|
1. Andonovic, I. and D. Uttamchandani, Principles of modern optical systems. Norwood 1989. 2. Ion, J., Laser processing of engineering materials: principles, procedure and industrial application. Elsevier 2005. 3. Kaushal, H. and G. Kaddoum, Applications of lasers for tactical military operations. IEEE Access 5, 2017. 20736-20753. 4. Mester, E., A.F. Mester, and A. Mester, The biomedical effects of laser application. Lasers in Surgery and Medicine 5 , 1985. 31-39. 5. Uchida, A., Optical communication with chaotic lasers: applications of nonlinear dynamics and synchronization. John Wiley & Sons 2012. 6. Oulton, R.F., et al., A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics 2, 2008. 496-500. 7. Feng, T., et al., Spectral phonon mean free path and thermal conductivity accumulation in defected graphene: The effects of defect type and concentration. Physical Review B 91, 2015. 224301. 8. Feynman, R.P., There’s plenty of room at the bottom, in Feynman and computation, CRC Press, 2018. 63-76 9. Byakodi, M., et al., Emerging 0D, 1D, 2D, and 3D nanostructures for efficient point-of-care biosensing. Biosensors and Bioelectronics 12, 2022. 100284. 10. Dresselhaus, M.S., et al., Carbon nanotubes. Springer 2000 11. Lu, W. and C.M. Lieber, Semiconductor nanowires. Journal of Physics D: Applied Physics 39, 2006. R387. 12. Pérez-Juste, J., et al., Gold nanorods: synthesis, characterization and applications. Coordination Chemistry Reviews 249, 2005. 1870-1901. 13. Hughes, W.L. and Z.L. Wang, Nanobelts as nanocantilevers. Applied Physics Letters 82, 2003. 2886-2888. 14. Gudiksen, M.S., J. Wang, and C.M. Lieber, Synthetic control of the diameter and length of single crystal semiconductor nanowires. The Journal of Physical Chemistry B 105, 2001. 4062-4064. 15. Cui, Y., et al., Doping and electrical transport in silicon nanowires. The Journal of Physical Chemistry B 104, 2000. 5213-5216. 16. Alivisatos, A.P., Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 1996. 933-937. 17. Trentler, T.J., et al., Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth. Science 270, 1995. 1791-1794. 18. Peng, S., et al., Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano 9, 2015. 1945-1954. 19. Wen, L., et al., Designing heterogeneous 1D nanostructure arrays based on AAO templates for energy applications. Small 11, 2015. 3408-3428. 20. Wagner, a.R. and s.W. Ellis, Vapor‐liquid‐solid mechanism of single crystal growth. Applied Physics Letters 4, 1964. 89-90. 21. Westwater, J., et al., Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 15, 1997. 554-557. 22. Ghosh, R. and P. Giri, Silicon nanowire heterostructures: growth strategies, novel properties and emerging applications. Science Advance Today 2015 23. Wang, G., et al., Facile synthesis and characterization of graphene nanosheets. The Journal of Physical Chemistry C 112, 2008. 8192-8195. 24. Lu, Z., et al., Beta-phased Ni (OH) 2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chemical Communications 47, 2011. 9651-9653. 25. Maillard, M., P. Huang, and L. Brus, Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+]. Nano Letters 3, 2003. 1611-1615. 26. Salehzadeh, O., et al., Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Letters 15, 2015. 5302-5306. 27. Radisavljevic, B., et al., Single-layer MoS2 transistors. Nature Nanotechnology 6, 2011. 147-150. 28. Anwar, R.S., H. Ning, and L. Mao, Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures in microwave and terahertz regimes. Digital Communications and Networks 4, 2018. 244-257. 29. Barnes, W.L., A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 2003. 824-830. 30. Maier, S.A., Plasmonics: fundamentals and applications. Springer 1, 2007. 31. Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and Nuclei 216, 1968. 398-410. 32. Sambles, J., G. Bradbery, and F. Yang, Optical excitation of surface plasmons: an introduction. Contemporary Physics 32, 1991. 173-183. 33. Hall, R.N., et al., Coherent light emission from GaAs junctions. Physical Review Letters 9, 1962. 366. 34. Gwo, S. and C.-K. Shih, Semiconductor plasmonic nanolasers: current status and perspectives. Reports on Progress in Physics 79, 2016. 086501. 35. Oulton, R.F., et al., Plasmon lasers at deep subwavelength scale. Nature 461, 2009. 629-632. 36. Lu, Y.-J., et al. Plasmonic nanolaser using epitaxially grown silver film. in CLEO: Science and Innovations. Optica Publishing Group 2012. 37. Zhang, Q., et al., A room temperature low-threshold ultraviolet plasmonic nanolaser. Nature Communications 5, 2014. 4953. 38. Lu, Y.-J., et al., All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. Nano Letters 14, 2014. 4381-4388. 39. Li, H., et al., Plasmonic Nanolasers Enhanced by Hybrid Graphene–Insulator–Metal Structures. Nano Letters 19, 2019. 5017-5024. 40. Cheng, P.-J., et al., Full-Spectrum Analysis of Perovskite-Based Surface Plasmon Nanolasers. Nanoscale Research Letters 15, 2020. 66. 41. An, B.-G., et al., Photosensors-based on cadmium sulfide (CdS) nanostructures: a review. Journal of the Korean Ceramic Society 58, 2021. 631-644. 42. Hayden, O., A.B. Greytak, and D.C. Bell, Core–Shell Nanowire Light-Emitting Diodes. Advanced Materials 17, 2005. 701-704. 43. Lin, Y.-F., et al., Piezoelectric nanogenerator using CdS nanowires. Applied Physics Letters 92, 2008. 44. Li, Q. and R.M. Penner, Photoconductive Cadmium Sulfide Hemicylindrical Shell Nanowire Ensembles. Nano Letters 5, 2005. 1720-1725. 45. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications 146, 2008. 351-355. 46. Balandin, A.A., et al., Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters 8, 2008. 902-907. 47. Kim, J., et al., Electrical Control of Optical Plasmon Resonance with Graphene. Nano Letters 12, 2012. 5598-5602. 48. Tielrooij, K.J., et al., Electrical control of optical emitter relaxation pathways enabled by graphene. Nature Physics 11, 2015. 281-287. 49. Giovannetti, G., et al., Doping Graphene with Metal Contacts. Physical Review Letters 101, 2008. 026803. 50. Khomyakov, P.A., et al., First-principles study of the interaction and charge transfer between graphene and metals. Physical Review B 79, 2009. 195425. 51. Giangregorio, M.M., et al., Insights into the effects of metal nanostructuring and oxidation on the work function and charge transfer of metal/graphene hybrids. Nanoscale 7, 2015. 12868-12877. 52. Cheng, F., et al., Epitaxial Growth of Atomically Smooth Aluminum on Silicon and Its Intrinsic Optical Properties. ACS Nano 10, 2016. 9852-9860. 53. Zhu, S.-E., S. Yuan, and G.C.A.M. Janssen, Optical transmittance of multilayer graphene. Europhysics Letters 108, 2014. 17007. 54. Wang, S., et al., High-Yield Plasmonic Nanolasers with Superior Stability for Sensing in Aqueous Solution. ACS Photonics 4, 2017. 1355-1360. 55. Geburt, S., et al., Low threshold room-temperature lasing of CdS nanowires. Nanotechnology 23, 2012. 365204. 56. Zhang, Q., et al., Nanolaser arrays based on individual waved CdS nanoribbons. Laser & Photonics Reviews 10, 2016. 458-464. 57. Zou, S., et al., Bosonic Lasing from Collective Exciton Magnetic Polarons in Diluted Magnetic Nanowires and Nanobelts. ACS Photonics 3, 2016. 1809-1817. 58. Hao, Y., et al., Multipoint Nanolaser Array in an Individual Core–Shell CdS Branched Nanostructure. Advanced Optical Materials 8, 2020. 1901644. 59. Singh, K.P., et al., Effect of pristine graphene incorporation on charge storage mechanism of three-dimensional graphene oxide: superior energy and power density retention. Scientific Reports 6, 2016. 31555. 60. Li, Y., et al., Low Threshold and Long-Range Propagation Plasmonic Nanolaser Enhanced by Black Phosphorus Nanosheets. Advanced Theory and Simulations 4, 2021. 2100087. 61. Mehta, K. and P.D. Yoder, Philosophy of Approaching a Laser Design Problem: Illustrated by the Design of Ultraviolet Vertical-Cavity Laser Diodes. Physica Status Solidi (a) 217, 2020. 2000154. 62. Li, C., et al., Low-Threshold Multiwavelength Plasmonic Nanolasing in an “H”-Shape Cavity. Laser & Photonics Reviews, 2023. 2300187.
|