帳號:guest(3.144.3.183)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳永璇
作者(外文):Chen, Yung-Hsuan
論文名稱(中文):銅銦鎵硒太陽能電池摻雜鹼金屬的效應研究
論文名稱(外文):Investigation of the Effects of Alkali Metal Ion Incorporation in the Cu(In,Ga)Se2-based Solar Cells
指導教授(中文):林姿瑩
指導教授(外文):Lin, Tzu-Ying
口試委員(中文):洪崧富
詹岳霖
口試委員(外文):Hung, Sung-Fu
Jan, Yueh-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:110031540
出版年(民國):112
畢業學年度:112
語文別:英文
論文頁數:97
中文關鍵詞:銅銦鎵硒硫鹼金屬氟化銫後處理功函數界面薄膜太陽能電池
外文關鍵詞:CIGSSealkali metalCsF-PDTwork functioninterfacethin film solar cells
相關次數:
  • 推薦推薦:0
  • 點閱點閱:134
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鹼金屬離子添加對於銅銦鎵硒太陽能電池的性能提升具有巨大潛力。本研究著眼於銅銦鎵硒(CIGS)太陽能電池的前接觸面,探討添加鹼金屬離子對其性能的影響。在第一部分,我們著重於重鹼金屬離子添加至含硫之CIGS吸收層的效果。透過在CIGS吸收層上後沉積不同量的銫(Cs-PDT),我們觀察到光電轉換效率從15.88%提升至16.68%。時間解析光激發螢光(TRPL)測量得到的載子壽命τ1和τ2分別從8.3 ns和27.8 ns增加至9.6 ns和34.4 ns。在照光下的變溫電壓電流測量顯示,在Cs後處理後,載子複合途徑由界面復合主導轉變為中性區域的復合主導。開爾文探針力顯微鏡(KPFM)的結果顯示,在Cs-PDT處理後,CIGS表面整體功函數增加了432.1 meV,這表示吸收層內的載子濃度增加,這與電容-電壓(CV)測量的結果一致,其載子濃度在經過Cs-PDT處理後,從2.05×1016 cm-3增加至9.2×1016 cm-3。而Cs-PDT後的晶界處其功函數則提升,表示Cs-PDT處理後晶界處的價帶下移。無光照的低溫測量顯示,PN接面之間的載子注入的活化能從81.6 meV增加至104.8 meV,顯示界面處的導帶偏移(CBO)有所增加。基於KPFM和CBO測量,我們提出了Cs-PDT處理後可能的能帶模型,並利用紫外光電子能譜(UPS)結合低能量反光電子能譜(LEIPS)驗證了此能帶變化。證實Cs-PDT處理後,吸收層前接觸面的價帶明顯向下移動,使能隙從1.44 eV增加至Cs-PDT處理後的2.55 eV。而此向下移動價帶可以有效鈍化CIGS太陽能電池的PN接面。在第二部分之中專注於研究經過Cs-PDT處理的吸收層對CdS緩衝層的影響。我們首先分析了經不同程度Cs-PDT的CIGS吸收層樣品上的CdS緩衝層。我們發現CIGS吸收層一旦經歷了Cs-PDT,從CIGS向外擴散進入CdS層的Cu即會減少。自CdS擴散進CIGS的Cs也展現了與其與PDT相似的離子交換現象,即較高的Cs將排斥吸收層中的Na含量。此外,CdS緩衝層中雜質的分佈也會影響功函數,Na傾向於降低其功函數,而Cs傾向于增加其功函數。為了驗證這些效應,我們特意將鹼金屬離子加入CdS緩衝溶液中進行檢測。結果顯示添加Na後CdS的功函數增加,而添加Cs後CdS的功函數減少。因此,我們將Na-doped CdS 緩衝層做在Cs-PDT CIGS上,與Cs-PDT CIGS搭配未摻雜CdS 樣品相比,Na-doped CdS有較高的的 CdS 載子濃度,元件效率上也有微幅的提升。最後利用SCAPS軟件檢測CdS緩衝層中載子濃度對於元件表現的影響。此論文研究了Cs-PDT影響CIGS光電轉換效率的各種面向,透過電性量測以及材料分析進行驗證。後續並深入Cs-PDT對於CdS緩衝層的影響,最後提出了一種以Na摻雜的CdS作為未來調整緩衝層以增加元件表現的可能方案。
The incorporation of alkali metal ions holds tremendous potential for enhancing the performance of sulfur-incorporated copper indium gallium selenide (CIGS-based, CIGSSe) solar cells. This study centers on the front interface of CIGS solar cells and examines the consequences of alkali metal ion integration. In Part 1, the attention is directed towards the influence of introducing heavy alkali metal ions into the CIGSSe absorber layer. Through the post-deposition of varying quantities of Cs (Cs-PDT) onto the CIGS absorber layer, an increase in efficiency was observed, elevating it from 15.88% to 16.68%. Time-resolved photoluminescence (TRPL) measurements revealed that the carrier lifetimes τ1 and τ2 increased from 8.3 ns and 27.8 ns to 9.6 ns and 34.4 ns, respectively. Temperature-dependent JV measurement under illumination demonstrated that a transition from interface-dominated recombination to bulk-dominated recombination through an appropriate Cs-PDT. The results obtained through Kelvin probe force microscopy (KPFM) revealed a notable increase of 432.1 meV in the surface work function of CIGS after Cs-PDT. This increase points to an enhanced carrier concentration within the absorber layer. This observation aligned with capacitance-voltage (CV) measurements, where the carrier concentration increased from 2.05×1016 cm-3 to 9.2×1016 cm-3 after Cs-PDT. On the other hand, the work function at grain boundaries increased after Cs-PDT treatment, suggesting a downward band bending in the valence band. Low-temperature measurements under dark conditions demonstrated that the activation energy for carrier injection across the PN junction increased from 81.6 meV to 104.8 meV, implying an elevated conduction band offset (CBO) at the interface. Based on the data obtained from KPFM and CBO measurements, potential energy band models resulting from Cs-PDT were formulated. The validation of these energy band models was carried out using ultraviolet photoelectron spectroscopy (UPS) in combination with low-energy inverse photoemission spectroscopy (LEIPS). This verification process affirmed that Cs-PDT induced a significant downward shift in the valence band at the CIGSSe front interface, resulting in an expansion of the bandgap from 1.44 eV to 2.55 eV following Cs-PDT. This downward shift in the valence band effectively passivates the PN junction in CIGSSe solar cells. The focus of part 2 lies in studying the impact of Cs-PDT absorber layers on the CdS buffer layer. The analysis commences with an examination of the CdS buffer layer on CIGS absorber samples exposed to different levels of Cs-PDT. Upon Cs-PDT treatment of the CIGS absorber layer, a decrease in the diffusion of Cu from CIGS into the CdS layer is observed. Similarly, the Cs diffusing from CdS into CIGS demonstrates ion exchange behavior akin to its behavior within CIGS, where higher Cs levels lead to lower Na content. Furthermore, the distribution of impurities in the CdS buffer layer also affects its work function, with Na tending to lower it and Cs tending to increase it. To validate these effects, alkali metal ions were deliberately introduced into the CdS buffer solution for examination. The findings suggest that the addition of Na elevates the work function of CdS, whereas the addition of Cs diminishes it. As a result, Na-doped CdS buffer layers on Cs-PDT CIGSSe were fabricated and compared them to samples of Cs-PDT CIGSSe paired with non-doped CdS. The Na-doped CdS exhibited a marginal enhancement in device efficiency when contrasted with the samples featuring non-doped CdS. Finally, employing SCAPS software, an examination of the impact of carrier concentration in the CdS buffer layer on device performance was conducted. According to simulation results, the increase of carrier concentration in CdS can enhance the FF and subsequently improve overall efficiency. To recap, part 1 emphasized the improvement in efficiency resulting from Cs incorporation into CIGSSe, coupled with an investigation into the driving factors. On the other hand, part 2 was delved into the potential side effects on the upcoming CdS buffer layer stemming from Cs-PDT and introduced a strategy involving Na-doped CdS to adjust buffer condition further to enhance PV performance.
中文摘要 i
ABSTRACT iii
ACKNOWLEDGMENT v
Contents vi
List of Figures ix
List of Tables xvii
Chapter 1 Introduction 1
1.1 Research Motivation 1
Chapter 2 Literature Review 2
2.1 Basic Principle of Photovoltaic Devices 2
2.1.1. Photovoltaic Device Material Properties 2
2.1.2. Charge Carrier Generation and PN Junction 3
2.1.3. Current-Voltage Characteristic (J-V) Curves 4
2.1.3.1. Short Circuit Current (Isc) 4
2.1.3.2. Open Circuit Voltage (Voc) 5
2.1.3.3. Fill factor (FF) 5
2.1.3.4. Power Conversion Efficiency (Eff) 5
2.1.3.5. Parasitic Resistance 6
2.1.3.6. Quantum Efficiency (Q.E.) 7
2.2 Introduction to Cu(In,Ga)(S,Se)2 Solar Cells 8
2.2.1. Device Structure of CIGS-based Solar Cells 9
2.2.2. Device Properties of CIGS Solar Cells 11
2.2.3. Carrier recombination mechanism in CIGS solar cells 16
2.2.4. Production of CIGS-based Absorber 17
2.3 Alkali Metal Treatment in CIGS Solar Cells 20
2.3.1. Effect of Sodium Incorporation in CIGS Solar Cells 22
2.3.2. Effect of Cesium Incorporation in CIGS Solar Cells 23
2.3.3. Concluding the effect of alkali metal ions in CIGS 25
2.3.4. Alkali Element Incorporation in CdS Buffer Layer 27
Chapter 3 Experimental Methods 30
3.1 Device Fabrication and Characterization 30
3.1.1. Device Fabrication 30
3.1.1.1. Molecular Beam Epitaxy (MBE) system 30
3.1.1.2. Sputter System 30
3.1.2. Device Characterization 31
3.1.2.1. Semiconductor Analysis System 31
3.1.2.2. External Quantum Efficiency (EQE) 31
3.1.2.3. Photoluminescence (PL) & Time-resolved PL (TRPL) 31
3.1.2.4. Temperature-dependent J-V Measurement 32
3.1.2.4.1 Light Temperature-dependent J-V Measurement 32
3.1.2.4.2 Dark Temperature-dependent J-V Measurements 33
3.1.2.4.3 Temperature-dependent Admittance Measurement 33
3.1.2.5. Time-of-flight Secondary Ion Mass Spectroscopy 35
3.1.2.6. Kelvin Probe Force Microscopy 36
Chapter 4 Results and Discussions 38
4.1 Alkali Metal Ion Incorporation in CIGS-based Absorber 38
4.1.1. Material Analysis on Cs-PDT CIGSSe 38
4.1.2. Electrical and Optical Properties after Cs-PDT on CIGSSe 41
4.1.3. Surface potential analysis after Cs-PDT on CIGSSe 51
4.1.4. Grain Boundary Model of CIGSSe after Cs-PDT 56
4.2 Alkali Metal Ion Incorporation in CdS Buffer Layer 61
4.2.1. Phenomenon of CdS Buffer Layer after Cs-PDT on CIGS-based Solar Cells 61
4.2.2. Alkali Metal Ion Doped CdS Buffer Layer on the CIGSSe Solar Cells 67
Chapter 5 Conclusions 82
Reference 84
Appendix 97

1. 臺灣2050淨零排放路徑及策略總說明.
2. Carron, R. et al. Advanced Alkali Treatments for High-Efficiency Cu(In,Ga)Se2 Solar Cells on Flexible Substrates. Adv Energy Mater 9, (2019).
3. Khatri, I., Lin, T. Y., Nakada, T. & Sugiyama, M. Proton Irradiation on Cesium-Fluoride-Free and Cesium-Fluoride-Treated Cu(In,Ga)Se2 Solar Cells and Annealing Effects under Illumination. Physica Status Solidi - Rapid Research Letters 13, 1–6 (2019).
4. Lin, T. Y., Yashiro, T., Khatri, I. & Sugiyama, M. Characterization on proton irradiation-damaged interfaces of CIGS-related multilayered compound semiconductors for solar cells by electrochemical impedance spectroscopy. Jpn J Appl Phys 59, 1–5 (2020).
5. Yang, S. C. et al. Efficiency boost of bifacial Cu(In,Ga)Se2 thin-film solar cells for flexible and tandem applications with silver-assisted low-temperature process. Nat Energy 8, 40–51 (2023).
6. James, T., Goodrich, A., Woodhouse, M., Margolis, R. & Ong, S. Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices. http://www.osti.gov/bridge (2011).
7. Nakamura, M. et al. Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%. IEEE J Photovolt 9, 1863–1867 (2019).
8. Yuan, Z.-K. et al. Na-Diffusion Enhanced p-type Conductivity in Cu(In,Ga)Se2: A New Mechanism for Efficient Doping in Semiconductors. Adv Energy Mater 6, 1601191 (2016).
9. Lin, T. Y. et al. Engineering Na-transport to achieve high efficiency in ultrathin Cu(In,Ga)Se2 solar cells with controlled preferred orientation. Nano Energy 41, 697–705 (2017).
10. Chiril, A. et al. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. 12, 1107–1111 (2013).
11. Raghuwanshi, M. et al. Influence of RbF post deposition treatment on heterojunction and grain boundaries in high efficient (21.1%) Cu(In,Ga)Se2 solar cells. Nano Energy 60, 103–110 (2019).
12. Lin, T. Y. et al. Alkali-induced grain boundary reconstruction on Cu(In,Ga)Se2 thin film solar cells using cesium fluoride post deposition treatment. Nano Energy 68, 104299 (2020).
13. Bae, S. H. et al. Printable Solar Cells from Advanced Solution-Processible Materials. Chem 1, 197–219 (2016).
14. Alharbi, F. H. et al. An efficient descriptor model for designing materials for solar cells. NPJ Comput Mater 1, (2015).
15. Fujiwara Hiroyuki & Collins, R. W. Applications and Optical Data of Solar Cell Materials. in Spectroscopic Ellipsometry for Photovoltaics: Volume 2 vol. 214 (2019).
16. Diantoro, M. et al. Shockley’s equation fit analyses for solar cell parameters from I-V curves. International Journal of Photoenergy 2018, (2018).
17. Yaqoob, S. J. et al. Comparative study with practical validation of photovoltaic monocrystalline module for single and double diode models. Sci Rep 11, (2021).
18. Wagner, S., Shay, J. L., Migliorato, P. & Kasper, H. M. CuInSe2/CdS heterojunction photovoltaic detectors. Appl Phys Lett 25, 434–435 (1974).
19. Kato, T. Cu(In,Ga)(Se,S)2 solar cell research in Solar Frontier: Progress and current status. in Japanese Journal of Applied Physics vol. 56 (Japan Society of Applied Physics, 2017).
20. Copper Indium Gallium Diselenide Solar Cells _ Photovoltaic Research _ NREL. https://www.nrel.gov/pv/copper-indium-gallium-diselenide-solar-cells.html (2023).
21. Hedstrljm, J. et al. ZnO/CdS/Cu(In,Ga)Se2 Thin Film Solar Cells with Improved Performance. Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference-1993 364–371 (1993).
22. Choi, P. P., Cojocaru-Mirédin, O., Wuerz, R. & Raabe, D. Comparative atom probe study of Cu(In,Ga)Se2 thin-film solar cells deposited on soda-lime glass and mild steel substrates. J Appl Phys 110, (2011).
23. Empa - Communication - Solarzellen-Rekord. https://www.empa.ch/web/s604/solarzellen-rekord (2023).
24. Karade, V. et al. Insights into kesterite’s back contact interface: A status review. Solar Energy Materials and Solar Cells 200, (2019).
25. Canava, B. et al. Wet treatment based interface engineering for high efficiency Cu(In,Ga)Se 2 solar cells. Thin Solid Films 361–362, 187–192 (2000).
26. Rusu, M. et al. Electronic Structure of the CdS/Cu(In,Ga)Se2 Interface of KF- And RbF-Treated Samples by Kelvin Probe and Photoelectron Yield Spectroscopy. ACS Appl Mater Interfaces 13, 7745–7755 (2021).
27. Suzon, A. A. Pathways towards efficiency improvement of Kesterite based solar cell. (Université Grenoble Alpes, 2018).
28. Park, J. S., Dong, Z., Kim, S. & Perepezko, J. H. CulnSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction. J Appl Phys 87, 3683–3690 (2000).
29. Kerr, L. L. et al. Investigation of defect properties in Cu(In,Ga)Se2 solar cells by deep-level transient spectroscopy. in Solid-State Electronics vol. 48 1579–1586 (2004).
30. Whittles, T. J. et al. Core Levels, Band Alignments, and Valence-Band States in CuSbS2 for Solar Cell Applications. ACS Appl Mater Interfaces 9, 41916–41926 (2017).
31. Sharan, A. et al. Assessing the roles of Cu- and Ag-deficient layers in chalcopyrite-based solar cells through first principles calculations Assessing the roles of Cu- and Ag-deficient layers in chalcopyrite-based solar cells through first principles calculations. J Appl Phys 127, (2020).
32. Yang, S. C. et al. Influence of Ga back grading on voltage loss in low-temperature co-evaporated Cu(In,Ga)Se2 thin film solar cells. Progress in Photovoltaics: Research and Applications 29, 630–637 (2021).
33. Tu, L. H., Cai, C. H. & Lai, C. H. Tuning Ga Grading in Selenized Cu(In,Ga)Se2 Solar Cells by Formation of Ordered Vacancy Compound. Solar RRL 5, (2021).
34. Golobostanfard, M. R. & Abdizadeh, H. All solution processable graded CIGS solar cells fabricated using electrophoretic deposition. RSC Adv 6, 11903–11910 (2016).
35. Contreras, M. A. et al. High efficiency Cu (In,Ga) Se2-based solar cells: Processing of novel absorber structures. in Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion-WCPEC (A Joint Conference of PVSC, PVSEC and PSEC) (1994).
36. Wei, S. H., Zhang, S. B. & Zunger, A. Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties. Appl Phys Lett 72, 3199–3201 (1998).
37. Bär, M. et al. Determination of the band gap depth profile of the penternary Cu(In(1-x)Gax)(SySe(1-y))2 chalcopyrite from its composition gradient. J Appl Phys 96, 3857–3860 (2004).
38. Scheer, R. & Schock, H. Thin Film Material Properties. in Chalcogenide Photovoltaics (Wiley, 2011). doi:10.1002/9783527633708.fmatter.
39. Khoshsirat, N. & Yunus, N. A. M. Copper-Indium-Gallium-diSelenide (CIGS) Nanocrystalline Bulk Semiconductor as the Absorber Layer and Its Current Technological Trend and Optimization. in Nanoelectronics and Materials Development (InTech, 2016). doi:10.5772/64166.
40. Chang, Y. H. et al. Insights from Transient Absorption Spectroscopy into Electron Dynamics Along the Ga-Gradient in Cu(In,Ga)Se2 Solar Cells. Adv Energy Mater 11, (2021).
41. Scheer, R. & Schock, H. Thin Film Heterostructures. in Chalcogenide Photovoltaics (Wiley, 2011). doi:10.1002/9783527633708.fmatter.
42. Suzon, A. A. Pathways towards efficiency improvement of Kesterite based solar cell. https://tel.archives-ouvertes.fr/tel-02017690.
43. Wilson, G. M. et al. The 2020 photovoltaic technologies roadmap. J Phys D Appl Phys 53, (2020).
44. Kushiya, K. et al. The role of Cu(InGa)(SeS)2 surface layer on a graded band-gap Cu(InGa)Se2 thin-film solar cell prepared by two-stage method. in Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference 989–992 (1996).
45. Gabor, A. M. et al. High-efficiency CuInxGa1-xSe2 solar cells made from (Inx,Ga1-x)2Se3 precursor films. Appl Phys Lett 65, 198–200 (1994).
46. Avancini, E. et al. Impact of compositional grading and overall Cu deficiency on the near-infrared response in Cu(In,Ga)Se2 solar cells. Progress in Photovoltaics: Research and Applications 25, 233–241 (2017).
47. Klinkert, T., Jubault, M., Donsanti, F., Lincot, D. & Guillemoles, J. F. Ga gradients in Cu(In,Ga)Se2: Formation, characterization, and consequences. in Journal of Renewable and Sustainable Energy vol. 6 (American Institute of Physics Inc., 2014).
48. Jackson, P. et al. Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Physica Status Solidi - Rapid Research Letters 10, 583–586 (2016).
49. Hashemi, M., Bagher Ghorashi, S. M., Tajabadi, F. & Taghavinia, N. Pre-deposited alkali (Li, Na, K) chlorides layer for effective doping of CuInSSe thin films as absorber layer in solar cells. Solar Energy 231, 694–704 (2022).
50. Khatri, I. & Sugiyama, M. Effect of combined treatment of cesium fluoride as precursor and post-treatment on Cu(In,Ga)Se2thin film solar cell. Appl Phys Lett 118, (2021).
51. Rudmann, D. et al. Sodium incorporation strategies for CIGS growth at different temperatures. in Thin Solid Films vols 480–481 55–60 (2005).
52. Laemmle, A., Wuerz, R. & Powalla, M. Investigation of the effect of potassium on Cu(In,Ga)Se2 layers and solar cells. in Thin Solid Films vol. 582 27–30 (Elsevier B.V., 2015).
53. Lepetit, T., Harel, S., Arzel, L., Ouvrard, G. & Barreau, N. KF post deposition treatment in co-evaporated Cu(In,Ga)Se2 thin film solar cells: Beneficial or detrimental effect induced by the absorber characteristics. Progress in Photovoltaics: Research and Applications 25, 1068–1076 (2017).
54. Mansfield, L. M. et al. Enhanced performance in Cu(In,Ga)Se2 solar cells fabricated by the two-step selenization process with a potassium fluoride postdeposition treatment. IEEE J Photovolt 4, 1650–1654 (2014).
55. Rudmann, D. et al. Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to post-deposition Na incorporation. Appl Phys Lett 84, 1129–1131 (2004).
56. Oikkonen, L. E., Ganchenkova, M. G., Seitsonen, A. P. & Nieminen, R. M. Effect of sodium incorporation into CuInSe2 from first principles. J Appl Phys 114, (2013).
57. Malitckaya, M., Komsa, H. P., Havu, V. & Puska, M. J. Effect of Alkali Metal Atom Doping on the CuInSe2-Based Solar Cell Absorber. Journal of Physical Chemistry C 121, 15516–15528 (2017).
58. Wei, S. H., Zhang, S. B. & Zunger, A. Effects of Na on the electrical and structural properties of CuInSe2. J Appl Phys 85, 7214–7218 (1999).
59. Kronik, L., Cahen, D. & Schock, H. W. Effects of sodium on polycrystalline Cu(In,Ga)Se2 and its solar cell performance. Advanced Materials 10, 31–36 (1998).
60. Niles, D. W. et al. Na impurity chemistry in photovoltaic CIGS thin films: Investigation with x-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 15, 3044–3049 (1997).
61. Babbe, F. et al. Vacuum-Healing of Grain Boundaries in Sodium-Doped CuInSe2 Solar Cell Absorbers. Adv Energy Mater (2023) doi:10.1002/aenm.202204183.
62. Shin, D. et al. Effects of the incorporation of alkali elements on Cu(In,Ga)Se2 thin film solar cells. Solar Energy Materials and Solar Cells 157, 695–702 (2016).
63. Nicoara, N. et al. Direct evidence for grain boundary passivation in Cu(In,Ga)Se2 solar cells through alkali-fluoride post-deposition treatments. Nat Commun 10, (2019).
64. Reinhard, P. et al. Cu(In,Ga)Se2 thin-film solar cells and modules - A boost in efficiency due to potassium. IEEE J Photovolt 5, 656–663 (2015).
65. Mina, M. S., Enkhbayar, E., Otgontamir, N., Kim, S. Y. & Kim, J. H. Efficiency Improvement of Narrow Band Gap Cu(In,Ga)(S,Se)2 Solar Cell with Alkali Treatment via Aqueous Spray Pyrolysis Deposition. ACS Appl Mater Interfaces (2023) doi:10.1021/acsami.3c02362.
66. Ishizuka, S., Taguchi, N. & Fons, P. J. Similarities and Critical Differences in Heavy Alkali-Metal Rubidium and Cesium Effects on Chalcopyrite Cu(In,Ga)Se2 Thin-Film Solar Cells. Journal of Physical Chemistry C 123, 17757–17764 (2019).
67. Cheng, S. et al. Analysis of the Heavy Alkali Element Postdeposition Treatment: Which Factors Determine the Electronic Structure and Transport Properties of the Heterojunction in CIGS Thin Film Solar Cells. ACS Appl Energy Mater 4, 3279–3287 (2021).
68. Boumenou, C. K. et al. Nanoscale Surface Analysis Reveals Origins of Enhanced Interface Passivation in RbF Post Deposition Treated CIGSe Solar Cells. Adv Funct Mater (2023) doi:10.1002/adfm.202300590.
69. Mansfield, L. M. et al. Setting boundaries on the recipe for a successful RbF post-deposition treatment of CIGS. Solar Energy Materials and Solar Cells 245, (2022).
70. Keller, J., Aboulfadl, H., Stolt, L., Donzel-Gargand, O. & Edoff, M. Rubidium Fluoride Absorber Treatment for Wide-Gap (Ag,Cu)(In,Ga)Se2 Solar Cells. Solar RRL 6, (2022).
71. Lee, H. et al. Passivation of Deep-Level Defects by Cesium Fluoride Post-Deposition Treatment for Improved Device Performance of Cu(In,Ga)Se2 Solar Cells. ACS Appl Mater Interfaces 11, 35653–35660 (2019).
72. Stokes, A., Al-Jassim, M., DIercks, D., Clarke, A. & Gorman, B. Impact of Wide-Ranging Nanoscale Chemistry on Band Structure at Cu(In, Ga)Se2 Grain Boundaries. Sci Rep 7, (2017).
73. Taretto, K. & Rau, U. Numerical simulation of carrier collection and recombination at grain boundaries in Cu(In,Ga)Se2 solar cells. J Appl Phys 103, (2008).
74. Raghuwanshi, M., Wuerz, R. & Cojocaru-Mirédin, O. Interconnection between Trait, Structure, and Composition of Grain Boundaries in Cu(In,Ga)Se2 Thin-Film Solar Cells. Adv Funct Mater 30, (2020).
75. Schmid, D., Ruckh, M. & Schock, H. W. A comprehensive characterization of the interfaces in Mo/CIS/CdS/ZnO solar cell structures. Solar Energy Materials and Solar Cells 41–42, 281–294 (1996).
76. Ullrich, B., Sakai, H. & Segawa, Y. Optoelectronic properties of thin film CdS formed by ultraviolet and infrared pulsed-laser deposition. Thin Solid Films 385, 220–224 (2001).
77. Yilmaz, S., Atasoy, Y., Tomakin, M. & Bacaksiz, E. Comparative studies of CdS, CdS:Al, CdS:Na and CdS:(Al-Na) thin films prepared by spray pyrolysis. Superlattices Microstruct 88, 299–307 (2015).
78. Boieriu, P., Sporken, R., Xin, Y., Browning, N. D. & Sivananthan, S. Wurtzite CdS on CdTe grown by molecular beam epitaxy. J Electron Mater 29, 718–722 (2000).
79. Vigil-galán, O. et al. Optimization of CBD-CdS physical properties for solar cell applications considering a MIS structure. Mater Des 99, 254–261 (2016).
80. He, X. et al. Cd doping at PVD-CdS/CuInGaSe2 heterojunctions. Solar Energy Materials and Solar Cells 164, 128–134 (2017).
81. Shkir, M., Khan, Z. R., Anis, M., Shaikh, S. S. & AlFaify, S. A comprehensive study of opto-electrical and nonlinear properties of Cu@CdS thin films for optoelectronics. Chinese Journal of Physics 63, 51–62 (2020).
82. Kashiwaba, Y., Isojima, K. & Ohta, K. Improvement in the efficiency of Cu-doped CdS/non-doped CdS photovoltaic cells fabricated by an all-vacuum process. Solar Energy Materials and Solar Cells 75, 253–259 (2003).
83. Kumar, V. et al. Effect of Cu-doping on the photoluminescence and photoconductivity of template synthesized CdS nanowires. Journal of Physics and Chemistry of Solids 124, 1–6 (2019).
84. Henry, C. H., Nassau, K. & Shiever, J. W. Optical Studies of Shallow Acceptors in CdS and CdSe. Phys Rev B 4, (1971).
85. Lee, H. & Kim, H. S. Work-Function Engineering in Lead Sulfide and Cadmium Sulfide Quantum Dots incorporated into Zeolite Y using Ion Exchange. Particle and Particle Systems Characterization 33, 126–131 (2016).
86. Yang, P., Wilks, R. G., Yang, W. & Bär, M. Interface Formation between CdS and Alkali Postdeposition-Treated Cu(In,Ga)Se2 Thin-Film Solar Cell Absorbers - Key to Understanding the Efficiency Gain. ACS Appl Mater Interfaces 12, 6688–6698 (2020).
87. 謝嘉民, 賴一凡, 林永昌 & 枋志堯. 光激發螢光量測的原理、架構及應用. 科儀新知 26, 39–51 (2005).
88. Nadenau, V., Rau, U., Jasenek, A. & Schock, H. W. Electronic properties of CuGaSe2-based heterojunction solar cells. Part I. Transport analysis. J Appl Phys 87, 584–593 (2000).
89. Weiss, T. P. et al. Injection Current Barrier Formation for RbF Postdeposition-Treated Cu(In,Ga)Se2-Based Solar Cells. Adv Mater Interfaces 5, (2018).
90. Walter, T., Herberholz, R., Müller, C. & Schock, H. W. Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions. J Appl Phys 80, 4411–4420 (1996).
91. Weiss, T. P., Nishiwaki, S., Bissig, B., Buecheler, S. & Tiwari, A. N. Voltage dependent admittance spectroscopy for the detection of near interface defect states for thin film solar cells. Physical Chemistry Chemical Physics 19, 30410–30417 (2017).
92. Time-of-Flight Secondary Ion Mass Spectrometry _ Time-of-Flight Secondary Ion Mass Spectrometry Laboratory.
93. Fernandez Garrillo, P. A. Development of highly resolved and photo-modulated Kelvin probe microscopy techniques for the study of photovoltaic systems. https://www.researchgate.net/publication/330179783 (2019).
94. Chantana, J., Kato, T., Sugimoto, H. & Minemoto, T. Structures of Cu(In,Ga)(S,Se)2 solar cells for minimizing open-circuit voltage deficit: Investigation of carrier recombination rates. Progress in Photovoltaics: Research and Applications 27, 630–639 (2019).
95. Schöppe, P. et al. Revealing the origin of the beneficial effect of cesium in highly efficient Cu(In,Ga)Se2 solar cells. Nano Energy 71, (2020).
96. Cheng, S. et al. Analysis of the Heavy Alkali Element Postdeposition Treatment: Which Factors Determine the Electronic Structure and Transport Properties of the Heterojunction in CIGS Thin Film Solar Cells. ACS Appl Energy Mater 4, 3279–3287 (2021).
97. Zhao, Y. et al. Controllable Formation of Ordered Vacancy Compound for High Efficiency Solution Processed Cu(In,Ga)Se2 Solar Cells. Adv Funct Mater 31, (2021).
98. Tu, L. H., Tran, N. T. T., Lin, S. K. & Lai, C. H. Efficiency Boost of (Ag0.5,Cu0.5)(In1-x,Gax)Se2 Thin Film Solar Cells by Using a Sequential Process: Effects of Ag-Front Grading and Surface Phase Engineering. Adv Energy Mater (2023) doi:10.1002/aenm.202301227.
99. Nevruzoglu, V., Tomakin, M., Keskenler, E. F. & Ozturk, G. Effects of Na doping on CDS thin films and n-CdS/p-Si solar cells via chemical bath deposition method. Journal of Ceramic Processing Research 18, 494–500 (2017).
100. Bidadi, H., Kalafi, M., Tajalli, H., Bairamov, A. I. & Dzhafarov, T. D. Diffusion and interaction of Group I impurities with vacancies in CdS thin films. Opt Mater (Amst) 6, 27–33 (1996).
101. Deng, Y. et al. Cu-doped CdS and its application in CdTe thin film solar cell. AIP Adv 015203, 0–10 (2016).
102. Minceva-Sukarova, B., Najdoski, M., Grozdanov, I. & Chunnilall, C. J. Raman spectra of thin solid films of some metal sulfides. J Mol Struct 410, 267–270 (1997).
103. Rahman, M. F., Hossain, J. & Ismail, A. B. M. Structural, surface morphological and optical properties and their correlation with the thickness of spin coated superior quality CdS thin film synthesized using a novel chemical route. SN Appl Sci 2, 1–9 (2020).
104. Li, J. V. et al. Theoretical analysis of effects of deep level, back contact, and absorber thickness on capacitance-voltage profiling of CdTe thin-film solar cells. Solar Energy Materials and Solar Cells 100, 126–131 (2012).
105. Cheng, T. M. et al. Efficiency Enhancement of Cu(In,Ga)(S,Se)2 Solar Cells by Indium-Doped CdS Buffer Layers. ACS Appl Mater Interfaces 12, 18157–18164 (2020).
(此全文20280909後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *