|
1. 臺灣2050淨零排放路徑及策略總說明. 2. Carron, R. et al. Advanced Alkali Treatments for High-Efficiency Cu(In,Ga)Se2 Solar Cells on Flexible Substrates. Adv Energy Mater 9, (2019). 3. Khatri, I., Lin, T. Y., Nakada, T. & Sugiyama, M. Proton Irradiation on Cesium-Fluoride-Free and Cesium-Fluoride-Treated Cu(In,Ga)Se2 Solar Cells and Annealing Effects under Illumination. Physica Status Solidi - Rapid Research Letters 13, 1–6 (2019). 4. Lin, T. Y., Yashiro, T., Khatri, I. & Sugiyama, M. Characterization on proton irradiation-damaged interfaces of CIGS-related multilayered compound semiconductors for solar cells by electrochemical impedance spectroscopy. Jpn J Appl Phys 59, 1–5 (2020). 5. Yang, S. C. et al. Efficiency boost of bifacial Cu(In,Ga)Se2 thin-film solar cells for flexible and tandem applications with silver-assisted low-temperature process. Nat Energy 8, 40–51 (2023). 6. James, T., Goodrich, A., Woodhouse, M., Margolis, R. & Ong, S. Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices. http://www.osti.gov/bridge (2011). 7. Nakamura, M. et al. Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%. IEEE J Photovolt 9, 1863–1867 (2019). 8. Yuan, Z.-K. et al. Na-Diffusion Enhanced p-type Conductivity in Cu(In,Ga)Se2: A New Mechanism for Efficient Doping in Semiconductors. Adv Energy Mater 6, 1601191 (2016). 9. Lin, T. Y. et al. Engineering Na-transport to achieve high efficiency in ultrathin Cu(In,Ga)Se2 solar cells with controlled preferred orientation. Nano Energy 41, 697–705 (2017). 10. Chiril, A. et al. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. 12, 1107–1111 (2013). 11. Raghuwanshi, M. et al. Influence of RbF post deposition treatment on heterojunction and grain boundaries in high efficient (21.1%) Cu(In,Ga)Se2 solar cells. Nano Energy 60, 103–110 (2019). 12. Lin, T. Y. et al. Alkali-induced grain boundary reconstruction on Cu(In,Ga)Se2 thin film solar cells using cesium fluoride post deposition treatment. Nano Energy 68, 104299 (2020). 13. Bae, S. H. et al. Printable Solar Cells from Advanced Solution-Processible Materials. Chem 1, 197–219 (2016). 14. Alharbi, F. H. et al. An efficient descriptor model for designing materials for solar cells. NPJ Comput Mater 1, (2015). 15. Fujiwara Hiroyuki & Collins, R. W. Applications and Optical Data of Solar Cell Materials. in Spectroscopic Ellipsometry for Photovoltaics: Volume 2 vol. 214 (2019). 16. Diantoro, M. et al. Shockley’s equation fit analyses for solar cell parameters from I-V curves. International Journal of Photoenergy 2018, (2018). 17. Yaqoob, S. J. et al. Comparative study with practical validation of photovoltaic monocrystalline module for single and double diode models. Sci Rep 11, (2021). 18. Wagner, S., Shay, J. L., Migliorato, P. & Kasper, H. M. CuInSe2/CdS heterojunction photovoltaic detectors. Appl Phys Lett 25, 434–435 (1974). 19. Kato, T. Cu(In,Ga)(Se,S)2 solar cell research in Solar Frontier: Progress and current status. in Japanese Journal of Applied Physics vol. 56 (Japan Society of Applied Physics, 2017). 20. Copper Indium Gallium Diselenide Solar Cells _ Photovoltaic Research _ NREL. https://www.nrel.gov/pv/copper-indium-gallium-diselenide-solar-cells.html (2023). 21. Hedstrljm, J. et al. ZnO/CdS/Cu(In,Ga)Se2 Thin Film Solar Cells with Improved Performance. Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference-1993 364–371 (1993). 22. Choi, P. P., Cojocaru-Mirédin, O., Wuerz, R. & Raabe, D. Comparative atom probe study of Cu(In,Ga)Se2 thin-film solar cells deposited on soda-lime glass and mild steel substrates. J Appl Phys 110, (2011). 23. Empa - Communication - Solarzellen-Rekord. https://www.empa.ch/web/s604/solarzellen-rekord (2023). 24. Karade, V. et al. Insights into kesterite’s back contact interface: A status review. Solar Energy Materials and Solar Cells 200, (2019). 25. Canava, B. et al. Wet treatment based interface engineering for high efficiency Cu(In,Ga)Se 2 solar cells. Thin Solid Films 361–362, 187–192 (2000). 26. Rusu, M. et al. Electronic Structure of the CdS/Cu(In,Ga)Se2 Interface of KF- And RbF-Treated Samples by Kelvin Probe and Photoelectron Yield Spectroscopy. ACS Appl Mater Interfaces 13, 7745–7755 (2021). 27. Suzon, A. A. Pathways towards efficiency improvement of Kesterite based solar cell. (Université Grenoble Alpes, 2018). 28. Park, J. S., Dong, Z., Kim, S. & Perepezko, J. H. CulnSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction. J Appl Phys 87, 3683–3690 (2000). 29. Kerr, L. L. et al. Investigation of defect properties in Cu(In,Ga)Se2 solar cells by deep-level transient spectroscopy. in Solid-State Electronics vol. 48 1579–1586 (2004). 30. Whittles, T. J. et al. Core Levels, Band Alignments, and Valence-Band States in CuSbS2 for Solar Cell Applications. ACS Appl Mater Interfaces 9, 41916–41926 (2017). 31. Sharan, A. et al. Assessing the roles of Cu- and Ag-deficient layers in chalcopyrite-based solar cells through first principles calculations Assessing the roles of Cu- and Ag-deficient layers in chalcopyrite-based solar cells through first principles calculations. J Appl Phys 127, (2020). 32. Yang, S. C. et al. Influence of Ga back grading on voltage loss in low-temperature co-evaporated Cu(In,Ga)Se2 thin film solar cells. Progress in Photovoltaics: Research and Applications 29, 630–637 (2021). 33. Tu, L. H., Cai, C. H. & Lai, C. H. Tuning Ga Grading in Selenized Cu(In,Ga)Se2 Solar Cells by Formation of Ordered Vacancy Compound. Solar RRL 5, (2021). 34. Golobostanfard, M. R. & Abdizadeh, H. All solution processable graded CIGS solar cells fabricated using electrophoretic deposition. RSC Adv 6, 11903–11910 (2016). 35. Contreras, M. A. et al. High efficiency Cu (In,Ga) Se2-based solar cells: Processing of novel absorber structures. in Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion-WCPEC (A Joint Conference of PVSC, PVSEC and PSEC) (1994). 36. Wei, S. H., Zhang, S. B. & Zunger, A. Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties. Appl Phys Lett 72, 3199–3201 (1998). 37. Bär, M. et al. Determination of the band gap depth profile of the penternary Cu(In(1-x)Gax)(SySe(1-y))2 chalcopyrite from its composition gradient. J Appl Phys 96, 3857–3860 (2004). 38. Scheer, R. & Schock, H. Thin Film Material Properties. in Chalcogenide Photovoltaics (Wiley, 2011). doi:10.1002/9783527633708.fmatter. 39. Khoshsirat, N. & Yunus, N. A. M. Copper-Indium-Gallium-diSelenide (CIGS) Nanocrystalline Bulk Semiconductor as the Absorber Layer and Its Current Technological Trend and Optimization. in Nanoelectronics and Materials Development (InTech, 2016). doi:10.5772/64166. 40. Chang, Y. H. et al. Insights from Transient Absorption Spectroscopy into Electron Dynamics Along the Ga-Gradient in Cu(In,Ga)Se2 Solar Cells. Adv Energy Mater 11, (2021). 41. Scheer, R. & Schock, H. Thin Film Heterostructures. in Chalcogenide Photovoltaics (Wiley, 2011). doi:10.1002/9783527633708.fmatter. 42. Suzon, A. A. Pathways towards efficiency improvement of Kesterite based solar cell. https://tel.archives-ouvertes.fr/tel-02017690. 43. Wilson, G. M. et al. The 2020 photovoltaic technologies roadmap. J Phys D Appl Phys 53, (2020). 44. Kushiya, K. et al. The role of Cu(InGa)(SeS)2 surface layer on a graded band-gap Cu(InGa)Se2 thin-film solar cell prepared by two-stage method. in Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference 989–992 (1996). 45. Gabor, A. M. et al. High-efficiency CuInxGa1-xSe2 solar cells made from (Inx,Ga1-x)2Se3 precursor films. Appl Phys Lett 65, 198–200 (1994). 46. Avancini, E. et al. Impact of compositional grading and overall Cu deficiency on the near-infrared response in Cu(In,Ga)Se2 solar cells. Progress in Photovoltaics: Research and Applications 25, 233–241 (2017). 47. Klinkert, T., Jubault, M., Donsanti, F., Lincot, D. & Guillemoles, J. F. Ga gradients in Cu(In,Ga)Se2: Formation, characterization, and consequences. in Journal of Renewable and Sustainable Energy vol. 6 (American Institute of Physics Inc., 2014). 48. Jackson, P. et al. Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Physica Status Solidi - Rapid Research Letters 10, 583–586 (2016). 49. Hashemi, M., Bagher Ghorashi, S. M., Tajabadi, F. & Taghavinia, N. Pre-deposited alkali (Li, Na, K) chlorides layer for effective doping of CuInSSe thin films as absorber layer in solar cells. Solar Energy 231, 694–704 (2022). 50. Khatri, I. & Sugiyama, M. Effect of combined treatment of cesium fluoride as precursor and post-treatment on Cu(In,Ga)Se2thin film solar cell. Appl Phys Lett 118, (2021). 51. Rudmann, D. et al. Sodium incorporation strategies for CIGS growth at different temperatures. in Thin Solid Films vols 480–481 55–60 (2005). 52. Laemmle, A., Wuerz, R. & Powalla, M. Investigation of the effect of potassium on Cu(In,Ga)Se2 layers and solar cells. in Thin Solid Films vol. 582 27–30 (Elsevier B.V., 2015). 53. Lepetit, T., Harel, S., Arzel, L., Ouvrard, G. & Barreau, N. KF post deposition treatment in co-evaporated Cu(In,Ga)Se2 thin film solar cells: Beneficial or detrimental effect induced by the absorber characteristics. Progress in Photovoltaics: Research and Applications 25, 1068–1076 (2017). 54. Mansfield, L. M. et al. Enhanced performance in Cu(In,Ga)Se2 solar cells fabricated by the two-step selenization process with a potassium fluoride postdeposition treatment. IEEE J Photovolt 4, 1650–1654 (2014). 55. Rudmann, D. et al. Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to post-deposition Na incorporation. Appl Phys Lett 84, 1129–1131 (2004). 56. Oikkonen, L. E., Ganchenkova, M. G., Seitsonen, A. P. & Nieminen, R. M. Effect of sodium incorporation into CuInSe2 from first principles. J Appl Phys 114, (2013). 57. Malitckaya, M., Komsa, H. P., Havu, V. & Puska, M. J. Effect of Alkali Metal Atom Doping on the CuInSe2-Based Solar Cell Absorber. Journal of Physical Chemistry C 121, 15516–15528 (2017). 58. Wei, S. H., Zhang, S. B. & Zunger, A. Effects of Na on the electrical and structural properties of CuInSe2. J Appl Phys 85, 7214–7218 (1999). 59. Kronik, L., Cahen, D. & Schock, H. W. Effects of sodium on polycrystalline Cu(In,Ga)Se2 and its solar cell performance. Advanced Materials 10, 31–36 (1998). 60. Niles, D. W. et al. Na impurity chemistry in photovoltaic CIGS thin films: Investigation with x-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 15, 3044–3049 (1997). 61. Babbe, F. et al. Vacuum-Healing of Grain Boundaries in Sodium-Doped CuInSe2 Solar Cell Absorbers. Adv Energy Mater (2023) doi:10.1002/aenm.202204183. 62. Shin, D. et al. Effects of the incorporation of alkali elements on Cu(In,Ga)Se2 thin film solar cells. Solar Energy Materials and Solar Cells 157, 695–702 (2016). 63. Nicoara, N. et al. Direct evidence for grain boundary passivation in Cu(In,Ga)Se2 solar cells through alkali-fluoride post-deposition treatments. Nat Commun 10, (2019). 64. Reinhard, P. et al. Cu(In,Ga)Se2 thin-film solar cells and modules - A boost in efficiency due to potassium. IEEE J Photovolt 5, 656–663 (2015). 65. Mina, M. S., Enkhbayar, E., Otgontamir, N., Kim, S. Y. & Kim, J. H. Efficiency Improvement of Narrow Band Gap Cu(In,Ga)(S,Se)2 Solar Cell with Alkali Treatment via Aqueous Spray Pyrolysis Deposition. ACS Appl Mater Interfaces (2023) doi:10.1021/acsami.3c02362. 66. Ishizuka, S., Taguchi, N. & Fons, P. J. Similarities and Critical Differences in Heavy Alkali-Metal Rubidium and Cesium Effects on Chalcopyrite Cu(In,Ga)Se2 Thin-Film Solar Cells. Journal of Physical Chemistry C 123, 17757–17764 (2019). 67. Cheng, S. et al. Analysis of the Heavy Alkali Element Postdeposition Treatment: Which Factors Determine the Electronic Structure and Transport Properties of the Heterojunction in CIGS Thin Film Solar Cells. ACS Appl Energy Mater 4, 3279–3287 (2021). 68. Boumenou, C. K. et al. Nanoscale Surface Analysis Reveals Origins of Enhanced Interface Passivation in RbF Post Deposition Treated CIGSe Solar Cells. Adv Funct Mater (2023) doi:10.1002/adfm.202300590. 69. Mansfield, L. M. et al. Setting boundaries on the recipe for a successful RbF post-deposition treatment of CIGS. Solar Energy Materials and Solar Cells 245, (2022). 70. Keller, J., Aboulfadl, H., Stolt, L., Donzel-Gargand, O. & Edoff, M. Rubidium Fluoride Absorber Treatment for Wide-Gap (Ag,Cu)(In,Ga)Se2 Solar Cells. Solar RRL 6, (2022). 71. Lee, H. et al. Passivation of Deep-Level Defects by Cesium Fluoride Post-Deposition Treatment for Improved Device Performance of Cu(In,Ga)Se2 Solar Cells. ACS Appl Mater Interfaces 11, 35653–35660 (2019). 72. Stokes, A., Al-Jassim, M., DIercks, D., Clarke, A. & Gorman, B. Impact of Wide-Ranging Nanoscale Chemistry on Band Structure at Cu(In, Ga)Se2 Grain Boundaries. Sci Rep 7, (2017). 73. Taretto, K. & Rau, U. Numerical simulation of carrier collection and recombination at grain boundaries in Cu(In,Ga)Se2 solar cells. J Appl Phys 103, (2008). 74. Raghuwanshi, M., Wuerz, R. & Cojocaru-Mirédin, O. Interconnection between Trait, Structure, and Composition of Grain Boundaries in Cu(In,Ga)Se2 Thin-Film Solar Cells. Adv Funct Mater 30, (2020). 75. Schmid, D., Ruckh, M. & Schock, H. W. A comprehensive characterization of the interfaces in Mo/CIS/CdS/ZnO solar cell structures. Solar Energy Materials and Solar Cells 41–42, 281–294 (1996). 76. Ullrich, B., Sakai, H. & Segawa, Y. Optoelectronic properties of thin film CdS formed by ultraviolet and infrared pulsed-laser deposition. Thin Solid Films 385, 220–224 (2001). 77. Yilmaz, S., Atasoy, Y., Tomakin, M. & Bacaksiz, E. Comparative studies of CdS, CdS:Al, CdS:Na and CdS:(Al-Na) thin films prepared by spray pyrolysis. Superlattices Microstruct 88, 299–307 (2015). 78. Boieriu, P., Sporken, R., Xin, Y., Browning, N. D. & Sivananthan, S. Wurtzite CdS on CdTe grown by molecular beam epitaxy. J Electron Mater 29, 718–722 (2000). 79. Vigil-galán, O. et al. Optimization of CBD-CdS physical properties for solar cell applications considering a MIS structure. Mater Des 99, 254–261 (2016). 80. He, X. et al. Cd doping at PVD-CdS/CuInGaSe2 heterojunctions. Solar Energy Materials and Solar Cells 164, 128–134 (2017). 81. Shkir, M., Khan, Z. R., Anis, M., Shaikh, S. S. & AlFaify, S. A comprehensive study of opto-electrical and nonlinear properties of Cu@CdS thin films for optoelectronics. Chinese Journal of Physics 63, 51–62 (2020). 82. Kashiwaba, Y., Isojima, K. & Ohta, K. Improvement in the efficiency of Cu-doped CdS/non-doped CdS photovoltaic cells fabricated by an all-vacuum process. Solar Energy Materials and Solar Cells 75, 253–259 (2003). 83. Kumar, V. et al. Effect of Cu-doping on the photoluminescence and photoconductivity of template synthesized CdS nanowires. Journal of Physics and Chemistry of Solids 124, 1–6 (2019). 84. Henry, C. H., Nassau, K. & Shiever, J. W. Optical Studies of Shallow Acceptors in CdS and CdSe. Phys Rev B 4, (1971). 85. Lee, H. & Kim, H. S. Work-Function Engineering in Lead Sulfide and Cadmium Sulfide Quantum Dots incorporated into Zeolite Y using Ion Exchange. Particle and Particle Systems Characterization 33, 126–131 (2016). 86. Yang, P., Wilks, R. G., Yang, W. & Bär, M. Interface Formation between CdS and Alkali Postdeposition-Treated Cu(In,Ga)Se2 Thin-Film Solar Cell Absorbers - Key to Understanding the Efficiency Gain. ACS Appl Mater Interfaces 12, 6688–6698 (2020). 87. 謝嘉民, 賴一凡, 林永昌 & 枋志堯. 光激發螢光量測的原理、架構及應用. 科儀新知 26, 39–51 (2005). 88. Nadenau, V., Rau, U., Jasenek, A. & Schock, H. W. Electronic properties of CuGaSe2-based heterojunction solar cells. Part I. Transport analysis. J Appl Phys 87, 584–593 (2000). 89. Weiss, T. P. et al. Injection Current Barrier Formation for RbF Postdeposition-Treated Cu(In,Ga)Se2-Based Solar Cells. Adv Mater Interfaces 5, (2018). 90. Walter, T., Herberholz, R., Müller, C. & Schock, H. W. Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions. J Appl Phys 80, 4411–4420 (1996). 91. Weiss, T. P., Nishiwaki, S., Bissig, B., Buecheler, S. & Tiwari, A. N. Voltage dependent admittance spectroscopy for the detection of near interface defect states for thin film solar cells. Physical Chemistry Chemical Physics 19, 30410–30417 (2017). 92. Time-of-Flight Secondary Ion Mass Spectrometry _ Time-of-Flight Secondary Ion Mass Spectrometry Laboratory. 93. Fernandez Garrillo, P. A. Development of highly resolved and photo-modulated Kelvin probe microscopy techniques for the study of photovoltaic systems. https://www.researchgate.net/publication/330179783 (2019). 94. Chantana, J., Kato, T., Sugimoto, H. & Minemoto, T. Structures of Cu(In,Ga)(S,Se)2 solar cells for minimizing open-circuit voltage deficit: Investigation of carrier recombination rates. Progress in Photovoltaics: Research and Applications 27, 630–639 (2019). 95. Schöppe, P. et al. Revealing the origin of the beneficial effect of cesium in highly efficient Cu(In,Ga)Se2 solar cells. Nano Energy 71, (2020). 96. Cheng, S. et al. Analysis of the Heavy Alkali Element Postdeposition Treatment: Which Factors Determine the Electronic Structure and Transport Properties of the Heterojunction in CIGS Thin Film Solar Cells. ACS Appl Energy Mater 4, 3279–3287 (2021). 97. Zhao, Y. et al. Controllable Formation of Ordered Vacancy Compound for High Efficiency Solution Processed Cu(In,Ga)Se2 Solar Cells. Adv Funct Mater 31, (2021). 98. Tu, L. H., Tran, N. T. T., Lin, S. K. & Lai, C. H. Efficiency Boost of (Ag0.5,Cu0.5)(In1-x,Gax)Se2 Thin Film Solar Cells by Using a Sequential Process: Effects of Ag-Front Grading and Surface Phase Engineering. Adv Energy Mater (2023) doi:10.1002/aenm.202301227. 99. Nevruzoglu, V., Tomakin, M., Keskenler, E. F. & Ozturk, G. Effects of Na doping on CDS thin films and n-CdS/p-Si solar cells via chemical bath deposition method. Journal of Ceramic Processing Research 18, 494–500 (2017). 100. Bidadi, H., Kalafi, M., Tajalli, H., Bairamov, A. I. & Dzhafarov, T. D. Diffusion and interaction of Group I impurities with vacancies in CdS thin films. Opt Mater (Amst) 6, 27–33 (1996). 101. Deng, Y. et al. Cu-doped CdS and its application in CdTe thin film solar cell. AIP Adv 015203, 0–10 (2016). 102. Minceva-Sukarova, B., Najdoski, M., Grozdanov, I. & Chunnilall, C. J. Raman spectra of thin solid films of some metal sulfides. J Mol Struct 410, 267–270 (1997). 103. Rahman, M. F., Hossain, J. & Ismail, A. B. M. Structural, surface morphological and optical properties and their correlation with the thickness of spin coated superior quality CdS thin film synthesized using a novel chemical route. SN Appl Sci 2, 1–9 (2020). 104. Li, J. V. et al. Theoretical analysis of effects of deep level, back contact, and absorber thickness on capacitance-voltage profiling of CdTe thin-film solar cells. Solar Energy Materials and Solar Cells 100, 126–131 (2012). 105. Cheng, T. M. et al. Efficiency Enhancement of Cu(In,Ga)(S,Se)2 Solar Cells by Indium-Doped CdS Buffer Layers. ACS Appl Mater Interfaces 12, 18157–18164 (2020).
|