1995).
[11] Chen, K.X., Gao, L.Y., Li, Z., Sun, R., & Liu, Z. Q. Research Progress Of Electroplated Nanotwinned Copper In Microelectronic Packaging. Materials (Basel). 16, 4614 (2023).
[12] Chandrasekar, M. S., & Pushpavanam, M. Pulse And Pulse Reverse Plating-Conceptual, Advantages And Applications. Electrochim. Acta 53, 3313–3322 (2008).
[13] Xu, D., Kwan, W. L., Chen, K., Zhang, X., Ozoliņš, V., & Tu, K. N. Nanotwin Formation In Copper Thin Films By Stress/Strain Relaxation In Pulse Electrodeposition. Appl. Phys. Lett. 91, 18–21 (2007).
[14] Xu, D., Sriram, V., Ozolins, V., Yang, J. M., Tu, K. N., Stafford, G. R., & Beauchamp, C. In situ Measurements Of Stress Evolution For Nanotwin Formation During Pulse Electrodeposition Of Copper. J. Appl. Phys. 105, 1–5 (2009).
[15] Chen, H.Y., Huang, Y.S., & Liao, C.N. Electrodeposition And Growth Mechanism Of Nanotwinned Copper In High Aspect-Ratio Via Structures. J. Electrochem. Soc. 168, 102503 (2021).
[17] Kaur, A., Bajaj, B., Kaushik, A., Saini, A., & Sud, D. A Review On Template Assisted Synthesis Of Multi-Functional Metal Oxide Nanostructures: Status And Prospects. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 286, 116005 (2022).
[18] Bera, D., Kuiry, S. C., & Seal, S. Synthesis Of Nanostructured Materials Using Template-Assisted Electrodeposition. JOM 56, 49–53 (2004).
[19] Mohanty, U. S. Electrodeposition: A Versatile And Inexpensive Tool For The Synthesis Of Nanoparticles, Nanorods, Nanowires, And Nanoclusters Of Metals. J. Appl. Electrochem. 41, 257–270 (2011).
[20] Chan, T. C., Lin, Y. M., Tsai, H. W., Wang, Z. M., Liao, C. N., & Chueh, Y. L. Growth Of Large-Scale Nanotwinned Cu Nanowire Arrays From Anodic Aluminum Oxide Membrane By Electrochemical Deposition Process: Controllable Nanotwin Density And Growth Orientation With Enhanced Electrical Endurance Performance. Nanoscale 6, 7332–7338 (2014).
[21] Poinern, G. E. J., Ali, N., & Fawcett, D. Progress In Nano-Engineered Anodic Aluminum Oxide Membrane Development. Materials 4, 251-289 (2011).
[22] Sulka, G. D. Highly Ordered Anodic Porous Alumina Formation By Self‐Organized Anodizing. Nanostructured Materials in Electrochemistry 1-116 (2008).
[23] Ali, H. O. Review Of Porous Anodic Aluminium Oxide (AAO) Applications For Sensors, MEMS And Biomedical Devices. Trans. Inst. Met. Finish. 95, 290–296 (2017).
[24] Md Jani, A. M., Losic, D., & Voelcker, N. H. Nanoporous Anodic Aluminium Oxide: Advances In Surface Engineering And Emerging Applications. Prog. Mater. Sci. 58, 636–704 (2013).
[25] Lee, W., & Park, S. J. Porous Anodic Aluminum Oxide: Anodization And Templated Synthesis Of Functional Nanostructures. Chem. Rev. 114, 7487–7556 (2014).
[26] JP O’sullivan, G. W. Morphology And Mechanism Of Formation Of Porous Anodic Films On Aluminum. Proc Roy Soc Ser A Math Phys Sci 317, 511–543 (1970).
[27] Masuda, H. & Satoh, M. Fabrication Of Gold Nanodot Array Using Anodic Porous Alumina As An Evaporation Mask. Jpn. J. Appl. Phys. 35, 126–129 (1996).
[28] Zhang, L., Cho, H. S., Li, F., Metzger, R. M., & Doyle, W. D. Cellular Growth Of Highly Ordered Porous Anodic Films On Aluminium. J. Mater. Sci. Lett. 17, 291–294 (1998).
[29] Li, A. P., Müller, F., Bimer, A., Nielsch, K., & Gösele, U. Hexagonal Pore Arrays With A 50-420 Nm Interpore Distance Formed By Self-Organization In Anodic Alumina. J. Appl. Phys. 84, 6023–6026 (1998).
[30] Zaraska, L., Sulka, G. D., & Jaskuła, M. Anodic Alumina Membranes With Defined Pore Diameters And Thicknesses Obtained By Adjusting The Anodizing Duration And Pore Opening/Widening Time. J. Solid State Electrochem. 15, 2427–2436 (2011).
[31] Lillo, M., & Losic, D. Pore Opening Detection For Controlled Dissolution Of Barrier Oxide Layer And Fabrication Of Nanoporous Alumina With Through-Hole Morphology. J. Memb. Sci. 327, 11–17 (2009).
[32] Thompson, G. E., & Wood, G. C. Porous Anodic Film Formation On Aluminium. Nature. 290 230–232 (1981).
[33] Han, H., Park, S. J., Jang, J. S., Ryu, H., Kim, K. J., Baik, S., & Lee, W. In situ Determination Of The Pore Opening Point During Wet-Chemical Etching Of The Barrier Layer Of Porous Anodic Aluminum Oxide: Nonuniform Impurity Distribution In Anodic Oxide. ACS Appl. Mater. Interfaces 5, 3441–3448 (2013).
[34] Sahoo, P., & Das, S. K. Tribology Of Electroless Nickel Coatings - A Review. Mater. Des. 32, 1760–1775 (2011).
[35] Djokić, S. S., & Cavallotti, P. L. Modern Aspects of Electrochemistry. 48 (2010).
[36] Skokina, R. E., & Voronchikhina, L. I. Cleansing Action Of Synergistic Mixtures Of Surfactants In Pretreatment Of Glass Fibers Before Electroless Metal Plating. Russ. J. Appl. Chem. 75, 1990–1992 (2002).
[37] Zhang, J., Yang, X., Yu, S., Ge, M., Meng, F., Wang, J., Wu X., & Jiang, W. Roughening Of Hollow Glass Microspheres By NaF For Ni Electroless Plating. Surf. Coatings Technol. 359, 62–72 (2019).
[38] Wei, X., & Roper, D. K. Tin Sensitization For Electroless Plating Review. J. Electrochem. Soc. 161, D235–D242 (2014).
[39] Ayturk, M. E., & Ma, Y. H. Electroless Pd And Ag Deposition Kinetics Of The Composite Pd And Pd/Ag Membranes Synthesized From Agitated Plating Baths. J. Memb. Sci. 330, 233–245 (2009).
[40] Duncan, R. N. The Effect Of Solution Age On Corrosion Resistance Of Electroless Nickel Deposits. Plat. Surf. Finish. 83, 64–68 (1996).
[41] Lu, J., & Feng, Y. Measurement Of Orthophosphite Concentration In Electroless Nickel Plating Baths By Sodium Ion Electrodes. Met. Finish. 107, 23–26 (2009).
[42] Agarwala, R., Agarwala, V., & Sharma, R. Electroless Ni-P Based Nanocoating Technology - A Review. Synth. React. Inorganic, Met. Nano-Metal Chem. 36, 493–515 (2006).
[43] Sudagar, J., Lian, J., & Sha, W. Electroless Nickel, Alloy, Composite And Nano Coatings - A Critical Review. J. Alloys Compd. 571, 183–204 (2013).
[44] Krishnan, K. H., John, S., Srinivasan, K. N., Praveen, J., Ganesan, M., & Kavimani, P.
M. An Overall Aspect Of Electroless Ni-P Depositions - A Review Article. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 37, 1917–1926 (2006).
[45] Song, J. Y., & Yu, J. Residual Stress Measurements In Electroless Plated Ni-P Films. Thin Solid Films 415, 167–172 (2002).
[46] Buchtík, M., Doskočil, L., Brescher, R., Doležal, P., Másilko, J., & Wasserbauer, J. The Effect Of Crystallization And Phase Transformation On The Mechanical And Electrochemical Corrosion Properties Of Ni-P Coatings. Coatings 11, (2021).
[47] Shu, X., Wang, Y., Liu, C., Aljaafari, A., & Gao, W. Double-Layered Ni-P/Ni-P-ZrO2 Electroless Coatings On AZ31 Magnesium Alloy With Improved Corrosion Resistance. Surf. Coatings Technol. 261, 161–166 (2015).
[48] Baskaran, I., Narayanan, T. S. N. S., & Stephen, A. Effect Of Accelerators And Stabilizers On The Formation And Characteristics Of Electroless Ni-P Deposits. Mater. Chem. Phys. 99, 117–126 (2006).
[49] Guo, Z., Keong, K. G., & Sha, W. Crystallisation And Phase Transformation Behaviour Of Electroless Nickel Phosphorus Platings During Continuous Heating. J. Alloys Compd. 358, 112–119 (2003).
[50] Martyak, N. M., & Drake, K. Peak-Profile Analysis Of Electroless Nickel Coatings. J. Alloys Compd. 312, 30–40 (2000).
[51] Keong, K. G., Sha, W., & Malinov, S. Crystallization And Phase Transformation Behaviour Of Electroless Nickel-Phosphorus Deposits With Low And Medium Phosphorus Contents Under Continuous Heating. J. Mater. Sci. 37, 4445–4450 (2002).
[52] Parkinson, R. Properties And Applications Of Electroless Nickel. Nickel Dev. Inst. Publ. 5–7 (1997).
[53] Osaka, T., Usuda, M., Koiwa, I., & Sawai, H. Effect Of Phosphorus Content Of The Magnetic And Electric Properties Of Electroless Ni–P Film After Heat Treatment. Jpn. J. Appl. Phys. 27, 1885–1889 (1988).
[54] Hwang, B. J., & Lin, S. H. Reaction Mechanism Of Electroless Deposition: Observations Of Morphology Evolution During Nucleation And Growth Via Tapping Mode AFM. J. Electrochem. Soc. 142, 3749–3754 (1995).
[55] Rahimi, A. R., Modarres, H., & Abdouss, M. Study On Morphology And Corrosion Resistance Of Electroless Ni-P Coatings. Surf. Eng. 25, 367–371 (2009).
[56] Keong, K. G., Sha, W., & Malinov, S. Crystallisation Kinetics And Phase Transformation Behaviour Of Electroless Nickel-Phosphorus Deposits With High Phosphorus Content. J. Alloys Compd. 334, 192–199 (2002).
[57] Jinsenji, M., Tajiri, A., Nishimura, Y., Bachman, M., Li, G. P., & Takai, O. Direct Metal Layer Forming With Good Adhesion On Porous AAO Films By Electroless Cu Plating. J. Electrochem. Soc. 166, D470–D475 (2019).
[58] Liao, C.N., Lu, Y.C., & Xu, D. Modulation Of Crystallographic Texture And Twinning Structure Of Cu Nanowires By Electrodeposition. J. Electrochem. Soc. 160, D207–D211 (2013).
[59] Duan, J Liu, D, Mo., H, Yao., K, Maaz., Y, Chen., Y, Sun., M, Hou., X, Qu., L Zhang., & Y, Chen. Controlled Crystallinity And Crystallographic Orientation Of Cu Nanowires Fabricated In Ion-Track Templates. Nanotechnology 21, 1–8 (2010).
[60] Vitos, L., Ruban, A.V., Skriver, H. L., & Kollár, J. The Surface Energy Of Metals. Surf. Sci. 411, 186–202 (1998).
[61] Pan, H., Sun, H., Poh, C., Feng, Y., & Lin, J. Single-Crystal Growth Of Metallic Nanowires With Preferred Orientation. Nanotechnology 16, 1559–1564 (2005).
[62] Lee, H., Wong, S. S., & Lopatin, S. D. Correlation Of Stress And Texture Evolution During Self- And Thermal Annealing Of Electroplated Cu Films. J. Appl. Phys. 93, 3796–3804 (2003).
[63] Kozlov, V. M., & Peraldo Bicelli, L. Texture Formation Of Electrodeposited FCC Metals. Mater. Chem. Phys. 77, 289–293 (2003).
[64] Sribalaji, M., Arunkumar, P., Babu, K. S., & Keshri, A. K. Crystallization Mechanism And Corrosion Property Of Electroless Nickel Phosphorus Coating During Intermediate Temperature Oxidation. Appl. Surf. Sci. 355, 112–120 (2015).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *