|
1. IRENA, World Energy Transitions Outlook 2022: 1.5°C Pathway. International Renewable Energy Agency, Abu Dhabi, (2022). 2. G. J. Snyder, E. S. Toberer, Complex thermoelectric materials. Nature materials 7, 105-114 (2008). 3. R. Dalven, A review of the semiconductor properties of PbTe, PbSe, PbS and PbO. Infrared physics 9, 141-184 (1969). 4. Y. Xiao, W. Liu, Y. Zhang, D. Wang, H. Shi, S. Wang, Y. Jin, W. Qu, H. Wu, X. Ding, Rationally optimized carrier effective mass and carrier density leads to high average ZT value in n-type PbSe. Journal of Materials Chemistry A 9, 23011-23018 (2021). 5. Y. Xiao, D. Wang, Y. Zhang, C. Chen, S. Zhang, K. Wang, G. Wang, S. J. Pennycook, G. J. Snyder, H. Wu, Band sharpening and band alignment enable high quality factor to enhance thermoelectric performance in n-type PbS. Journal of the American Chemical Society 142, 4051-4060 (2020). 6. Y. Lee, S.-H. Lo, C. Chen, H. Sun, D.-Y. Chung, T. C. Chasapis, C. Uher, V. P. Dravid, M. G. Kanatzidis, Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide. Nature communications 5, 3640 (2014). 7. Y. Li, Z. Wu, J. Lin, Y. Wang, J. Mao, H. Xie, Z. Li, Enhanced thermoelectric performance of hot-press Bi-doped n-type polycrystalline PbS. Materials Science in Semiconductor Processing 121, 105393 (2021). 8. C. Zhu, J. Zhang, H. Ming, L. Huang, Y. Li, T. Chen, D. Li, B. Zhang, J. Xu, X. Qin, Synergistic optimization of electrical and thermal transport in n-type Bi-doped PbTe by introducing coherent nanophase Cu1.75Te. Journal of Materiomics 7, 146-155 (2021). 9. K. Uchida, M. Ishida, T. Kikkawa, A. Kirihara, T. Murakami, E. Saitoh, Longitudinal spin Seebeck effect: from fundamentals to applications. Journal of Physics: Condensed Matter 26, 343202 (2014). 10. Y. Pei, J. Lensch‐Falk, E. S. Toberer, D. L. Medlin, G. J. Snyder, High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Advanced Functional Materials 21, 241-249 (2011). 11. S. Johnsen, J. He, J. Androulakis, V. P. Dravid, I. Todorov, D. Y. Chung, M. G. Kanatzidis, Nanostructures boost the thermoelectric performance of PbS. Journal of the American Chemical Society 133, 3460-3470 (2011). 12. L.-D. Zhao, J. He, C.-I. Wu, T. P. Hogan, X. Zhou, C. Uher, V. P. Dravid, M. G. Kanatzidis, Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. Journal of the American Chemical Society 134, 7902-7912 (2012). 13. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G. J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66-69 (2011). 14. J. Yang, X. Zhang, G. Liu, L. Zhao, J. Liu, Z. Shi, J. Ding, G. Qiao, Multiscale structure and band configuration tuning to achieve high thermoelectric properties in n-type PbS bulks. Nano Energy 74, 104826 (2020). 15. W. Liu, L. Xu, Y. Xiao, L.-D. Zhao, Strategies to advance earth-abundant PbS thermoelectric. Chemical Engineering Journal 465, 142785 (2023). 16. H. Wang, E. Schechtel, Y. Pei, G. J. Snyder, High thermoelectric efficiency of n‐type PbS. Advanced Energy Materials 3, 488-495 (2013). 17. Q. Zhang, Y. Xiao, L.-D. Zhao, E. Chere, Z. Ren, X. Zhang, C. Chang, E. Levin, in Advanced Thermoelectrics. (CRC Press, 2017), pp. 107-194. 18. Y. Tung, M. L. Cohen, Relativistic band structure and electronic properties of SnTe, GeTe, and PbTe. Physical Review 180, 823 (1969). 19. J. M. Skelton, S. C. Parker, A. Togo, I. Tanaka, A. Walsh, Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles. Physical Review B 89, 205203 (2014). 20. J. Li, X. Zhang, Z. Chen, S. Lin, W. Li, J. Shen, I. T. Witting, A. Faghaninia, Y. Chen, A. Jain, Low-symmetry rhombohedral GeTe thermoelectrics. Joule 2, 976-987 (2018). 21. Z. M. Gibbs, H. Kim, H. Wang, R. L. White, F. Drymiotis, M. Kaviany, G. Jeffrey Snyder, Temperature dependent band gap in PbX (X= S, Se, Te). Applied Physics Letters 103, (2013). 22. Z. Z. Luo, S. Cai, S. Hao, T. P. Bailey, I. Spanopoulos, Y. Luo, J. Xu, C. Uher, C. Wolverton, V. P. Dravid, Strong valence band convergence to enhance thermoelectric performance in PbSe with two chemically independent controls. Angewandte Chemie International Edition 60, 268-273 (2021). 23. J. Bloem, F. Kröger, The pTx-phase diagram of the lead-sulphur system. Zeitschrift für Physikalische Chemie 7, 1-14 (1956). 24. J. Lin, R. Sharma, Y. Chang, The Pb-Se (lead-selenium) system. Journal of phase equilibria 17, 253-260 (1996). 25. J. Lin, K. Hsleh, R. Sharma, Y. Chang, The Pb-Te (lead-tellurium) system. Bulletin of Alloy Phase Diagrams 10, 340-347 (1989). 26. W.-F. Li, C.-M. Fang, M. Dijkstra, M. A. Van Huis, The role of point defects in PbS, PbSe and PbTe: a first principles study. Journal of Physics: Condensed Matter 27, 355801 (2015). 27. A. Walsh, Defect processes in a PbS metal organic framework: a quantum-confined hybrid semiconductor. The Journal of Physical Chemistry Letters 1, 1284-1287 (2010). 28. J. W. Doak, C. Wolverton, Coherent and incoherent phase stabilities of thermoelectric rocksalt IV-VI semiconductor alloys. Physical Review B 86, 144202 (2012). 29. M. Labidi, H. Meradji, S. Ghemid, S. Labidi, F. El Haj Hassan, Structural, Electronic, Optical and Thermodynamic Properties of PbS, PbSe and Their Ternary Alloy PbS1-xSex. Modern Physics Letters B 25, 473-486 (2011). 30. S. Kacimi, A. Zaoui, B. Abbar, B. Bouhafs, Ab initio study of cubic PbSxSe1− x alloys. Journal of alloys and compounds 462, 135-141 (2008). 31. J. Wang, H. Wang, G. Snyder, X. Zhang, Z. Ni, Y. Chen, Characteristics of lattice thermal conductivity and carrier mobility of undoped PbSe-PbS solid solutions. Journal of Physics D: Applied Physics 46, 405301 (2013). 32. H. Wang, J. Wang, X. Cao, G. J. Snyder, Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit. Journal of Materials Chemistry A 2, 3169-3174 (2014). 33. Y. Xiao, Routes to high-ranged thermoelectric performance. Mater. Lab 1, 1 (2022). 34. T. Chen, C. Foo, S. C. E. Tsang, Interstitial and substitutional light elements in transition metals for heterogeneous catalysis. Chemical Science 12, 517-532 (2021). 35. L. Zhao, J. Yang, B. Lu, X. Zhang, J. Hu, W. Xie, H. Shao, G. Liu, S. Hussain, Z. Shi, Enhanced thermoelectric properties of n-type Cl doped PbS-based materials via Bi alloying. Journal of Alloys and Compounds 859, 157788 (2021). 36. Y. Qin, Y. Xiao, L.-D. Zhao, Carrier mobility does matter for enhancing thermoelectric performance. APL Materials 8, 010901 (2020). 37. J. C. Slater, Atomic radii in crystals. The Journal of Chemical Physics 41, 3199-3204 (1964). 38. M. N. Rahaman, Ceramic processing and sintering. (CRC press, 2017), vol. 1. 39. B. Xu, T. Feng, Z. Li, S. T. Pantelides, Y. Wu, Constructing highly porous thermoelectric monoliths with high-performance and improved portability from solution-synthesized shape-controlled nanocrystals. Nano letters 18, 4034-4039 (2018). 40. K. Ueno, A. Yamamoto, T. Noguchi, T. Inoue, S. Sodeoka, H. Takazawa, C. Lee, H. Obara, Optimization of hot-press conditions of Zn4Sb3 for high thermoelectric performance: I. Physical properties and thermoelectric performance. Journal of alloys and compounds 384, 254-260 (2004). 41. Y.-L. Pei, Y. Liu, Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS. Journal of Alloys and Compounds 514, 40-44 (2012). 42. J. Ramage, R. Stradling, A. Aziza, M. Balkanski, Far infrared cyclotron absorption in n-type Pb1-xSnxSe. Journal of Physics C: Solid State Physics 8, 1731 (1975). 43. J. Sun, R. Wang, W. Cui, S. Xie, T. Luo, H. Bai, X. Zhao, Z. Chen, X. Sang, X. Tan, Percolation Process-Mediated Rich Defects in Hole-Doped PbSe with Enhanced Thermoelectric Performance. Chemistry of Materials 34, 6450-6459 (2022). 44. E. Rathore, R. Juneja, D. Sarkar, S. Roychowdhury, M. Kofu, K. Nakajima, A. K. Singh, K. Biswas, Enhanced covalency and nanostructured-phonon scattering lead to high thermoelectric performance in n-type PbS. Materials Today Energy 24, 100953 (2022). 45. J. Androulakis, D.-Y. Chung, X. Su, L. Zhang, C. Uher, T. C. Hasapis, E. Hatzikraniotis, K. M. Paraskevopoulos, M. G. Kanatzidis, High-temperature charge and thermal transport properties of the n-type thermoelectric material PbSe. Physical Review B 84, 155207 (2011). 46. H.-S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, G. J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement. APL materials 3, (2015). 47. X. Du, Y. Wang, R. Shi, Z. Mao, Z. Yuan, Effects of anion and cation doping on the thermoelectric properties of n-type PbS. Journal of the European Ceramic Society 38, 3512-3517 (2018). 48. M. Zhao, C. Chang, Y. Xiao, L.-D. Zhao, High performance of n-type (PbS) 1-xy (PbSe) x (PbTe) y thermoelectric materials. Journal of Alloys and Compounds 744, 769-777 (2018). 49. Y. Xiao, L. Xu, T. Hong, H. Shi, S. Wang, X. Gao, X. Ding, J. Sun, L.-D. Zhao, Ultrahigh carrier mobility contributes to remarkably enhanced thermoelectric performance in n-type PbSe. Energy & Environmental Science 15, 346-355 (2022). 50. Z.-Z. Luo, S. Hao, S. Cai, T. P. Bailey, G. Tan, Y. Luo, I. Spanopoulos, C. Uher, C. Wolverton, V. P. Dravid, Enhancement of thermoelectric performance for n-type PbS through synergy of gap state and fermi level pinning. Journal of the American Chemical Society 141, 6403-6412 (2019).
|