帳號:guest(3.129.67.68)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):傅琬雲
作者(外文):Fu, Wan-Yun
論文名稱(中文):自組裝聚硼酸酯膠束作為BNCT納米載體的製備
論文名稱(外文):Preparation of self-assembled polyboronate ester micelles as nanocarrier for BNCT
指導教授(中文):龔佩雲
指導教授(外文):Keng, Pei-Yuin
口試委員(中文):張建文
林鈺容
口試委員(外文):Chang, Chien-Wen
Lin, Yu-Jung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:110031554
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:114
中文關鍵詞:硼中子俘獲治療聚合物膠束冷凍乾燥藥物傳遞癌症治療自組裝雙親嵌段聚合物
外文關鍵詞:BNCTpolymer micelleslyophilizationdrug deliverycancer treatmentself-assemblyamphiphilic block copolymers
相關次數:
  • 推薦推薦:0
  • 點閱點閱:34
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
硼中子俘獲治療(BNCT)是一種新興的癌症治療方法,能夠在不損害周圍正常細胞的情況下,選擇性地摧毀腫瘤細胞。儘管BNCT在患者中取得了很高的治療反應率,但通常觀察到癌症復發的情況,這可能是由於硼藥物的攝取不足和不均勻造成的。為了克服這些挑戰,我們的團隊正在開發基於聚硼酸酯膠束的高硼-10含量納米載體。在本文中,我們首先通過原子轉移自由基聚合(ATRP)方法,控制聚乙二醇巨分子引發劑下4-乙烯基苯基硼酸頻哪醇酯(PBE)的擴鏈,展示了鏈延長的過程。通過系統調節PBE與聚乙二醇的比例,我們優化了兩親性嵌段共聚物在選擇性溶劑中的自組裝過程,獲得了尺寸均勻的聚硼酸酯膠束,尺寸範圍從20納米到50納米不等。在預臨床和臨床研究中,冷凍乾燥是制備聚合物膠束作為潛在納米藥物載體的標準處理方法,以便於藥物配製和儲存。然而,冷凍乾燥膠束的重構方法是一個具有挑戰性且很少被討論的問題。在本文中,我們還將報告冷凍乾燥膠束重構方法的優化,以獲得尺寸合適且相對均勻的聚硼酸酯膠束。在體外實驗中,通過MTS試驗評估了mPEG-b-PBE膠束的細胞毒性,結果顯示其具有高生物相容性。此外,ICP-MS結果顯示,與BPA相比,膠束中的硼含量更高。在中子照射下,膠束表現出卓越的治療效果,表明其在BNCT中具有潛在應用價值。此外,動物實驗結果進一步支持了由兩親性嵌段共聚物自組裝形成的富硼膠束能夠建立更選擇性和有效的硼輸送系統用於BNCT的觀點。
Boron neutron capture therapy (BNCT) is an emerging cancer treatment that achieves selective destruction of tumor cells without damaging the surrounding normal cell. Despite achieving a high response rate in patients, cancer recurrent is commonly observed after BNCT, which could be due to the insufficient and non-homogeneous uptake of the boron drug. To overcome these challenges, our group is developing high boron-10 content nanocarrier based on polyboronate ester micelles. In this thesis, we will first demonstrate the chain extension of 4-vinylphenylboronic acid pinacol ester (PBE) from polyethylene glycol macroinitiator via atom transfer radical polymerization (ATRP) with controlled molecular weight. The self-assembly of the amphiphilic block copolymer in a selective solvent into polyboronate ester micelles were optimized by tuning and ratio of PBE to PEG systematically to yield uniform sizes ranging from 20 nm to 50 nm. To facilitate drug formulation and storage for both preclinical and clinical research, lyophilization is a standard protocol in the preparation of polymer micelles as a potential nanodrug carrier. However, the reconstitution protocol of the lyophilized micelle is a challenging issue and rarely discussed. Herein, we will also report on the optimization of the reconstitution methods and to yield polyboronate ester micelles with suitable size and with reasonable uniformity. In the in vitro experiments, the cytotoxicity of mPEG-b-PBE micelles was assessed using the MTS assay, revealing high biocompatibility. Furthermore, the results obtained from the ICP-MS indicated a higher boron content in the micelles compared to BPA. Upon neutron irradiation, the micelles demonstrated excellent therapeutic efficacy, indicating their potential for use in BNCT. Moreover, in vivo BNCT in B16-F10 melanoma mice further supported the notion that boron-rich micelles self-assembled from amphiphilic block copolymers can establish a more selective and effective boron delivery system for BNCT.
Table of Content
Abstract 1
摘要 3
Acknowledgment 5
Table of Content 7
Figure and Table 9
Chapter 1 Introduction 12
Chapter 2 Literature Review 15
2.1 Boron neutron capture therapy (BNCT) 15
2.2 Delivery agents of BNCT 19
2.3 Polymer Micelles as drug delivery agent 25
2.3.1 Application 25
2.3.2 Criteria and uptake mechanism 28
2.3.3 Composition and Structure 30
2.3.4 Critical micelle concentration (CMC) 34
2.3.5 Lyophilization and Reconstitution Technique 35
Chapter 3 Materials, Instruments, and Experiments 42
3.1 Materials and Instruments 43
3.2 mPEG-b-PBE preparation 45
3.2.1 Synthesis of Macroinitiator, poly(ethylene glycol) monomethyl ether 2-bromoisobutyrate (mPEG-Br) 45
3.2.2 Synthesis of 4,4,5,5-tetramethyl-2-(4-vinylphenyl)-1,3,2-dioxaborolane (MBpin) 46
3.2.3 Synthesis of mPEG-b-PBE via ATPR 46
3.3 Micelle preparation 47
3.3.1 Method 1 48
3.3.2 Method 2 48
3.3.3 Synthesis of Coum6@micelles 49
3.3.4 Reconstitution of Lyophilized mPEG-b-PBE Micelles 50
3.4 Stability test of mPEG-b-PBE micelles 52
3.5 In Vitro Assay 52
3.5.1 Cytotoxicity of mPEG-b-PBE Micelles 52
3.5.2 Cellular Uptake 56
3.5.3 Thermal neutron irradiation experiments 57
3.6 In vivo assay 60
3.6.1 In vivo tumor model 60
3.6.2 In vivo biodistribution of boron content 61
3.6.3 Thermal neutron irradiation experiments 63
3.6.4 Immunohistochemistry staining 64
3.6.5 Statistical analysis 66
Chapter 4 Results and Discussion 67
4.1 Synthesis and Characterization of mPEG-b-PBE 67
4.2 Self-assembly of mPEG-b-PBE Micelles 73
4.3 In Vitro Assay 83
4.3.1 Cytotoxicity of mPEG-b-PBE Micelles 83
4.3.2 Investigation of Cellular Uptake of B16F10 melanoma cell incubated with mPEG-b-PBE36 Micelles 85
4.3.3 in vitro BNCT treatment of B16-F10 melanoma cells 89
4.4 In Vivo Biodistribution and BNCT treatment of B16-F10 melanoma mouse 91
Chapter 5 Conclusion 97
Chapter 6 Prospective 100
Reference 102


Figure and Table
Figure 1 : Synthesis of mPEG-b-PBE block copolymer. 14
Figure 2: Illustration of boron neutron capture therapy. (a) Intracellular and (b) Extracellular mechanism of BNCT. 17
Figure 3: (a) Small molecule drugs tend to leak from blood vessels into surrounding normal tissues. However, nanomedicines, owing to their size advantage, are not susceptible to such leakage. (b) Nanomedicine accumulates in tumor tissues through the enhanced permeability and retention (EPR) effect. Figure is adapted from reference[59]. 29
Figure 4: In solvents, amphiphilic block copolymers form various self-assembled structures, which can be predicted using the packing parameter, p. Figure is adapted from reference[70]. 31
Figure 5: The phase diagram illustrates the various phases between water (w) and solute (s), providing information on the positions of Tg' and Cg' within the system. 39
Figure 6: The probe sonicator (125 Watts, 20kHz) used for reconstituted the lyophilized mPEG-b-PBE micelles. 51
Figure 7: The synthesis process of polymer micelles using Method 2 and the subsequent reconstitution by probe sonicator. 51
Figure 8: Optical microscope images of live B16F10 melanoma cell morphology. 54
Figure 9: (a) B16-F10 melanoma cells were cultured in a 96-well plate with different concentrations of micelle solution. (b) After 24 hours of incubation, 20 μL of MTS assay was added and allowed to react for two hours. 55
Figure 10: The neutron irradiation holder utilized in the experiment is composed of polyethylene (PE) material, designed to effectively moderate the neutrons. 59
Figure 11: The neutron irradiation therapy room of Taiwan Tsing Hua Open Pool Reactor (THOR). 59
Figure 12 : The mice were subjected to subcutaneous inoculation of B16-F10 melanoma cells in the hindlimb, and after 7 days, the tumors had grown to a size of approximately 100 mm3. 62
Figure 13 : Administration of the drug through intravenous (i.v.) tail injection in mice. 62
Figure 14: The holder used during in vivo neutron irradiation. The transparent portion is made of acrylic and is used to support and immobilize the mice, while the opaque white board is made of polyethylene and is responsible for moderating the speed of neutrons. 64
Figure 15: The 1H-NMR spectrum of (a) mPEG-b-PBE36, (b) MBpin and (c) mPEG-Br in CDCl3. * = CDCl3. 69
Figure 16: (a) GPC trace of macroinitiator mPEG-Br (Mn=7402 g/mol, Mw/Mn=1.02) and mPEG-b-PBE36 (Mn=17,072 g/mol, Mw/Mn=1.13) and (b) The FT-IR spectrum of mPEG-b-PBE36. 72
Figure 17 : TEM morphology of mPEG-b-PBE36 micelles synthesize by Method 1 (25 ± 3 nm, n=20) 75
Figure 18 : TEM morphology of (a) mPEG-b-PBE36 micelles synthesize by method 2 (43 ± 10 nm, n= 20) and (b) reconstituted using probe sonicator for 30 seconds (67 ± 17 nm, n= 20) after lyophilization. 76
Figure 19: TEM morphology of the lyophilized mPEG-b-PBE36 micelles synthesized by method 1 and reconstituted by (a) mixing with DI water only, (b) using ultrasonic bath sonicator. 78
Figure 20 : TEM morphology of the lyophilized mPEG-b-PBE36 micelles synthesized by method 1 and reconstituted by (a) using probe sonicator for (b) for 9 seconds, (c) for 30 seconds (25 ± 4 nm), and (e) for 60 seconds. 79
Figure 21: The time-dependent cytotoxicity of (a) the mPEG-b-PBE36 micelles and (b) BPA was evaluated using the MTS assay. The results are expressed in means ± SD (n = 3 for all experimental groups). *p < 0.5 versus control (0 μg/mL concentration), **p < 0.05 versus control (0 μg/mL concentration), ***p < 0.005 versus control (0 μg/mL concentration). 84
Figure 22: ICP-MS analysis of the boron contents internalized by the cell at 6 h and 12 h of incubation times. The results are expressed in means ± SD (n = 2 for all experimental groups). *p < 0.5 versus control, **p < 0.05 versus control, ***p < 0.005 versus control. 86
Figure 23 : Confocal images of mPEG-b-PBE36 micelles uptake for (a) 6hr and (b) 12hr by B16F10 melanoma cells. 88
Figure 24: Survival of B16-F10 melanoma cells treated with 1 mg/mL boron agents and accept 30 min of neutron irradiation. The results are expressed in means ± SD (n = 4 for all experimental groups). *p < 0.5 versus control, **p < 0.05 versus control, ***p < 0.005 versus control. 90
Figure 25 : Boron biodistribution of the B16-F10 melanoma tumor-bearing mouse received intravenous (i.v.) injections of BPA and mPEG-b-PBE36 micelles at a concentration of 100 mg/kg every two days, totaling 3 injections. The results are expressed in means ± SD (n = 3 for all experimental groups). *p < 0.5 versus BPA, **p < 0.05 versus BPA. 94
Figure 26: Tumor growth of B16F10 melanoma mouse after BNCT. The results are expressed in means ± SD (n = 3 for all experimental groups). *p < 0.5 versus control, **p < 0.05 versus control, ***p < 0.005 versus control. 95
Figure 27: Immunohistochemical analysis of p53 protein and caspase 3. Scale Bar = 100 μm. 96
Figure 28: The equilibrium of ionization of boronic acid in an aqueous medium [155] 101

Table 1: The DP of the mPEG-b-PBE amphiphilic block copolymers obtained from end-group analysis via 1H NMR. The different DP is achieved by varying the [M]/[I] ratio using CuBr as catalyst and PMDETA as ligand. 71
Table 2: The hydrodynamic size of the mPEG-b-PBE micelles determined by DLS. 81
Table 3: The stability of mPEG-b-PBE36 micelles incubated in PBS and DMEM over 7 days. The hydrodynamic size of mPEG-b-PBE36 were determined by DLS. 81
Table 4: The parameters and tumor growth delay (TGD) of the B16F10 melanoma mice under different treatment. 94
[1] Futamura G, Kawabata S, Siba H, Kuroiwa T, Suzuki M, Kondo N, et al. A case of radiation-induced osteosarcoma treated effectively by boron neutron capture therapy. Radiat Oncol 2014;9:237. https://doi.org/10.1186/s13014-014-0237-z.
[2] Moss RL. Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT). Applied Radiation and Isotopes 2014;88:2–11. https://doi.org/10.1016/j.apradiso.2013.11.109.
[3] Kato I, Ono K, Sakurai Y, Ohmae M, Maruhashi A, Imahori Y, et al. Effectiveness of BNCT for recurrent head and neck malignancies. Applied Radiation and Isotopes 2004;61:1069–73. https://doi.org/10.1016/j.apradiso.2004.05.059.
[4] Oun R, Moussa YE, Wheate NJ. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans 2018;47:6645–53. https://doi.org/10.1039/C8DT00838H.
[5] Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich JN. Molecularly targeted therapy for malignant glioma. Cancer 2007;110:13–24. https://doi.org/10.1002/cncr.22741.
[6] Xu J, Xu L, Wang C, Yang R, Zhuang Q, Han X, et al. Near-Infrared-Triggered Photodynamic Therapy with Multitasking Upconversion Nanoparticles in Combination with Checkpoint Blockade for Immunotherapy of Colorectal Cancer. ACS Nano 2017;11:4463–74. https://doi.org/10.1021/acsnano.7b00715.
[7] Jin WH, Seldon C, Butkus M, Sauerwein W, Giap HB. A Review of Boron Neutron Capture Therapy: Its History and Current Challenges. International Journal of Particle Therapy 2022;9:71–82. https://doi.org/10.14338/IJPT-22-00002.1.
[8] Gill MR, Falzone N, Du Y, Vallis KA. Targeted radionuclide therapy in combined-modality regimens. The Lancet Oncology 2017;18:e414–23. https://doi.org/10.1016/S1470-2045(17)30379-0.
[9] Hervé M, Sauzet N, Santos D. On the eptihermal neutron energy limit for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT): Study and impact of new energy limits. Physica Medica 2021;88:148–57. https://doi.org/10.1016/j.ejmp.2021.06.016.
[10] Yu H-T, Liu Y-WH, Lin T-Y, Wang L-W. BNCT treatment planning of recurrent head-and-neck cancer using THORplan. Applied Radiation and Isotopes 2011;69:1907–10. https://doi.org/10.1016/j.apradiso.2011.02.041.
[11] Jiang S-H, Hsueh Liu Y-W, Chou F-I, Liu H-M, Peir J-J, Liu Y-H, et al. The overview and prospects of BNCT facility at Tsing Hua Open-pool reactor. Applied Radiation and Isotopes 2020;161:109143. https://doi.org/10.1016/j.apradiso.2020.109143.
[12] Wang LW, Wang SJ, Chu PY, Ho CY, Jiang SH, Liu YWH, et al. BNCT for locally recurrent head and neck cancer: Preliminary clinical experience from a phase I/II trial at Tsing Hua Open-Pool Reactor. Applied Radiation and Isotopes 2011;69:1803–6. https://doi.org/10.1016/j.apradiso.2011.03.008.
[13] Matsumura A, Asano T, Hirose K, Igaki H, Kawabata S, Kumada H. Initiatives Toward Clinical Boron Neutron Capture Therapy in Japan. Cancer Biotherapy and Radiopharmaceuticals 2023;38:201–7. https://doi.org/10.1089/cbr.2022.0056.
[14] Barth RF, Mi P, Yang W. Boron delivery agents for neutron capture therapy of cancer. Cancer Communications 2018;38:35. https://doi.org/10.1186/s40880-018-0299-7.
[15] Hu K, Yang Z, Zhang L, Xie L, Wang L, Xu H, et al. Boron agents for neutron capture therapy. Coordination Chemistry Reviews 2020;405:213139. https://doi.org/10.1016/j.ccr.2019.213139.
[16] Pitto-Barry A. Polymers and boron neutron capture therapy (BNCT): a potent combination. Polym Chem 2021;12:2035–44. https://doi.org/10.1039/D0PY01392G.
[17] Seneviratne DS, Saifi O, Mackeyev Y, Malouff T, Krishnan S. Next-Generation Boron Drugs and Rational Translational Studies Driving the Revival of BNCT. Cells 2023;12:1398. https://doi.org/10.3390/cells12101398.
[18] Fukuda H. Response of Normal Tissues to Boron Neutron Capture Therapy (BNCT) with 10B-Borocaptate Sodium (BSH) and 10B-Paraboronophenylalanine (BPA). Cells 2021;10:2883. https://doi.org/10.3390/cells10112883.
[19] Dymova MA, Taskaev SY, Richter VA, Kuligina EV. Boron neutron capture therapy: Current status and future perspectives. Cancer Communications 2020;40:406–21. https://doi.org/10.1002/cac2.12089.
[20] Roucan M, Kielmann M, Connon SJ, Bernhard SSR, Senge MO. Conformational control of nonplanar free base porphyrins: towards bifunctional catalysts of tunable basicity. Chem Commun 2018;54:26–9. https://doi.org/10.1039/C7CC08099A.
[21] Heikkinen S, Savolainen S, Melkko P. In Vitro Studies on Stability of L-p-boronophenylalanine–fructose Complex (BPA-F). JRR 2011;52:360–4. https://doi.org/10.1269/jrr.10138.
[22] Goodman JH, Barth RF, Boesel CP, Gupta N, Adams DM, Ferketich AK, et al. Boron Neutron Capture Therapy of Brain Tumors: Biodistribution, Pharmacokinetics, and Radiation Dosimetry of Sodium Borocaptate in Patients with Gliomas 2000;47.
[23] Koivunoro H, Hippeläinen E, Auterinen I, Kankaanranta L, Kulvik M, Laakso J, et al. Biokinetic analysis of tissue boron (10B) concentrations of glioma patients treated with BNCT in Finland. Applied Radiation and Isotopes 2015;106:189–94. https://doi.org/10.1016/j.apradiso.2015.08.014.
[24] Gao Z, Horiguchi Y, Nakai K, Matsumura A, Suzuki M, Ono K, et al. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects. Biomaterials 2016;104:201–12. https://doi.org/10.1016/j.biomaterials.2016.06.046.
[25] Farhood B, Samadian H, Ghorbani M, Zakariaee SS, Knaup C. Physical, dosimetric and clinical aspects and delivery systems in neutron capture therapy. Reports of Practical Oncology & Radiotherapy 2018;23:462–73. https://doi.org/10.1016/j.rpor.2018.07.002.
[26] Cicha I. Strategies to enhance nanoparticle-endothelial interactions under flow. JCB 2016;1:191–208. https://doi.org/10.3233/JCB-15020.
[27] Seneviratne D, Advani P, Trifiletti DM, Chumsri S, Beltran CJ, Bush AF, et al. Exploring the Biological and Physical Basis of Boron Neutron Capture Therapy (BNCT) as a Promising Treatment Frontier in Breast Cancer. Cancers 2022;14:3009. https://doi.org/10.3390/cancers14123009.
[28] Hawthorne MF, Lee MW. A critical assessment of boron target compounds for boron neutron capture therapy. J Neuro-Oncol 2003;62:33–45. https://doi.org/10.1007/BF02699932.
[29] Wei Q, Kullberg E, Gedda L. Trastuzumab-conjugated boron-containing liposomes for tumor-cell targeting; development and cellular studies. Int J Oncol 2003. https://doi.org/10.3892/ijo.23.4.1159.
[30] Bohl Kullberg E, Bergstrand N, Carlsson J, Edwards K, Johnsson M, Sjöberg S, et al. Development of EGF-Conjugated Liposomes for Targeted Delivery of Boronated DNA-Binding Agents. Bioconjugate Chem 2002;13:737–43. https://doi.org/10.1021/bc0100713.
[31] Backer MV, Gaynutdinov TI, Patel V, Bandyopadhyaya AK, Thirumamagal BTS, Tjarks W, et al. Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Molecular Cancer Therapeutics 2005;4:1423–9. https://doi.org/10.1158/1535-7163.MCT-05-0161.
[32] Barth RF, Adams DM, Soloway AH. Boronated Starburst Dendrimer-Monoclonal Antibody Immunoconjugates: Evaluation as a Potential Delivery System for Neutron Capture Therapy1i2 n.d.
[33] Tamanoi F, Chinnathambi S, Laird M, Komatsu A, Birault A, Takata T, et al. Construction of Boronophenylalanine-Loaded Biodegradable Periodic Mesoporous Organosilica Nanoparticles for BNCT Cancer Therapy. IJMS 2021;22:2251. https://doi.org/10.3390/ijms22052251.
[34] Wu C-Y, Lin J-J, Chang W-Y, Hsieh C-Y, Wu C-C, Chen H-S, et al. Development of theranostic active-targeting boron-containing gold nanoparticles for boron neutron capture therapy (BNCT). Colloids and Surfaces B: Biointerfaces 2019;183:110387. https://doi.org/10.1016/j.colsurfb.2019.110387.
[35] Zhang L, Lin Y, Wang J, Yao W, Wu W, Jiang X. A Facile Strategy for Constructing Boron-Rich Polymer Nanoparticles via Boronic Acid-Related Reaction n.d.
[36] Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nature Nanotech 2011;6:815–23. https://doi.org/10.1038/nnano.2011.166.
[37] Sumitani S, Oishi M, Nagasaki Y. Carborane confined nanoparticles for boron neutron capture therapy: Improved stability, blood circulation time and tumor accumulation. Reactive and Functional Polymers 2011;71:684–93. https://doi.org/10.1016/j.reactfunctpolym.2011.03.010.
[38] Kim A, Suzuki M, Matsumoto Y, Fukumitsu N, Nagasaki Y. Non-isotope enriched phenylboronic acid-decorated dual-functional nano-assembles for an actively targeting BNCT drug. Biomaterials 2021;268:120551. https://doi.org/10.1016/j.biomaterials.2020.120551.
[39] Kuo W-Y, Lin J-J, Hsu H-J, Chen H-S, Yang A-S, Wu C-Y. Noninvasive assessment of characteristics of novel anti-HER2 antibodies by molecular imaging in a human gastric cancer xenograft-bearing mouse model. Sci Rep 2018;8:13735. https://doi.org/10.1038/s41598-018-32094-x.
[40] Lee W, Sarkar S, Ahn H, Kim JY, Lee YJ, Chang Y, et al. PEGylated liposome encapsulating nido-carborane showed significant tumor suppression in boron neutron capture therapy (BNCT). Biochemical and Biophysical Research Communications 2020;522:669–75. https://doi.org/10.1016/j.bbrc.2019.11.144.
[41] Nakamura H. Boron lipid-based liposomal boron delivery system for neutron capture therapy: recent development and future perspective. Future Medicinal Chemistry 2013;5:715–30. https://doi.org/10.4155/fmc.13.48.
[42] He H, Li J, Jiang P, Tian S, Wang H, Fan R, et al. The basis and advances in clinical application of boron neutron capture therapy. Radiat Oncol 2021;16:216. https://doi.org/10.1186/s13014-021-01939-7.
[43] Houdaihed L, Evans JC, Allen C. Overcoming the Road Blocks: Advancement of Block Copolymer Micelles for Cancer Therapy in the Clinic. Mol Pharmaceutics 2017;14:2503–17. https://doi.org/10.1021/acs.molpharmaceut.7b00188.
[44] Matsumura Y. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Advanced Drug Delivery Reviews 2008;60:899–914. https://doi.org/10.1016/j.addr.2007.11.010.
[45] Kim T-Y, Kim D-W, Chung J-Y, Shin SG, Kim S-C, Heo DS, et al. Phase I and Pharmacokinetic Study of Genexol-PM, a Cremophor-Free, Polymeric Micelle-Formulated Paclitaxel, in Patients with Advanced Malignancies. Clinical Cancer Research 2004;10:3708–16. https://doi.org/10.1158/1078-0432.CCR-03-0655.
[46] Kim D-W, Kim S-Y, Kim H-K, Kim S-W, Shin SW, Kim JS, et al. Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Annals of Oncology 2007;18:2009–14. https://doi.org/10.1093/annonc/mdm374.
[47] Werner ME, Cummings ND, Sethi M, Wang EC, Sukumar R, Moore DT, et al. Preclinical Evaluation of Genexol-PM, a Nanoparticle Formulation of Paclitaxel, as a Novel Radiosensitizer for the Treatment of Non-Small Cell Lung Cancer. International Journal of Radiation Oncology*Biology*Physics 2013;86:463–8. https://doi.org/10.1016/j.ijrobp.2013.02.009.
[48] Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Advanced Drug Delivery Reviews 2020;156:80–118. https://doi.org/10.1016/j.addr.2020.09.009.
[49] Nishiyama N, Matsumura Y, Kataoka K. Development of polymeric micelles for targeting intractable cancers. Cancer Sci 2016;107:867–74. https://doi.org/10.1111/cas.12960.
[50] Hu X, Jing X. Biodegradable amphiphilic polymer–drug conjugate micelles. Expert Opinion on Drug Delivery 2009;6:1079–90. https://doi.org/10.1517/17425240903158917.
[51] Nishiyama N, Kataoka K. Nanostructured Devices Based on Block Copolymer Assemblies for Drug Delivery: Designing Structures for Enhanced Drug Function. In: Satchi-Fainaro R, Duncan R, editors. Polymer Therapeutics II, vol. 193, Berlin/Heidelberg: Springer-Verlag; 2006, p. 67–101. https://doi.org/10.1007/12_025.
[52] Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Advanced Drug Delivery Reviews 2009;61:768–84. https://doi.org/10.1016/j.addr.2009.04.016.
[53] Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science 2009;324:1029–33. https://doi.org/10.1126/science.1160809.
[54] Sumitani S, Nagasaki Y. Boron neutron capture therapy assisted by boron-conjugated nanoparticles. Polym J 2012;44:522–30. https://doi.org/10.1038/pj.2012.30.
[55] Lee J-D, Ueno M, Miyajima Y, Nakamura H. Synthesis of Boron Cluster Lipids: closo -Dodecaborate as an Alternative Hydrophilic Function of Boronated Liposomes for Neutron Capture Therapy. Org Lett 2007;9:323–6. https://doi.org/10.1021/ol062840+.
[56] Park EK, Lee SB, Lee YM. Preparation and characterization of methoxy poly(ethylene glycol)/poly(ε-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials 2005;26:1053–61. https://doi.org/10.1016/j.biomaterials.2004.04.008.
[57] Sawant RR, Jhaveri AM, Koshkaryev A, Zhu L, Qureshi F, Torchilin VP. Targeted Transferrin-Modified Polymeric Micelles: Enhanced Efficacy in Vitro and in Vivo in Ovarian Carcinoma. Mol Pharmaceutics 2014;11:375–81. https://doi.org/10.1021/mp300633f.
[58] Cabral H, Kataoka K. Progress of drug-loaded polymeric micelles into clinical studies. Journal of Controlled Release 2014;190:465–76. https://doi.org/10.1016/j.jconrel.2014.06.042.
[59] Cabral H, Miyata K, Osada K, Kataoka K. Block Copolymer Micelles in Nanomedicine Applications. Chem Rev 2018;118:6844–92. https://doi.org/10.1021/acs.chemrev.8b00199.
[60] Owensiii D, Peppas N. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics 2006;307:93–102. https://doi.org/10.1016/j.ijpharm.2005.10.010.
[61] Ebrahim Attia AB, Ong ZY, Hedrick JL, Lee PP, Ee PLR, Hammond PT, et al. Mixed micelles self-assembled from block copolymers for drug delivery. Current Opinion in Colloid & Interface Science 2011;16:182–94. https://doi.org/10.1016/j.cocis.2010.10.003.
[62] Owen SC, Chan DPY, Shoichet MS. Polymeric micelle stability. Nano Today 2012;7:53–65. https://doi.org/10.1016/j.nantod.2012.01.002.
[63] Soo Choi H, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, et al. Renal clearance of quantum dots. Nat Biotechnol 2007;25:1165–70. https://doi.org/10.1038/nbt1340.
[64] Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release 2000;65:271–84. https://doi.org/10.1016/S0168-3659(99)00248-5.
[65] Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Advanced Drug Delivery Reviews 2015;91:3–6. https://doi.org/10.1016/j.addr.2015.01.002.
[66] Sumitani S, Oishi M, Yaguchi T, Murotani H, Horiguchi Y, Suzuki M, et al. Pharmacokinetics of core-polymerized, boron-conjugated micelles designed for boron neutron capture therapy for cancer. Biomaterials 2012;33:3568–77. https://doi.org/10.1016/j.biomaterials.2012.01.039.
[67] Kazunori K, Glenn S. K, Masayuki Y, Teruo O, Yasuhisa S. Block copolymer micelles as vehicles for drug delivery. Journal of Controlled Release 1993;24:119–32. https://doi.org/10.1016/0168-3659(93)90172-2.
[68] Lu Y, Lin J, Wang L, Zhang L, Cai C. Self-Assembly of Copolymer Micelles: Higher-Level Assembly for Constructing Hierarchical Structure. Chem Rev 2020;120:4111–40. https://doi.org/10.1021/acs.chemrev.9b00774.
[69] Mai Y, Eisenberg A. Self-assembly of block copolymers. Chem Soc Rev 2012;41:5969. https://doi.org/10.1039/c2cs35115c.
[70] Blanazs A, Armes SP, Ryan AJ. Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their Biological Applications. Macromol Rapid Commun 2009;30:267–77. https://doi.org/10.1002/marc.200800713.
[71] Chen J, Liu M, Gong H, Cui G, Lü S, Gao C, et al. Synthesis of linear amphiphilic tetrablock quaterpolymers with dual stimulus response through the combination of ATRP and RAFT by a click chemistry site transformation approach. Polym Chem 2013;4:1815. https://doi.org/10.1039/c2py20946b.
[72] Cambre JN, Roy D, Gondi SR, Sumerlin BS. Facile Strategy to Well-Defined Water-Soluble Boronic Acid (Co)polymers. J Am Chem Soc 2007;129:10348–9. https://doi.org/10.1021/ja074239s.
[73] Dey A, Haldar U, De P. Block Copolymer Synthesis by the Combination of Living Cationic Polymerization and Other Polymerization Methods. Front Chem 2021;9:644547. https://doi.org/10.3389/fchem.2021.644547.
[74] Wang Y. ATRP of Methyl Acrylate by Continuous Feeding of Activators Giving Polymers with Predictable End-Group Fidelity. Polymers 2019;11:1238. https://doi.org/10.3390/polym11081238.
[75] Pan X, Fantin M, Yuan F, Matyjaszewski K. Externally controlled atom transfer radical polymerization. Chem Soc Rev 2018;47:5457–90. https://doi.org/10.1039/C8CS00259B.
[76] Krys P, Matyjaszewski K. Kinetics of Atom Transfer Radical Polymerization. European Polymer Journal 2017;89:482–523. https://doi.org/10.1016/j.eurpolymj.2017.02.034.
[77] Truong NP, Jones GR, Bradford KGE, Konkolewicz D, Anastasaki A. A comparison of RAFT and ATRP methods for controlled radical polymerization. Nat Rev Chem 2021;5:859–69. https://doi.org/10.1038/s41570-021-00328-8.
[78] Matyjaszewski K. Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules 2012;45:4015–39. https://doi.org/10.1021/ma3001719.
[79] Jones M-C, Leroux J-C. Polymeric micelles – a new generation of colloidal drug carriers. European Journal of Pharmaceutics and Biopharmaceutics 1999;48:101–11. https://doi.org/10.1016/S0939-6411(99)00039-9.
[80] Song X, Zhao S, Fang S, Ma Y, Duan M. Mesoscopic Simulations of Adsorption and Association of PEO-PPO-PEO Triblock Copolymers on a Hydrophobic Surface: From Mushroom Hemisphere to Rectangle Brush. Langmuir 2016;32:11375–85. https://doi.org/10.1021/acs.langmuir.6b02414.
[81] Shiraishi K, Sanada Y, Mochizuki S, Kawano K, Maitani Y, Sakurai K, et al. Determination of polymeric micelles’ structural characteristics, and effect of the characteristics on pharmacokinetic behaviors. Journal of Controlled Release 2015;203:77–84. https://doi.org/10.1016/j.jconrel.2015.02.017.
[82] Abbasian M, Bonab SES, Shoaeifar P, Entezami AA. Synthesis and characterization of amphiphilic methoxypoly(ethylene glycol)-polystyrene diblock copolymer by ATRP and NMRP techniques. Journal of Elastomers & Plastics 2012;44:205–20. https://doi.org/10.1177/0095244311420537.
[83] Franco P, De Marco I. The Use of Poly(N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers 2020;12:1114. https://doi.org/10.3390/polym12051114.
[84] Hoogenboom R. Poly(2-oxazoline)s: A Polymer Class with Numerous Potential Applications. Angew Chem Int Ed 2009;48:7978–94. https://doi.org/10.1002/anie.200901607.
[85] Tyrrell ZL, Shen Y, Radosz M. Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Progress in Polymer Science 2010;35:1128–43. https://doi.org/10.1016/j.progpolymsci.2010.06.003.
[86] Zhao J, Allen C, Eisenberg A. Partitioning of Pyrene between “Crew Cut” Block Copolymer Micelles and H 2 O/DMF Solvent Mixtures. Macromolecules 1997;30:7143–50. https://doi.org/10.1021/ma970427z.
[87] Zhang L, He Y, Yu M, Song C. Paclitaxel-loaded polymeric nanoparticles based on PCL–PEG–PCL: Preparation, in vitro and in vivo evaluation. Journal of Controlled Release 2011;152:e114–6. https://doi.org/10.1016/j.jconrel.2011.08.160.
[88] Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers 2011;3:1377–97. https://doi.org/10.3390/polym3031377.
[89] Elsabahy M, Perron M-È, Bertrand N, Yu G, Leroux J-C. Solubilization of Docetaxel in Poly(ethylene oxide)- block -poly(butylene/styrene oxide) Micelles. Biomacromolecules 2007;8:2250–7. https://doi.org/10.1021/bm070226v.
[90] Glavas L, Olsén P, Odelius K, Albertsson A-C. Achieving Micelle Control through Core Crystallinity. Biomacromolecules 2013;14:4150–6. https://doi.org/10.1021/bm401312j.
[91] Chen J, Ouyang J, Kong J, Zhong W, Xing MM. Photo-cross-linked and pH-Sensitive Biodegradable Micelles for Doxorubicin Delivery. ACS Appl Mater Interfaces 2013;5:3108–17. https://doi.org/10.1021/am400017q.
[92] Savic S, Pantelic I, Lukic M, Markovic B, Milic J. Behind the Alkyl Polyglucoside-based structures: Lamellar liquid crystalline and lamellar gel phases in different emulsion systems. Alkyl Polyglucosides, Elsevier; 2014, p. 21–52. https://doi.org/10.1533/9781908818775.21.
[93] Characterization and Biology of Nanomaterials for Drug Delivery. Elsevier; 2019. https://doi.org/10.1016/C2017-0-00272-0.
[94] Patha AS, Patil T, Pandey PK, Kuche K, Ghadi R, Jain S. Block copolymer micelles as long-circulating drug vehicles. Smart Polymeric Nano-Constructs in Drug Delivery, Elsevier; 2023, p. 187–220. https://doi.org/10.1016/B978-0-323-91248-8.00008-8.
[95] Perumal S, Atchudan R, Lee W. A Review of Polymeric Micelles and Their Applications. Polymers 2022;14:2510. https://doi.org/10.3390/polym14122510.
[96] Fonte P, Reis S, Sarmento B. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. Journal of Controlled Release 2016;225:75–86. https://doi.org/10.1016/j.jconrel.2016.01.034.
[97] Lemoine D. Stability study of nanoparticles of poly(e-caprolactone), poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) 1996;17.
[98] Morais ARDV, Alencar ÉDN, Xavier Júnior FH, Oliveira CMD, Marcelino HR, Barratt G, et al. Freeze-drying of emulsified systems: A review. International Journal of Pharmaceutics 2016;503:102–14. https://doi.org/10.1016/j.ijpharm.2016.02.047.
[99] Nayerossadat N, Ali P, Maedeh T. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 2012;1:27. https://doi.org/10.4103/2277-9175.98152.
[100] Franks F. Freeze-drying: from empiricism to predictability. The significance of glass transitions. n.d.
[101] Ingvarsson PT, Yang M, Nielsen HM, Rantanen J, Foged C. Stabilization of liposomes during drying. Expert Opinion on Drug Delivery 2011;8:375–88. https://doi.org/10.1517/17425247.2011.553219.
[102] Wang W. Lyophilization and development of solid protein pharmaceuticals. International Journal of Pharmaceutics 2000;203:1–60. https://doi.org/10.1016/S0378-5173(00)00423-3.
[103] Wang W, Chen M, Chen G. Issues in Freeze Drying of Aqueous Solutions. Chinese Journal of Chemical Engineering 2012;20:551–9. https://doi.org/10.1016/S1004-9541(11)60218-8.
[104] Degobert G, Aydin D. Lyophilization of Nanocapsules: Instability Sources, Formulation and Process Parameters. Pharmaceutics 2021;13:1112. https://doi.org/10.3390/pharmaceutics13081112.
[105] Sum AK, Faller R, Pablo JJD. Molecular Simulation Study of Phospholipid Bilayers and Insights of the Interactions with Disaccharides. Biophysical Journal 2003;85:2830–44. https://doi.org/10.1016/S0006-3495(03)74706-7.
[106] Fonte P, Soares S, Costa A, Andrade JC, Seabra V, Reis S, et al. Effect of cryoprotectants on the porosity and stability of insulin-loaded PLGA nanoparticles after freeze-drying. Biomatter 2012;2:329–39. https://doi.org/10.4161/biom.23246.
[107] de Chasteigner S, Cavé G, Fessi H, Devissaguet J-P, Puisieux F. Freeze-drying of itraconazole-loaded nanosphere suspensions: a feasibility study 1996.
[108] Chacón M, Molpeceres J, Berges L, Guzmán M, Aberturas MR. Stability and freeze-drying of cyclosporine loaded poly(d,l lactide–glycolide) carriers. European Journal of Pharmaceutical Sciences 1999;8:99–107. https://doi.org/10.1016/S0928-0987(98)00066-9.
[109] Bozdag S, Dillen K, Vandervoort J, Ludwig A. The effect of freeze-drying with different cryoprotectants and gamma-irradiation sterilization on the characteristics of ciprofloxacin HCl-loaded poly(D,L-lactide-glycolide) nanoparticles. Journal of Pharmacy and Pharmacology 2010;57:699–707. https://doi.org/10.1211/0022357056145.
[110] Huh KM, Lee SC, Cho YW, Lee J, Jeong JH, Park K. Hydrotropic polymer micelle system for delivery of paclitaxel. Journal of Controlled Release 2005;101:59–68. https://doi.org/10.1016/j.jconrel.2004.07.003.
[111] Yusof NSM, Ashokkumar M. Ultrasonic transformation of micelle structures: Effect of frequency and power. Ultrasonics Sonochemistry 2015;24:8–12. https://doi.org/10.1016/j.ultsonch.2014.11.003.
[112] Yi M, Shen Z, Zhang X, Ma S. Vessel diameter and liquid height dependent sonication-assisted production of few-layer graphene. J Mater Sci 2012;47:8234–44. https://doi.org/10.1007/s10853-012-6720-8.
[113] Arao Y, Kubouchi M. High-rate production of few-layer graphene by high-power probe sonication. Carbon 2015;95:802–8. https://doi.org/10.1016/j.carbon.2015.08.108.
[114] Khairnar SV, Pagare P, Thakre A, Nambiar AR, Junnuthula V, Abraham MC, et al. Review on the Scale-Up Methods for the Preparation of Solid Lipid Nanoparticles. Pharmaceutics 2022;14:1886. https://doi.org/10.3390/pharmaceutics14091886.
[115] Sherlock Huang L-C, Hsieh W-Y, Chen J-Y, Huang S-C, Chen J-K, Hsu M-H. Drug delivery system design and development for boron neutron capture therapy on cancer treatment. Applied Radiation and Isotopes 2014;88:89–93. https://doi.org/10.1016/j.apradiso.2013.12.025.
[116] Liu J, Ai X, Zhang H, Zhuo W, Mi P. Polymeric Micelles with Endosome Escape and Redox-Responsive Functions for Enhanced Intracellular Drug Delivery. J Biomed Nanotechnol 2019;15:373–81. https://doi.org/10.1166/jbn.2019.2693.
[117] Kim KT, Cornelissen JJLM, Nolte RJM, van Hest JCM. A Polymersome Nanoreactor with Controllable Permeability Induced by Stimuli-Responsive Block Copolymers. Adv Mater 2009;21:2787–91. https://doi.org/10.1002/adma.200900300.
[118] Dayananda K, Kim MS, Kim BS, Lee DS. Synthesis and characterization of MPEG-b-PDPA amphiphilic block copolymer via atom transfer radical polymerization and its pH-dependent micellar behavior. Macromol Res 2007;15:385–91. https://doi.org/10.1007/BF03218803.
[119] Zhang D, Zhang H, Nie J, Yang J. Synthesis and self-assembly behavior of pH-responsive amphiphilic copolymers containing ketal functional groups. Polym Int 2010;59:967–74. https://doi.org/10.1002/pi.2814.
[120] Qin Y, Sukul V, Pagakos D, Cui C, Jäkle F. Preparation of Organoboron Block Copolymers via ATRP of Silicon and Boron-Functionalized Monomers. Macromolecules 2005;38:8987–90. https://doi.org/10.1021/ma051615p.
[121] Baltus CB, Chuckowree IS, Press NJ, Day IJ, Coles SJ, Tizzard GJ, et al. Olefin cross-metathesis/Suzuki–Miyaura reactions on vinylphenylboronic acid pinacol esters. Tetrahedron Letters 2013;54:1211–7. https://doi.org/10.1016/j.tetlet.2012.12.081.
[122] Aydin O, Youssef I, Yuksel Durmaz Y, Tiruchinapally G, ElSayed MEH. Formulation of Acid-Sensitive Micelles for Delivery of Cabazitaxel into Prostate Cancer Cells. Mol Pharmaceutics 2016;13:1413–29. https://doi.org/10.1021/acs.molpharmaceut.6b00147.
[123] Di Tommaso C, Como C, Gurny R, Möller M. Investigations on the lyophilisation of MPEG–hexPLA micelle based pharmaceutical formulations. European Journal of Pharmaceutical Sciences 2010;40:38–47. https://doi.org/10.1016/j.ejps.2010.02.006.
[124] Ren J, Zhang Y, Zhang J, Gao H, Liu G, Ma R, et al. pH/Sugar Dual Responsive Core-Cross-Linked PIC Micelles for Enhanced Intracellular Protein Delivery. Biomacromolecules 2013;14:3434–43. https://doi.org/10.1021/bm4007387.
[125] Uchino H, Matsumura Y, Negishi T, Koizumi F, Hayashi T, Honda T, et al. Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br J Cancer 2005;93:678–87. https://doi.org/10.1038/sj.bjc.6602772.
[126] Lu J, Owen SC, Shoichet MS. Stability of Self-Assembled Polymeric Micelles in Serum. Macromolecules 2011;44:6002–8. https://doi.org/10.1021/ma200675w.
[127] Gascon S, Giraldo Solano A, El Kheir W, Therriault H, Berthelin P, Cattier B, et al. Characterization and Mathematical Modeling of Alginate/Chitosan-Based Nanoparticles Releasing the Chemokine CXCL12 to Attract Glioblastoma Cells. Pharmaceutics 2020;12:356. https://doi.org/10.3390/pharmaceutics12040356.
[128] Kuthala N, Vankayala R, Li Y, Chiang C, Hwang KC. Engineering Novel Targeted Boron‐10‐Enriched Theranostic Nanomedicine to Combat against Murine Brain Tumors via MR Imaging‐Guided Boron Neutron Capture Therapy. Adv Mater 2017;29:1700850. https://doi.org/10.1002/adma.201700850.
[129] Xue Y, Li X, Dong J. Interfacial characteristics of block copolymer micelles stabilized Pickering emulsion by confocal laser scanning microscopy. Journal of Colloid and Interface Science 2020;563:33–41. https://doi.org/10.1016/j.jcis.2019.12.016.
[130] Tarnowski BI, Spinale FG, Nicholson JH. DAPI as a Useful Stain for Nuclear Quantitation. Biotechnic & Histochemistry 1991;66:296–302. https://doi.org/10.3109/10520299109109990.
[131] Yeh C-N, Chang C-W, Chung Y-H, Tien S-W, Chen Y-R, Chen T-W, et al. Synthesis and characterization of boron fenbufen and its F-18 labeled homolog for boron neutron capture therapy of COX-2 overexpressed cholangiocarcinoma. European Journal of Pharmaceutical Sciences 2017;107:217–29. https://doi.org/10.1016/j.ejps.2017.07.019.
[132] Xu B, Yao W, Li Y, Zhang S, Huang X. Perfluorocyclobutyl Aryl Ether-Based ABC Amphiphilic Triblock Copolymer. Sci Rep 2016;6:39504. https://doi.org/10.1038/srep39504.
[133] Vancoillie G, Hoogenboom R. Synthesis and polymerization of boronic acid containing monomers. Polym Chem 2016;7:5484–95. https://doi.org/10.1039/C6PY00775A.
[134] Chen G, Liu J, Yang Y, Zhang L, Wu M, Ni H. Preparation of pH-sensitive nanoparticles of poly (methacrylic acid) (PMAA)/poly (vinyl pyrrolidone) (PVP) by ATRP-template miniemulsion polymerization in the aqueous solution. Colloid Polym Sci 2015;293:2035–44. https://doi.org/10.1007/s00396-015-3554-3.
[135] Wong M, Hollinger J, Kozycz LM, McCormick TM, Lu Y, Burns DC, et al. An Apparent Size-Exclusion Quantification Limit Reveals a Molecular Weight Limit in the Synthesis of Externally Initiated Polythiophenes. ACS Macro Lett 2012;1:1266–9. https://doi.org/10.1021/mz300333f.
[136] Fang J, Xuan Y, Li Q. Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystals. Sci China Technol Sci 2010;53:3088–93. https://doi.org/10.1007/s11431-010-4110-5.
[137] Mondal S, Banthia AK. Low-temperature synthetic route for boron carbide. Journal of the European Ceramic Society 2005;25:287–91. https://doi.org/10.1016/j.jeurceramsoc.2004.08.011.
[138] Zhang Y, Huang Y, Li S. Polymeric Micelles: Nanocarriers for Cancer-Targeted Drug Delivery. AAPS PharmSciTech 2014;15:862–71. https://doi.org/10.1208/s12249-014-0113-z.
[139] Leibler L, Orland H, Wheeler JC. Theory of critical micelle concentration for solutions of block copolymers. The Journal of Chemical Physics 1983;79:3550–7. https://doi.org/10.1063/1.446209.
[140] Dua JS, Rana AC, Bhandari DAK. LIPOSOME: METHODS OF PREPARATION AND APPLICATIONS n.d.
[141] Castro E, Taboada P, Barbosa S, Mosquera V. Size Control of Styrene Oxide−Ethylene Oxide Diblock Copolymer Aggregates with Classical Surfactants: DLS, TEM, and ITC Study. Biomacromolecules 2005;6:1438–47. https://doi.org/10.1021/bm049262+.
[142] Pierri E, Avgoustakis K. Poly(lactide)-poly(ethylene glycol) micelles as a carrier for griseofulvin. J Biomed Mater Res 2005;75A:639–47. https://doi.org/10.1002/jbm.a.30490.
[143] Butt AM, Amin MCIM, Katas H, Sarisuta N, Witoonsaridsilp W, Benjakul R. In Vitro Characterization of Pluronic F127 and D--Tocopheryl Polyethylene Glycol 1000 Succinate Mixed Micelles as Nanocarriers for Targeted Anticancer-Drug Delivery. Journal of Nanomaterials 2012;2012:1–11. https://doi.org/10.1155/2012/916573.
[144] Kumar R, Kulkarni A, Nagesha DK, Sridhar S. In Vitro Evaluation of Theranostic Polymeric Micelles for Imaging and Drug Delivery in Cancer. Theranostics 2012;2:714–22. https://doi.org/10.7150/thno.3927.
[145] Ichikawa H, Taniguchi E, Fujimoto T, Fukumori Y. Biodistribution of BPA and BSH after single, repeated and simultaneous administrations for neutron-capture therapy of cancer. Applied Radiation and Isotopes 2009;67:S111–4. https://doi.org/10.1016/j.apradiso.2009.03.026.
[146] Bagheri M, Fens MH, Kleijn TG, Capomaccio RB, Mehn D, Krawczyk PM, et al. In Vitro and In Vivo Studies on HPMA-Based Polymeric Micelles Loaded with Curcumin. Mol Pharmaceutics 2021;18:1247–63. https://doi.org/10.1021/acs.molpharmaceut.0c01114.
[147] Barth S. Boron isotope variations in nature: a synthesis. Geol Rundsch 1993;82. https://doi.org/10.1007/BF00191491.
[148] Hebels ER, Bindt F, Walther J, Van Geijn M, Weterings J, Hu Q, et al. Orthogonal Covalent Entrapment of Cargo into Biodegradable Polymeric Micelles via Native Chemical Ligation. Biomacromolecules 2022:acs.biomac.2c00865. https://doi.org/10.1021/acs.biomac.2c00865.
[149] Chiang C-W, Chien Y-C, Yu W-J, Ho C-Y, Wang C-Y, Wang T-W, et al. Polymer-Coated Nanoparticles for Therapeutic and Diagnostic Non-10B Enriched Polymer-Coated Boron Carbon Oxynitride (BCNO) Nanoparticles as Potent BNCT Drug. Nanomaterials 2021;11:2936. https://doi.org/10.3390/nano11112936.
[150] Nakai K, Endo K, Yoshida F, Koka M, Yamada N, Satoh T, et al. Boron analysis and imaging of cells with 2-hr BPA exposure by using micro-proton particle-induced gamma-ray emission (PIGE). Applied Radiation and Isotopes 2020;165:109334. https://doi.org/10.1016/j.apradiso.2020.109334.
[151] Sun X, Wang G, Zhang H, Hu S, Liu X, Tang J, et al. The Blood Clearance Kinetics and Pathway of Polymeric Micelles in Cancer Drug Delivery. ACS Nano 2018;12:6179–92. https://doi.org/10.1021/acsnano.8b02830.
[152] Demidenko E. Three endpoints of in vivo tumour radiobiology and their statistical estimation. International Journal of Radiation Biology 2010;86:164–73. https://doi.org/10.3109/09553000903419304.
[153] Guo L, Kang JS, Kang NJ, Choi YW. S-petasin induces apoptosis and inhibits cell migration through activation of p53 pathway signaling in melanoma B16F10 cells and A375 cells. Archives of Biochemistry and Biophysics 2020;692:108519. https://doi.org/10.1016/j.abb.2020.108519.
[154] Hu Q, Peng J, Liu W, He X, Cui L, Chen X, et al. Elevated cleaved caspase-3 is associated with shortened overall survival in several cancer types n.d.
[155] Cambre JN, Sumerlin BS. Biomedical applications of boronic acid polymers. Polymer 2011;52:4631–43. https://doi.org/10.1016/j.polymer.2011.07.057.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *