|
[1] Zhang, Y. Si, Z., Du, H., Deng, Y., Zhang, Q., Wang, Z., Yu, Q., & Xu, H. Selective CO2 Reduction To Ethylene Over A Wide Potential Window By Copper Nanowires With High Density Of Defects. Inorg. Chem. 61, 20666–20673 (2022). [2] Zhu, W., Zhao, K., Liu, S., Liu, M., Peng, F., An, P., Qin, B., Zhou, H., Li, H., & He, Z. Low-Overpotential Selective Reduction Of CO2 To Ethanol On Electrodeposited Cuxauy Nanowire Arrays. J. Energy Chem. 37, 176–182 (2019). [3] Cai, J., Zhao, Q., Hsu, W. Y., Choi, C., Liu, Y., Martirez, J. M. P., Chen, C., Huang, J., Carter, E. A., & Huang, Y. Highly Selective Electrochemical Reduction Of CO2 Into Methane On Nanotwinned Cu. J. Am. Chem. Soc. 145, 9136–9143 (2023). [4] Shacham-Diamand, Y., Osaka, T., Okinaka, Y., Sugiyama, A., & Dubin, V. 30 Years Of Electroless Plating For Semiconductor And Polymer Micro-Systems. Microelectron. Eng. 132, 35–45 (2015). [5] Muench, F. Electroless Plating Of Metal Nanomaterials. ChemElectroChem 8, 2993–3012 (2021). [6] Yeh, C. N., Raidongia, K., Shao, J., Yang, Q. H., & Huang, J. On The Origin Of The Stability Of Graphene Oxide Membranes In Water. Nat. Chem. 7, 166–170 (2015). [7] Aifantis, K. E., & Konstantinidis, A. A. Hall – Petch Revisited At The Nanoscale. 163, 139–144 (2009). [8] Lu, L., Shen, Y., Chen, X., Qian, L., & Lu, K. Ultrahigh Strength And High Electrical Conductivity In Copper. Science 304, 422–426 (2004). [9] Chen, K. C., Wu, W. W., Liao, C. N., Chen, L. J., & Tu, K. N. Observation Of Atomic Diffusion At Twin-Modified Grain Boundaries In Copper. Science 321, 1066–1069 (2008). [10] Karimi, M., Tomkowski, T., Vidali, G., & Biham, O. Diffusion Of Cu On Cu Surfaces. Phys. Rev. B 52, 5364–5374 (1995). [11] Chen, K.X., Gao, L.Y., Li, Z., Sun, R., & Liu, Z. Q. Research Progress Of Electroplated Nanotwinned Copper In Microelectronic Packaging. Materials (Basel). 16, 4614 (2023). [12] Chandrasekar, M. S., & Pushpavanam, M. Pulse And Pulse Reverse Plating-Conceptual, Advantages And Applications. Electrochim. Acta 53, 3313–3322 (2008). [13] Xu, D., Kwan, W. L., Chen, K., Zhang, X., Ozoliņš, V., & Tu, K. N. Nanotwin Formation In Copper Thin Films By Stress/Strain Relaxation In Pulse Electrodeposition. Appl. Phys. Lett. 91, 18–21 (2007). [14] Xu, D., Sriram, V., Ozolins, V., Yang, J. M., Tu, K. N., Stafford, G. R., & Beauchamp, C. In situ Measurements Of Stress Evolution For Nanotwin Formation During Pulse Electrodeposition Of Copper. J. Appl. Phys. 105, 1–5 (2009). [15] Chen, H.Y., Huang, Y.S., & Liao, C.N. Electrodeposition And Growth Mechanism Of Nanotwinned Copper In High Aspect-Ratio Via Structures. J. Electrochem. Soc. 168, 102503 (2021). [17] Kaur, A., Bajaj, B., Kaushik, A., Saini, A., & Sud, D. A Review On Template Assisted Synthesis Of Multi-Functional Metal Oxide Nanostructures: Status And Prospects. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 286, 116005 (2022). [18] Bera, D., Kuiry, S. C., & Seal, S. Synthesis Of Nanostructured Materials Using Template-Assisted Electrodeposition. JOM 56, 49–53 (2004). [19] Mohanty, U. S. Electrodeposition: A Versatile And Inexpensive Tool For The Synthesis Of Nanoparticles, Nanorods, Nanowires, And Nanoclusters Of Metals. J. Appl. Electrochem. 41, 257–270 (2011). [20] Chan, T. C., Lin, Y. M., Tsai, H. W., Wang, Z. M., Liao, C. N., & Chueh, Y. L. Growth Of Large-Scale Nanotwinned Cu Nanowire Arrays From Anodic Aluminum Oxide Membrane By Electrochemical Deposition Process: Controllable Nanotwin Density And Growth Orientation With Enhanced Electrical Endurance Performance. Nanoscale 6, 7332–7338 (2014). [21] Poinern, G. E. J., Ali, N., & Fawcett, D. Progress In Nano-Engineered Anodic Aluminum Oxide Membrane Development. Materials 4, 251-289 (2011). [22] Sulka, G. D. Highly Ordered Anodic Porous Alumina Formation By Self‐Organized Anodizing. Nanostructured Materials in Electrochemistry 1-116 (2008). [23] Ali, H. O. Review Of Porous Anodic Aluminium Oxide (AAO) Applications For Sensors, MEMS And Biomedical Devices. Trans. Inst. Met. Finish. 95, 290–296 (2017). [24] Md Jani, A. M., Losic, D., & Voelcker, N. H. Nanoporous Anodic Aluminium Oxide: Advances In Surface Engineering And Emerging Applications. Prog. Mater. Sci. 58, 636–704 (2013). [25] Lee, W., & Park, S. J. Porous Anodic Aluminum Oxide: Anodization And Templated Synthesis Of Functional Nanostructures. Chem. Rev. 114, 7487–7556 (2014). [26] JP O’sullivan, G. W. Morphology And Mechanism Of Formation Of Porous Anodic Films On Aluminum. Proc Roy Soc Ser A Math Phys Sci 317, 511–543 (1970). [27] Masuda, H. & Satoh, M. Fabrication Of Gold Nanodot Array Using Anodic Porous Alumina As An Evaporation Mask. Jpn. J. Appl. Phys. 35, 126–129 (1996). [28] Zhang, L., Cho, H. S., Li, F., Metzger, R. M., & Doyle, W. D. Cellular Growth Of Highly Ordered Porous Anodic Films On Aluminium. J. Mater. Sci. Lett. 17, 291–294 (1998). [29] Li, A. P., Müller, F., Bimer, A., Nielsch, K., & Gösele, U. Hexagonal Pore Arrays With A 50-420 Nm Interpore Distance Formed By Self-Organization In Anodic Alumina. J. Appl. Phys. 84, 6023–6026 (1998). [30] Zaraska, L., Sulka, G. D., & Jaskuła, M. Anodic Alumina Membranes With Defined Pore Diameters And Thicknesses Obtained By Adjusting The Anodizing Duration And Pore Opening/Widening Time. J. Solid State Electrochem. 15, 2427–2436 (2011). [31] Lillo, M., & Losic, D. Pore Opening Detection For Controlled Dissolution Of Barrier Oxide Layer And Fabrication Of Nanoporous Alumina With Through-Hole Morphology. J. Memb. Sci. 327, 11–17 (2009). [32] Thompson, G. E., & Wood, G. C. Porous Anodic Film Formation On Aluminium. Nature. 290 230–232 (1981). [33] Han, H., Park, S. J., Jang, J. S., Ryu, H., Kim, K. J., Baik, S., & Lee, W. In situ Determination Of The Pore Opening Point During Wet-Chemical Etching Of The Barrier Layer Of Porous Anodic Aluminum Oxide: Nonuniform Impurity Distribution In Anodic Oxide. ACS Appl. Mater. Interfaces 5, 3441–3448 (2013). [34] Sahoo, P., & Das, S. K. Tribology Of Electroless Nickel Coatings - A Review. Mater. Des. 32, 1760–1775 (2011). [35] Djokić, S. S., & Cavallotti, P. L. Modern Aspects of Electrochemistry. 48 (2010). [36] Skokina, R. E., & Voronchikhina, L. I. Cleansing Action Of Synergistic Mixtures Of Surfactants In Pretreatment Of Glass Fibers Before Electroless Metal Plating. Russ. J. Appl. Chem. 75, 1990–1992 (2002). [37] Zhang, J., Yang, X., Yu, S., Ge, M., Meng, F., Wang, J., Wu X., & Jiang, W. Roughening Of Hollow Glass Microspheres By NaF For Ni Electroless Plating. Surf. Coatings Technol. 359, 62–72 (2019). [38] Wei, X., & Roper, D. K. Tin Sensitization For Electroless Plating Review. J. Electrochem. Soc. 161, D235–D242 (2014). [39] Ayturk, M. E., & Ma, Y. H. Electroless Pd And Ag Deposition Kinetics Of The Composite Pd And Pd/Ag Membranes Synthesized From Agitated Plating Baths. J. Memb. Sci. 330, 233–245 (2009). [40] Duncan, R. N. The Effect Of Solution Age On Corrosion Resistance Of Electroless Nickel Deposits. Plat. Surf. Finish. 83, 64–68 (1996). [41] Lu, J., & Feng, Y. Measurement Of Orthophosphite Concentration In Electroless Nickel Plating Baths By Sodium Ion Electrodes. Met. Finish. 107, 23–26 (2009). [42] Agarwala, R., Agarwala, V., & Sharma, R. Electroless Ni-P Based Nanocoating Technology - A Review. Synth. React. Inorganic, Met. Nano-Metal Chem. 36, 493–515 (2006). [43] Sudagar, J., Lian, J., & Sha, W. Electroless Nickel, Alloy, Composite And Nano Coatings - A Critical Review. J. Alloys Compd. 571, 183–204 (2013). [44] Krishnan, K. H., John, S., Srinivasan, K. N., Praveen, J., Ganesan, M., & Kavimani, P. M. An Overall Aspect Of Electroless Ni-P Depositions - A Review Article. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 37, 1917–1926 (2006). [45] Song, J. Y., & Yu, J. Residual Stress Measurements In Electroless Plated Ni-P Films. Thin Solid Films 415, 167–172 (2002). [46] Buchtík, M., Doskočil, L., Brescher, R., Doležal, P., Másilko, J., & Wasserbauer, J. The Effect Of Crystallization And Phase Transformation On The Mechanical And Electrochemical Corrosion Properties Of Ni-P Coatings. Coatings 11, (2021). [47] Shu, X., Wang, Y., Liu, C., Aljaafari, A., & Gao, W. Double-Layered Ni-P/Ni-P-ZrO2 Electroless Coatings On AZ31 Magnesium Alloy With Improved Corrosion Resistance. Surf. Coatings Technol. 261, 161–166 (2015). [48] Baskaran, I., Narayanan, T. S. N. S., & Stephen, A. Effect Of Accelerators And Stabilizers On The Formation And Characteristics Of Electroless Ni-P Deposits. Mater. Chem. Phys. 99, 117–126 (2006). [49] Guo, Z., Keong, K. G., & Sha, W. Crystallisation And Phase Transformation Behaviour Of Electroless Nickel Phosphorus Platings During Continuous Heating. J. Alloys Compd. 358, 112–119 (2003). [50] Martyak, N. M., & Drake, K. Peak-Profile Analysis Of Electroless Nickel Coatings. J. Alloys Compd. 312, 30–40 (2000). [51] Keong, K. G., Sha, W., & Malinov, S. Crystallization And Phase Transformation Behaviour Of Electroless Nickel-Phosphorus Deposits With Low And Medium Phosphorus Contents Under Continuous Heating. J. Mater. Sci. 37, 4445–4450 (2002). [52] Parkinson, R. Properties And Applications Of Electroless Nickel. Nickel Dev. Inst. Publ. 5–7 (1997). [53] Osaka, T., Usuda, M., Koiwa, I., & Sawai, H. Effect Of Phosphorus Content Of The Magnetic And Electric Properties Of Electroless Ni–P Film After Heat Treatment. Jpn. J. Appl. Phys. 27, 1885–1889 (1988). [54] Hwang, B. J., & Lin, S. H. Reaction Mechanism Of Electroless Deposition: Observations Of Morphology Evolution During Nucleation And Growth Via Tapping Mode AFM. J. Electrochem. Soc. 142, 3749–3754 (1995). [55] Rahimi, A. R., Modarres, H., & Abdouss, M. Study On Morphology And Corrosion Resistance Of Electroless Ni-P Coatings. Surf. Eng. 25, 367–371 (2009). [56] Keong, K. G., Sha, W., & Malinov, S. Crystallisation Kinetics And Phase Transformation Behaviour Of Electroless Nickel-Phosphorus Deposits With High Phosphorus Content. J. Alloys Compd. 334, 192–199 (2002). [57] Jinsenji, M., Tajiri, A., Nishimura, Y., Bachman, M., Li, G. P., & Takai, O. Direct Metal Layer Forming With Good Adhesion On Porous AAO Films By Electroless Cu Plating. J. Electrochem. Soc. 166, D470–D475 (2019). [58] Liao, C.N., Lu, Y.C., & Xu, D. Modulation Of Crystallographic Texture And Twinning Structure Of Cu Nanowires By Electrodeposition. J. Electrochem. Soc. 160, D207–D211 (2013). [59] Duan, J Liu, D, Mo., H, Yao., K, Maaz., Y, Chen., Y, Sun., M, Hou., X, Qu., L Zhang., & Y, Chen. Controlled Crystallinity And Crystallographic Orientation Of Cu Nanowires Fabricated In Ion-Track Templates. Nanotechnology 21, 1–8 (2010). [60] Vitos, L., Ruban, A.V., Skriver, H. L., & Kollár, J. The Surface Energy Of Metals. Surf. Sci. 411, 186–202 (1998). [61] Pan, H., Sun, H., Poh, C., Feng, Y., & Lin, J. Single-Crystal Growth Of Metallic Nanowires With Preferred Orientation. Nanotechnology 16, 1559–1564 (2005). [62] Lee, H., Wong, S. S., & Lopatin, S. D. Correlation Of Stress And Texture Evolution During Self- And Thermal Annealing Of Electroplated Cu Films. J. Appl. Phys. 93, 3796–3804 (2003). [63] Kozlov, V. M., & Peraldo Bicelli, L. Texture Formation Of Electrodeposited FCC Metals. Mater. Chem. Phys. 77, 289–293 (2003). [64] Sribalaji, M., Arunkumar, P., Babu, K. S., & Keshri, A. K. Crystallization Mechanism And Corrosion Property Of Electroless Nickel Phosphorus Coating During Intermediate Temperature Oxidation. Appl. Surf. Sci. 355, 112–120 (2015).
|