帳號:guest(3.144.243.25)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張哲齊
作者(外文):Chang, Che-Chi
論文名稱(中文):在CdS/Al奈米雷射系統中加入石墨烯介層來提升雷射性能
論文名稱(外文):Plasmonic Enhancement in CdS/Al Nanolaser Systems by Tailoring Graphene Interlayer
指導教授(中文):陳力俊
指導教授(外文):Chen, Lih-Juann
口試委員(中文):呂明諺
吳文偉
口試委員(外文):Lu, Ming-Yen
Wu, Wen-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:110031542
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:66
中文關鍵詞:奈米雷射硫化鎘石墨烯表面等離激元
外文關鍵詞:NanolaserCdSGrapheneSPP
相關次數:
  • 推薦推薦:0
  • 點閱點閱:164
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,奈米雷射引起了廣泛的關注,因為相對於傳統雷射,他能夠突破繞射極限的基本物理限制。奈米雷射具有更快,更高效率的傳輸信號的優勢。奈米雷射技術的突破為積體電路整合提供了巨大的潛力,進一步增强了其應用前景。
在本實驗中,利用硫化鎘和石墨烯-絕緣層-金屬 (GIM) 组成的奈米雷射系統來激發表面電漿子-電磁極化子 (SPP) ,以達到光增強的效果。其中,硫化鎘因為低成本與方便合成的特性被選為半導體增益媒介材料,將分子束磊晶沉積的單晶鋁基板當成金屬層,並且在奈米線和氧化鋁絕緣層之間加入一層由化學氣相沉積製備的石墨烯,最後形成奈米雷射元件。
在添加石墨烯後,雷射閾值有著相當顯著的下降。結果顯示當加入一點七奈米的石墨烯後,可以得到最低的雷射閾值 (4.8 kW/cm2) ,相對於沒有添加石墨烯的系統,下降了百分之六十八。除此之外,不同厚度的石墨烯之雷射表現也在本次研究中有所討論。
Nanolasers have garnered significant interest in recent years due to their ability to overcome the diffraction limit compared to that of traditional lasers. They offer the advantage of transmitting signals in a faster and more efficient manner. The breakthroughs achieved in nanolaser technology hold great promise for integration with IC circuits, further enhancing their potential.
In the present research, we demonstrate a surface plasmon polariton (SPP) nanolaser consisting of CdS nanowires coupled with a single-crystalline aluminum (Al) film and alumina as an insulating interlayer. We then insert a graphene layer prepared by chemical vapor deposition between the nanowires and the insulating layer as a buffer layer. Finally, we create a graphene-insulating layer-metal (GIM) structured SPP laser.
The threshold value for lasing is considerably lower than the addition of other dielectric layer. We examine how varying the thickness of the graphene layer affects the performance of nanolasers. The results indicate that the inclusion of a 1.7 nm graphene layer has the lowest (4.8 kW/cm2) threshold value, which reduces the threshold value for lasing by as much as 68% compared to that without the insertion of graphene layer .The GIM structure promises to be applicable as electrical control or electrical injection of plasmonic devices.
Abstract I
摘要 II
致謝 III
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Nanotechnology 2
1.2.1 One-Dimensional Nanostructures 3
1.2.1.1 Vapor-Liquid-Solid (VLS) Growth Mechanism 4
1.2.2 Two Dimensional Nanostructures 6
1.3 Theoretical Background of Plasmonic Nanolaser 7
1.3.1 Surface Plasmon Polariton 7
1.3.2 Surface Plasmon Polariton in Nanolasers System 10
1.4 CdS on Hybrid Graphene-Insulator-Metal (GIM) Nanolaser Structure 12
1.4.1 CdS Nanowires 13
1.4.2 Hybrid GIM Structures 15
1.4.2.1 Graphene Buffer Layer 15
1.4.2.2 Insulating films 17
1.4.2.3 Aluminum Substate for Metal Layer 17
Chapter 2 Experimental Procedures 19
2.1 Synthesis of CdS Nanowires 19
2.1.1 Preparation of Substrate 19
2.1.2 Horizontal Tube Furnace Growth 20
2.2 Transfer of CVD-Grown Graphene Layer 21
2.3 Epitaxial Aluminum Film Growth by Molecular Beam Epitaxy 22
2.4 Fabrication of CdS Nanolaser device 23
2.5 Scanning Electron Microscope Observation 24
2.6 Transmission Electron Microscope Observation 25
2.7 X-Ray Diffractometer Measurement 27
2.8 Atomic Force Microscope Observation 28
2.9 Micro-Raman Spectroscopy 29
2.10 Focused Ion Beam (FIB) System 30
2.11 Spectroscopic Ellipsometry 31
2.12 Micro-Photoluminescence (μ-PL) Measurement 32
Chapter 3 Results and Discussion 33
3.1 Properties and Characteristics of CdS Nanowires 33
3.1.1 SEM observation 33
3.1.2 XRD Analysis 34
3.1.3 EDS Analysis 35
3.1.4 TEM Observation 36
3.1.5 PL Spectrum 37
3.2 Hybrid Graphene-Insulator-Metal Structure 38
3.2.1 CVD Transferred Graphene 38
3.2.2 Al2O3 Insulating Layer 41
3.2.3 Epitaxial Aluminum Film 43
3.3 Lasing characteristic of CdS / Al2O3 / Al structure 44
3.3.1 3 nm native oxide 44
3.3.2 5nm Al2O3 45
3.4 Effects of Different Thickness of Graphene on Lasing Performance 46
3.4.1 0.5 nm graphene 46
3.4.2 1.7 nm graphene 47
3.4.3 2.5 nm graphene 48
3.5 Comparison of Different CdS Lasing System 49
3.6 Comparison of Stability of Nanolasers with Three Kinds of Graphene 51
3.7 Simulation Results 53
3.8 Comparison of Lasing Performance with Other Relevant Work 55
Chapter 4 Summary and Conclusions 57
Chapter 5 Future Prospects 58
5.1 Plasmonic Nanolaser Based on Black Phosphorus Nanosheets 58
5.2 Fabrication of Plasmonic Nanolaser system with different shape cavity 59
Appendix………………………………………………………………..60
References………………………………………………………………63
1. Andonovic, I. and D. Uttamchandani, Principles of modern optical systems. Norwood 1989.
2. Ion, J., Laser processing of engineering materials: principles, procedure and industrial application. Elsevier 2005.
3. Kaushal, H. and G. Kaddoum, Applications of lasers for tactical military operations. IEEE Access 5, 2017. 20736-20753.
4. Mester, E., A.F. Mester, and A. Mester, The biomedical effects of laser application. Lasers in Surgery and Medicine 5 , 1985. 31-39.
5. Uchida, A., Optical communication with chaotic lasers: applications of nonlinear dynamics and synchronization. John Wiley & Sons 2012.
6. Oulton, R.F., et al., A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics 2, 2008. 496-500.
7. Feng, T., et al., Spectral phonon mean free path and thermal conductivity accumulation in defected graphene: The effects of defect type and concentration. Physical Review B 91, 2015. 224301.
8. Feynman, R.P., There’s plenty of room at the bottom, in Feynman and computation, CRC Press, 2018. 63-76
9. Byakodi, M., et al., Emerging 0D, 1D, 2D, and 3D nanostructures for efficient point-of-care biosensing. Biosensors and Bioelectronics 12, 2022. 100284.
10. Dresselhaus, M.S., et al., Carbon nanotubes. Springer 2000
11. Lu, W. and C.M. Lieber, Semiconductor nanowires. Journal of Physics D: Applied Physics 39, 2006. R387.
12. Pérez-Juste, J., et al., Gold nanorods: synthesis, characterization and applications. Coordination Chemistry Reviews 249, 2005. 1870-1901.
13. Hughes, W.L. and Z.L. Wang, Nanobelts as nanocantilevers. Applied Physics Letters 82, 2003. 2886-2888.
14. Gudiksen, M.S., J. Wang, and C.M. Lieber, Synthetic control of the diameter and length of single crystal semiconductor nanowires. The Journal of Physical Chemistry B 105, 2001. 4062-4064.
15. Cui, Y., et al., Doping and electrical transport in silicon nanowires. The Journal of Physical Chemistry B 104, 2000. 5213-5216.
16. Alivisatos, A.P., Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 1996. 933-937.
17. Trentler, T.J., et al., Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth. Science 270, 1995. 1791-1794.
18. Peng, S., et al., Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano 9, 2015. 1945-1954.
19. Wen, L., et al., Designing heterogeneous 1D nanostructure arrays based on AAO templates for energy applications. Small 11, 2015. 3408-3428.
20. Wagner, a.R. and s.W. Ellis, Vapor‐liquid‐solid mechanism of single crystal growth. Applied Physics Letters 4, 1964. 89-90.
21. Westwater, J., et al., Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 15, 1997. 554-557.
22. Ghosh, R. and P. Giri, Silicon nanowire heterostructures: growth strategies, novel properties and emerging applications. Science Advance Today 2015
23. Wang, G., et al., Facile synthesis and characterization of graphene nanosheets. The Journal of Physical Chemistry C 112, 2008. 8192-8195.
24. Lu, Z., et al., Beta-phased Ni (OH) 2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chemical Communications 47, 2011. 9651-9653.
25. Maillard, M., P. Huang, and L. Brus, Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+]. Nano Letters 3, 2003. 1611-1615.
26. Salehzadeh, O., et al., Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Letters 15, 2015. 5302-5306.
27. Radisavljevic, B., et al., Single-layer MoS2 transistors. Nature Nanotechnology 6, 2011. 147-150.
28. Anwar, R.S., H. Ning, and L. Mao, Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures in microwave and terahertz regimes. Digital Communications and Networks 4, 2018. 244-257.
29. Barnes, W.L., A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 2003. 824-830.
30. Maier, S.A., Plasmonics: fundamentals and applications. Springer 1, 2007.
31. Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and Nuclei 216, 1968. 398-410.
32. Sambles, J., G. Bradbery, and F. Yang, Optical excitation of surface plasmons: an introduction. Contemporary Physics 32, 1991. 173-183.
33. Hall, R.N., et al., Coherent light emission from GaAs junctions. Physical Review Letters 9, 1962. 366.
34. Gwo, S. and C.-K. Shih, Semiconductor plasmonic nanolasers: current status and perspectives. Reports on Progress in Physics 79, 2016. 086501.
35. Oulton, R.F., et al., Plasmon lasers at deep subwavelength scale. Nature 461, 2009. 629-632.
36. Lu, Y.-J., et al. Plasmonic nanolaser using epitaxially grown silver film. in CLEO: Science and Innovations. Optica Publishing Group 2012.
37. Zhang, Q., et al., A room temperature low-threshold ultraviolet plasmonic nanolaser. Nature Communications 5, 2014. 4953.
38. Lu, Y.-J., et al., All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. Nano Letters 14, 2014. 4381-4388.
39. Li, H., et al., Plasmonic Nanolasers Enhanced by Hybrid Graphene–Insulator–Metal Structures. Nano Letters 19, 2019. 5017-5024.
40. Cheng, P.-J., et al., Full-Spectrum Analysis of Perovskite-Based Surface Plasmon Nanolasers. Nanoscale Research Letters 15, 2020. 66.
41. An, B.-G., et al., Photosensors-based on cadmium sulfide (CdS) nanostructures: a review. Journal of the Korean Ceramic Society 58, 2021. 631-644.
42. Hayden, O., A.B. Greytak, and D.C. Bell, Core–Shell Nanowire Light-Emitting Diodes. Advanced Materials 17, 2005. 701-704.
43. Lin, Y.-F., et al., Piezoelectric nanogenerator using CdS nanowires. Applied Physics Letters 92, 2008.
44. Li, Q. and R.M. Penner, Photoconductive Cadmium Sulfide Hemicylindrical Shell Nanowire Ensembles. Nano Letters 5, 2005. 1720-1725.
45. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications 146, 2008. 351-355.
46. Balandin, A.A., et al., Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters 8, 2008. 902-907.
47. Kim, J., et al., Electrical Control of Optical Plasmon Resonance with Graphene. Nano Letters 12, 2012. 5598-5602.
48. Tielrooij, K.J., et al., Electrical control of optical emitter relaxation pathways enabled by graphene. Nature Physics 11, 2015. 281-287.
49. Giovannetti, G., et al., Doping Graphene with Metal Contacts. Physical Review Letters 101, 2008. 026803.
50. Khomyakov, P.A., et al., First-principles study of the interaction and charge transfer between graphene and metals. Physical Review B 79, 2009. 195425.
51. Giangregorio, M.M., et al., Insights into the effects of metal nanostructuring and oxidation on the work function and charge transfer of metal/graphene hybrids. Nanoscale 7, 2015. 12868-12877.
52. Cheng, F., et al., Epitaxial Growth of Atomically Smooth Aluminum on Silicon and Its Intrinsic Optical Properties. ACS Nano 10, 2016. 9852-9860.
53. Zhu, S.-E., S. Yuan, and G.C.A.M. Janssen, Optical transmittance of multilayer graphene. Europhysics Letters 108, 2014. 17007.
54. Wang, S., et al., High-Yield Plasmonic Nanolasers with Superior Stability for Sensing in Aqueous Solution. ACS Photonics 4, 2017. 1355-1360.
55. Geburt, S., et al., Low threshold room-temperature lasing of CdS nanowires. Nanotechnology 23, 2012. 365204.
56. Zhang, Q., et al., Nanolaser arrays based on individual waved CdS nanoribbons. Laser & Photonics Reviews 10, 2016. 458-464.
57. Zou, S., et al., Bosonic Lasing from Collective Exciton Magnetic Polarons in Diluted Magnetic Nanowires and Nanobelts. ACS Photonics 3, 2016. 1809-1817.
58. Hao, Y., et al., Multipoint Nanolaser Array in an Individual Core–Shell CdS Branched Nanostructure. Advanced Optical Materials 8, 2020. 1901644.
59. Singh, K.P., et al., Effect of pristine graphene incorporation on charge storage mechanism of three-dimensional graphene oxide: superior energy and power density retention. Scientific Reports 6, 2016. 31555.
60. Li, Y., et al., Low Threshold and Long-Range Propagation Plasmonic Nanolaser Enhanced by Black Phosphorus Nanosheets. Advanced Theory and Simulations 4, 2021. 2100087.
61. Mehta, K. and P.D. Yoder, Philosophy of Approaching a Laser Design Problem: Illustrated by the Design of Ultraviolet Vertical-Cavity Laser Diodes. Physica Status Solidi (a) 217, 2020. 2000154.
62. Li, C., et al., Low-Threshold Multiwavelength Plasmonic Nanolasing in an “H”-Shape Cavity. Laser & Photonics Reviews, 2023. 2300187.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *