帳號:guest(18.226.251.77)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡筠臻
作者(外文):Chien, Yun-Chen
論文名稱(中文):硼碳氮氧奈米粒子在刺激響應雙親水接枝共聚物中的靜電絡合作為硼中子捕獲治療的治療劑
論文名稱(外文):Electrostatic Complexation of Boron Carbon Oxynitride (BCNO) Nanoparticles within a Stimuli-Responsive Double Hydrophilic Graft-Copolymer as a Theranostic Agent for Boron Neutron Capture Therapy
指導教授(中文):龔佩雲
指導教授(外文):Keng, Pei-Yuin
口試委員(中文):黃郁棻
劉俊彥
口試委員(外文):Huang, Yu-Fen
Liu, Chun-Yen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:110031539
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:123
中文關鍵詞:雙親水接枝共聚物自組裝靜電絡合刺激響應奈米材料含硼奈米藥物硼中子捕獲療法
外文關鍵詞:Double hydrophilic graft copolymersSelf-assemblyElectrostatic complexationStimuli-responsive nanomaterialBoron nanodrugBoron neutron capture therapy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:93
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  奈米粒子與雙親水嵌段共聚物(DHBC)透過靜電絡合的自組裝,是一種用於開發刺激響應奈米藥物的新穎方法,提高以奈米粒子為基礎的治療劑之生物相容性、生物可用性、細胞內攝取和治療效果。在本研究中,開發以酸不穩定之聚乙二醇接枝聚乙烯亞胺(PEG-g-PEI)雙親水接枝共聚物(DHGC)與硼碳氮氧(BCNO)奈米粒子的自組裝,形成BCNO奈米組裝體作為硼中子捕獲療法(BNCT)的硼基奈米藥物輸送劑。首先,透過席夫鹼反應合成了一段帶電-中性的PEG-g-PEI DHGC,並與帶負電的BCNO奈米粒子在水溶液中混合,形成BCNO奈米組裝體,其尺寸、表面電荷和型態分別透過動態光散射(DLS)、ζ電位和穿透式電子顯微鏡(TEM)分析。
  除了合成BCNO奈米組裝體,在此論文中還研究了混合比(VBCNO/VDHGC)對BCNO奈米組裝體之尺寸及表面電荷的影響。DLS的結果表明,於一個很大範圍的混合比下所製備的BCNO奈米組裝體,在水溶液中皆能保持穩定,而根據TEM圖像顯示,在較高混合比下製備之BCNO奈米組裝體的形狀較不規則且尺寸分布範圍較廣,在較低混合比下製備的BCNO奈米組裝體則呈現較規則的球形且尺寸分布較一致。此外,當DHGC上帶電的PEI嵌段分子量增加時,BCNO奈米組裝體的尺寸也會隨之增加。此研究還證明了BCNO奈米組裝體在不同離子強度溶液中的穩定性,結果顯示出其在0.1 M NaCl溶液中能夠維持穩定48小時以上。最後,本研究分別在pH 6.9、6.0和5.0下對BCNO奈米組裝體進行了pH刺激響應的測試,結果顯示在微酸性環境中席夫鹼鍵會裂解,從而促使BCNO奈米組裝體成功分解成較小的尺寸。總結上述,BCNO奈米組裝體的尺寸及表面電荷,可以透過改變混合比、DHGC帶電嵌段的分子量、溶液的離子強度和pH值等條件來控制。
  體外細胞硼攝取量之研究結果顯示,與BCNO奈米組裝體共同培養的MDA-MB-231三陰性乳腺癌細胞中,每104個細胞中含有627 ng的硼,是與BCNO奈米粒子共同培養之細胞的大約5倍,且還是與富含硼-10的BPA共同培養之細胞的大約37倍。最後,此研究還進行了體外BNCT治療以評估所製備之BCNO奈米組裝體的治療效果,與用BCNO及富含硼-10的BPA共同培養之細胞相比,與BCNO奈米組裝體共同培養MDA-MB-231細胞顯示出較低的細胞存活率,這是由於BCNO奈米組裝體同時具有高含硼量以及pH刺激響應這兩個優勢,因此提高了細胞的硼攝取量,也增進了BNCT的治療效果。綜上所述,這項研究成功證明了BCNO奈米粒子在DHGC中的自組裝,是一種非常有潛力且能應用於BNCT的刺激響應硼基奈米藥物。
The self-assembly of nanoparticles within double hydrophilic block copolymers (DHBC) via electrostatic complexation is a novel approach that is used to develop a stimuli-responsive nanodrug to improve the biocompatibility, bioavailability, intracellular uptake, and therapeutic efficacy of the nanoparticle-based theranostic agent. In this study, self-assembly of boron carbon oxynitride (BCNO) nanoparticles within polyethylene glycol-graft-polyethyleneimine (PEG-g-PEI), an acid-labile double hydrophilic graft copolymer (DHGC), was developed as a boron-based drug delivery agent for boron neutron capture therapy (BNCT). The charged-neutral PEG-g-PEI DHGC was first synthesized via Schiff base reaction and mixed with the negatively charged BCNO in an aqueous solution to form BCNO nanoassemblies. Dynamic light scattering (DLS), zeta potential, and transmission electron microscopy (TEM) were used to analyze the hydrodynamic size, surface charge, and morphology of the complexes, respectively.
Besides, the effect of mixing ratios (VBCNO/VDHGC) on the hydrodynamic size and surface charge of the BCNO nanoassemblies were also investigated. The DLS results indicated that the as-prepared BCNO nanoassemblies remain stable in an aqueous solution over a wide range of mixing ratios. According to TEM images, the morphology of the BCNO nanoassemblies prepared at a higher mixing ratio exhibited ill-defined shapes with polydisperse sizes while the BCNO nanoassemblies prepared at a lower mixing ratio were observed to possess spherical shapes and more uniform sizes. Furthermore, when the molecular weight of the charged PEI block on DHGC increased, the size of the BCNO nanoassemblies increased accordingly. The investigation of the BCNO nanoassemblies stability in different ionic strength solutions was also demonstrated in this study. The results showed that the BCNO nanoassemblies were stable in 0.1 M NaCl (saline) solution over 48 hours. Lastly, the pH-responsive test was carried out at pH 6.9, 6.0, and 5.0. The BCNO nanoassemblies disassembled to a smaller size due to the cleavage of the Schiff base bond in the slightly acidic environment. In summary, the hydrodynamic size and surface charge of the BCNO nanoassemblies can be controlled by changing the mixing ratio, molecular weight of the charged block, ionic strength, and pH value of the solution.
For in vitro cellular boron uptake, the MDA-MB-231 triple-negative breast cancer cells treated with the BCNO nanoassemblies showed 627 ng-B/104 cells which are approximately 5 times higher than the cells treated with bare BCNO nanoparticles and about 37 times higher than 10B-rich BPA. At last, in vitro BNCT treatment was performed to evaluate the therapeutic efficacy of the as-prepared BCNO nanoassemblies. The MDA-MB-231 cells treated with the BCNO nanoassemblies showed lower cell viabilities compared to the cells treated with bare BCNO and 10B-rich BPA after neutron irradiation. Since the high boron content of BCNO nanoparticles and stimuli-responsive DHGC, the BCNO nanoassemblies enhance the intracellular uptake of boron and actually improve the therapeutic efficacy of BNCT. In conclusion, this study successfully demonstrated the self-assembly of the BCNO nanoparticles within DHGC as a promising approach for developing stimuli-responsive boron-based nanodrug for BNCT.
Abstract.....i
摘要.....iv
Acknowledgements.....vi
Table of Contents.....vii
Figures and Tables.....ix
Chapter 1 Introduction.....1
1.1 Executive summary.....1
Chapter 2 Literature Review.....5
2.1 Boron neutron capture therapy (BNCT).....5
2.2 Boron delivery agents.....9
2.2.1 Evolution of boron delivery agents for BNCT.....9
2.2.2 Nanoparticle-based boron delivery agents.....14
2.3 Challenges of nanoparticles in drug delivery.....19
2.4 Stimuli-responsive drug delivery.....22
2.4.1 Types of stimuli-responsive nanoassemblies.....22
2.4.2 Advantages of pH-responsive nanoassemblies.....26
2.4.3 Stimuli-responsive nanoparticles assemblies.....28
2.5 Self-assembly of double hydrophilic block copolymer (DHBC).....31
2.6 Electrostatic complexation of DHBC and nanoparticles.....36
2.6.1 Mechanism.....36
2.6.2 Factors that affect the formation of PIC.....38
Chapter 3 Materials, Instruments, and Experiments.....46
3.1 Materials and instruments.....47
3.2 Synthesis of PEG-g-PEI@BCNO nanoassemblies.....50
3.2.1 Preparation of BCNO nanoparticles.....50
3.2.2 Synthesis of benzaldehyde end-functionalized PEG (CHO-PEG-CHO).....51
3.2.3 Synthesis of PEG-g-PEI double hydrophilic graft copolymer (DHGC).....52
3.2.4 Preparation of PEG-g-PEI@BCNO nanoassemblies.....52
3.2.5 PEG-g-PEI@BCNO nanoassemblies in different ionic strength.....55
3.2.6 PEG-g-PEI@BCNO nanoassemblies in different pH value.....55
3.3 In vitro assays.....57
3.3.1 Cell viability.....57
3.3.2 Cell uptake.....57
3.3.3 In vitro BNCT treatment.....58
Chapter 4 Results and Discussion.....60
4.1 Synthesis of PEG-g-PEI@BCNO nanoassemblies.....60
4.1.1 Synthesis of benzaldehyde end-functionalized PEG (CHO-PEG-CHO).....61
4.1.2 Synthesis of PEG-g-PEI double hydrophilic graft copolymer (DHGC).....63
4.1.3 Preparation of PEG-g-PEI@BCNO nanoassemblies.....68
4.2 Self-assembly mechanism of PEG-g-PEI@BCNO.....73
4.2.1 Effect of mixing ratio.....73
4.2.2 Effect of PEI molecular weight.....83
4.2.3 Effect of ionic strength.....86
4.2.4 Effect of pH value.....91
4.3 In vitro assays.....98
4.3.1 Cell viability.....98
4.3.2 Cell uptake.....100
4.3.3 In vitro BNCT treatment.....102
Chapter 5 Conclusions.....105
Chapter 6 Prospective.....107
References.....110
[1] Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, et al. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci 2020;7:193. https://doi.org/10.3389/fmolb.2020.00193.
[2] Clegg JR, Irani AS, Ander EW, Ludolph CM, Venkataraman AK, Zhong JX, et al. Synthetic networks with tunable responsiveness, biodegradation, and molecular recognition for precision medicine applications. Sci Adv 2019;5:eaax7946. https://doi.org/10.1126/sciadv.aax7946.
[3] Chauhan VP, Jain RK. Strategies for advancing cancer nanomedicine. Nat Mater 2013;12:958–62. https://doi.org/10.1038/nmat3792.
[4] Chou LYT, Ming K, Chan WCW. Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 2011;40:233–45. https://doi.org/10.1039/C0CS00003E.
[5] Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015;33:941–51. https://doi.org/10.1038/nbt.3330.
[6] Wang Y-F, Liu L, Xue X, Liang X-J. Nanoparticle-based drug delivery systems: What can they really do in vivo? F1000Research 2017;6:681. https://doi.org/10.12688/f1000research.9690.1.
[7] Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016;99:28–51. https://doi.org/10.1016/j.addr.2015.09.012.
[8] Shi L, Zhang J, Zhao M, Tang S, Cheng X, Zhang W, et al. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale 2021;13:10748–64. https://doi.org/10.1039/D1NR02065J.
[9] Baronzio G, Parmar G, Baronzio M. Overview of Methods for Overcoming Hindrance to Drug Delivery to Tumors, with Special Attention to Tumor Interstitial Fluid. Front Oncol 2015;5. https://doi.org/10.3389/fonc.2015.00165.
[10] Voets IK, de Keizer A, Cohen Stuart MA. Complex coacervate core micelles. Adv Colloid Interface Sci 2009;147–148:300–18. https://doi.org/10.1016/j.cis.2008.09.012.
[11] Rahim MA, Jan N, Khan S, Shah H, Madni A, Khan A, et al. Recent Advancements in Stimuli Responsive Drug Delivery Platforms for Active and Passive Cancer Targeting. Cancers 2021;13:670. https://doi.org/10.3390/cancers13040670.
[12] Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013;12:991–1003. https://doi.org/10.1038/nmat3776.
[13] Suzuki M. Boron neutron capture therapy (BNCT): a unique role in radiotherapy with a view to entering the accelerator-based BNCT era. Int J Clin Oncol 2020;25:43–50. https://doi.org/10.1007/s10147-019-01480-4.
[14] Chiang C-W, Chien Y-C, Yu W-J, Ho C-Y, Wang C-Y, Wang T-W, et al. Polymer-Coated Nanoparticles for Therapeutic and Diagnostic Non-10B Enriched Polymer-Coated Boron Carbon Oxynitride (BCNO) Nanoparticles as Potent BNCT Drug. Nanomaterials 2021;11:2936. https://doi.org/10.3390/nano11112936.
[15] Chien Y-C, Hsu Y-T, Chiang C-W, Keng PY, Wang T-W. Investigating the electrostatic complexation of BCNO nanoparticles with a stimuli-responsive double hydrophilic graft copolymer. Giant 2023;14:100162. https://doi.org/10.1016/j.giant.2023.100162.
[16] Palumbo MO, Kavan P, Miller WH, Panasci L, Assouline S, Johnson N, et al. Systemic cancer therapy: achievements and challenges that lie ahead. Front Pharmacol 2013;4. https://doi.org/10.3389/fphar.2013.00057.
[17] Munhoz AM, Gemperli R, Filassi JR. Effects of breast cancer surgery and surgical side effects on body image over time. Breast Cancer Res Treat 2011;126:261–2. https://doi.org/10.1007/s10549-010-1266-4.
[18] Aslam MS, Naveed S, Ahmed A, Abbas Z, Gull I, Athar MA. Side Effects of Chemotherapy in Cancer Patients and Evaluation of Patients Opinion about Starvation Based Differential Chemotherapy. J Cancer Ther 2014;05:817–22. https://doi.org/10.4236/jct.2014.58089.
[19] Nedunchezhian K. Boron Neutron Capture Therapy - A Literature Review. J Clin Diagn Res 2016. https://doi.org/10.7860/JCDR/2016/19890.9024.
[20] Sourati A, Ameri A, Malekzadeh M. Acute Side Effects of Radiation Therapy. Cham: Springer International Publishing; 2017. https://doi.org/10.1007/978-3-319-55950-6.
[21] Malouff TD, Seneviratne DS, Ebner DK, Stross WC, Waddle MR, Trifiletti DM, et al. Boron Neutron Capture Therapy: A Review of Clinical Applications. Front Oncol 2021;11:601820. https://doi.org/10.3389/fonc.2021.601820.
[22] Fukuda H. Boron Neutron Capture Therapy (BNCT) for Cutaneous Malignant Melanoma Using 10B-p-Boronophenylalanine (BPA) with Special Reference to the Radiobiological Basis and Clinical Results. Cells 2021;10:2881. https://doi.org/10.3390/cells10112881.
[23] Dymova MA, Taskaev SY, Richter VA, Kuligina EV. Boron neutron capture therapy: Current status and future perspectives. Cancer Commun 2020;40:406–21. https://doi.org/10.1002/cac2.12089.
[24] Barth RF, Zhang Z, Liu T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Commun 2018;38:36. https://doi.org/10.1186/s40880-018-0280-5.
[25] Kondo N. DNA damage and biological responses induced by Boron Neutron Capture Therapy (BNCT). The Enzymes 2022;51:65–78. https://doi.org/10.1016/bs.enz.2022.08.005.
[26] Yu Y, Feng Z, Liu J, Hou X, Zhou X, Gao J, et al. γ-Ray-Triggered Drug Release of Reactive Oxygen Species-Sensitive Nanomedicine for Enhanced Concurrent Chemoradiation Therapy. ACS Omega 2021;6:19445–57. https://doi.org/10.1021/acsomega.1c01500.
[27] Alberti D, Michelotti A, Lanfranco A, Protti N, Altieri S, Deagostino A, et al. In vitro and in vivo BNCT investigations using a carborane containing sulfonamide targeting CAIX epitopes on malignant pleural mesothelioma and breast cancer cells. Sci Rep 2020;10:19274. https://doi.org/10.1038/s41598-020-76370-1.
[28] Gao Z, Horiguchi Y, Nakai K, Matsumura A, Suzuki M, Ono K, et al. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects. Biomaterials 2016;104:201–12. https://doi.org/10.1016/j.biomaterials.2016.06.046.
[29] Liu Y-WH, Chang C-T, Yeh L-Y, Wang L-W, Lin T-Y. BNCT treatment planning for superficial and deep-seated tumors: Experience from clinical trial of recurrent head and neck cancer at THOR. Appl Radiat Isot 2015;106:121–4. https://doi.org/10.1016/j.apradiso.2015.08.002.
[30] Wang L-W, Chen Y-W, Ho C-Y, Hsueh Liu Y-W, Chou F-I, Liu Y-H, et al. Fractionated Boron Neutron Capture Therapy in Locally Recurrent Head and Neck Cancer: A Prospective Phase I/II Trial. Int J Radiat Oncol 2016;95:396–403. https://doi.org/10.1016/j.ijrobp.2016.02.028.
[31] Lan T-L, Chou F-I, Lin K-H, Pan P-S, Lee J-C, Huang W-S, et al. Using salvage Boron Neutron Capture Therapy (BNCT) for recurrent malignant brain tumors in Taiwan. Appl Radiat Isot 2020;160:109105. https://doi.org/10.1016/j.apradiso.2020.109105.
[32] Wittig A, Michel J, Moss RL, Stecher-Rasmussen F, Arlinghaus HF, Bendel P, et al. Boron analysis and boron imaging in biological materials for Boron Neutron Capture Therapy (BNCT). Crit Rev Oncol Hematol 2008;68:66–90. https://doi.org/10.1016/j.critrevonc.2008.03.004.
[33] Barth RF, Mi P, Yang W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun 2018;38:35. https://doi.org/10.1186/s40880-018-0299-7.
[34] Barfh RF, Soloway AH, Fairchild RG, Brugger RM. Boron neutron capture therapy for cancer. Realities and prospects. Cancer 1992;70:2995–3007. https://doi.org/10.1002/1097-0142(19921215)70:12<2995::AID-CNCR2820701243>3.0.CO;2-#.
[35] Hideghéty K, Brunner S, Cheesman A, Szabó ER, Polanek R, Margarone D, et al. 11Boron Delivery Agents for Boron Proton-capture Enhanced Proton Therapy. Anticancer Res 2019;39:2265–76. https://doi.org/10.21873/anticanres.13343.
[36] He H, Li J, Jiang P, Tian S, Wang H, Fan R, et al. The basis and advances in clinical application of boron neutron capture therapy. Radiat Oncol 2021;16:216. https://doi.org/10.1186/s13014-021-01939-7.
[37] Lamba M, Goswami A, Bandyopadhyay A. A periodic development of BPA and BSH based derivatives in boron neutron capture therapy (BNCT). Chem Commun 2021;57:827–39. https://doi.org/10.1039/D0CC06557A.
[38] Cerecetto H, Couto M. Medicinal Chemistry of Boron-Bearing Compounds for BNCT- Glioma Treatment: Current Challenges and Perspectives. In: Omerhodžić I, Arnautović K, editors. Glioma - Contemp. Diagn. Ther. Approaches, IntechOpen; 2019. https://doi.org/10.5772/intechopen.76369.
[39] Farhood B, Samadian H, Ghorbani M, Zakariaee SS, Knaup C. Physical, dosimetric and clinical aspects and delivery systems in neutron capture therapy. Rep Pract Oncol Radiother 2018;23:462–73. https://doi.org/10.1016/j.rpor.2018.07.002.
[40] Fukuda H. Response of Normal Tissues to Boron Neutron Capture Therapy (BNCT) with 10B-Borocaptate Sodium (BSH) and 10B-Paraboronophenylalanine (BPA). Cells 2021;10:2883. https://doi.org/10.3390/cells10112883.
[41] Coghi P, Li J, Hosmane NS, Zhu Y. Next generation of boron neutron capture therapy (BNCT) agents for cancer treatment. Med Res Rev 2023:med.21964. https://doi.org/10.1002/med.21964.
[42] Nomoto T, Inoue Y, Yao Y, Suzuki M, Kanamori K, Takemoto H, et al. Poly(vinyl alcohol) boosting therapeutic potential of p -boronophenylalanine in neutron capture therapy by modulating metabolism. Sci Adv 2020;6:eaaz1722. https://doi.org/10.1126/sciadv.aaz1722.
[43] Heber EM, Hawthorne MF, Kueffer PJ, Garabalino MA, Thorp SI, Pozzi ECC, et al. Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model. Proc Natl Acad Sci 2014;111:16077–81. https://doi.org/10.1073/pnas.1410865111.
[44] Li J, Sun Q, Lu C, Xiao H, Guo Z, Duan D, et al. Boron encapsulated in a liposome can be used for combinational neutron capture therapy. Nat Commun 2022;13:2143. https://doi.org/10.1038/s41467-022-29780-w.
[45] Pitto-Barry A. Polymers and boron neutron capture therapy (BNCT): a potent combination. Polym Chem 2021;12:2035–44. https://doi.org/10.1039/D0PY01392G.
[46] Ailuno G, Balboni A, Caviglioli G, Lai F, Barbieri F, Dellacasagrande I, et al. Boron Vehiculating Nanosystems for Neutron Capture Therapy in Cancer Treatment. Cells 2022;11:4029. https://doi.org/10.3390/cells11244029.
[47] Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018;16:71. https://doi.org/10.1186/s12951-018-0392-8.
[48] Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm J 2011;19:129–41. https://doi.org/10.1016/j.jsps.2011.04.001.
[49] Pulagam, Gona, Gómez-Vallejo, Meijer, Zilberfain, Estrela-Lopis, et al. Gold Nanoparticles as Boron Carriers for Boron Neutron Capture Therapy: Synthesis, Radiolabelling and In vivo Evaluation. Molecules 2019;24:3609. https://doi.org/10.3390/molecules24193609.
[50] Tatiya S, Pandey M, Bhattacharya S. Nanoparticles containing boron and its compounds—synthesis and applications: A review. J Micromanufacturing 2020;3:159–73. https://doi.org/10.1177/2516598420965319.
[51] Kuthala N, Vankayala R, Li Y, Chiang C, Hwang KC. Engineering Novel Targeted Boron‐10‐Enriched Theranostic Nanomedicine to Combat against Murine Brain Tumors via MR Imaging‐Guided Boron Neutron Capture Therapy. Adv Mater 2017;29:1700850. https://doi.org/10.1002/adma.201700850.
[52] Kuthala N, Shanmugam M, Yao C-L, Chiang C-S, Hwang KC. One step synthesis of 10B-enriched 10BPO4 nanoparticles for effective boron neutron capture therapeutic treatment of recurrent head-and-neck tumor. Biomaterials 2022;290:121861. https://doi.org/10.1016/j.biomaterials.2022.121861.
[53] Li L, Li J, Shi Y, Du P, Zhang Z, Liu T, et al. On-Demand Biodegradable Boron Nitride Nanoparticles for Treating Triple Negative Breast Cancer with Boron Neutron Capture Therapy. ACS Nano 2019;13:13843–52. https://doi.org/10.1021/acsnano.9b04303.
[54] Gupta BK, Kumar P, Kedawat G, Kanika K, Vithayathil SA, Gangwar AK, et al. Tunable luminescence from two dimensional BCNO nanophosphor for high-contrast cellular imaging. RSC Adv 2017;7:41486–94. https://doi.org/10.1039/C7RA08306H.
[55] Ogi T, Kaihatsu Y, Iskandar F, Wang W-N, Okuyama K. Facile Synthesis of New Full-Color-Emitting BCNO Phosphors with High Quantum Efficiency. Adv Mater 2008;20:3235–8. https://doi.org/10.1002/adma.200702551.
[56] Chien LC, Chiang CW, Lao CC, Lin Y-I, Lin H-W, Keng PY. Boron Carbon Oxynitride as a Novel Metal-Free Photocatalyst. Nanoscale Res Lett 2021;16:176. https://doi.org/10.1186/s11671-021-03629-5.
[57] Ren C, Zhang X, Zhou L, Lu Z, Lin J, Xu X, et al. Preparation optimization and spectral properties of BCNO phosphors with high quantum efficiency. J Lumin 2014;153:338–42. https://doi.org/10.1016/j.jlumin.2014.03.044.
[58] Desai N. Challenges in Development of Nanoparticle-Based Therapeutics. AAPS J 2012;14:282–95. https://doi.org/10.1208/s12248-012-9339-4.
[59] Hu X, Li F, Wang S, Xia F, Ling D. Biological Stimulus-Driven Assembly/Disassembly of Functional Nanoparticles for Targeted Delivery, Controlled Activation, and Bioelimination. Adv Healthc Mater 2018;7:1800359. https://doi.org/10.1002/adhm.201800359.
[60] Xu J, Song M, Fang Z, Zheng L, Huang X, Liu K. Applications and challenges of ultra-small particle size nanoparticles in tumor therapy. J Controlled Release 2023;353:699–712. https://doi.org/10.1016/j.jconrel.2022.12.028.
[61] Oh N, Park J-H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine 2014;9:51–63. https://doi.org/10.2147/IJN.S26592.
[62] Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, et al. Renal Clearance of Nanoparticles. Nat Biotechnol 2007;25:1165–70. https://doi.org/10.1038/nbt1340.
[63] Di J, Gao X, Du Y, Zhang H, Gao J, Zheng A. Size, shape, charge and “stealthy” surface: Carrier properties affect the drug circulation time in vivo. Asian J Pharm Sci 2021;16:444–58. https://doi.org/10.1016/j.ajps.2020.07.005.
[64] Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomed 2016;11:673–92. https://doi.org/10.2217/nnm.16.5.
[65] Almeida MS de, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021;50:5397–434. https://doi.org/10.1039/D0CS01127D.
[66] Wu J. The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application. J Pers Med 2021;11:771. https://doi.org/10.3390/jpm11080771.
[67] Lunt SJ, Kalliomaki TM, Brown A, Yang VX, Milosevic M, Hill RP. Interstitial fluid pressure, vascularity and metastasis in ectopic, orthotopic and spontaneous tumours. BMC Cancer 2008;8:2. https://doi.org/10.1186/1471-2407-8-2.
[68] Yu W, Liu R, Zhou Y, Gao H. Size-Tunable Strategies for a Tumor Targeted Drug Delivery System. ACS Cent Sci 2020;6:100–16. https://doi.org/10.1021/acscentsci.9b01139.
[69] Foroozandeh P, Aziz AA. Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res Lett 2018;13:339. https://doi.org/10.1186/s11671-018-2728-6.
[70] Verma A, Stellacci F. Effect of Surface Properties on Nanoparticle–Cell Interactions. Small 2010;6:12–21. https://doi.org/10.1002/smll.200901158.
[71] Stylianopoulos T, Poh M-Z, Insin N, Bawendi MG, Fukumura D, Munn LL, et al. Diffusion of Particles in the Extracellular Matrix: The Effect of Repulsive Electrostatic Interactions. Biophys J 2010;99:1342–9. https://doi.org/10.1016/j.bpj.2010.06.016.
[72] Ernsting MJ, Murakami M, Roy A, Li S-D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Controlled Release 2013;172:782–94. https://doi.org/10.1016/j.jconrel.2013.09.013.
[73] La-Beck NM, Zamboni BA, Gabizon A, Schmeeda H, Amantea M, Gehrig PA, et al. Factors affecting the pharmacokinetics of pegylated liposomal doxorubicin in patients. Cancer Chemother Pharmacol 2012;69:43–50. https://doi.org/10.1007/s00280-011-1664-2.
[74] Li F, Qin Y, Lee J, Liao H, Wang N, Davis TP, et al. Stimuli-responsive nano-assemblies for remotely controlled drug delivery. J Controlled Release 2020;322:566–92. https://doi.org/10.1016/j.jconrel.2020.03.051.
[75] Guo X, Wang L, Wei X, Zhou S. Polymer-based drug delivery systems for cancer treatment: REVIEWS. J Polym Sci Part Polym Chem 2016;54:3525–50. https://doi.org/10.1002/pola.28252.
[76] Guo X, Cheng Y, Zhao X, Luo Y, Chen J, Yuan W-E. Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnology 2018;16:74. https://doi.org/10.1186/s12951-018-0398-2.
[77] Khorsand B, Lapointe G, Brett C, Oh JK. Intracellular Drug Delivery Nanocarriers of Glutathione-Responsive Degradable Block Copolymers Having Pendant Disulfide Linkages. Biomacromolecules 2013;14:2103–11. https://doi.org/10.1021/bm4004805.
[78] Kelley EG, Albert JNL, Sullivan MO, Epps, III TH. Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chem Soc Rev 2013;42:7057. https://doi.org/10.1039/c3cs35512h.
[79] Hu J, Zhang G, Liu S. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem Soc Rev 2012;41:5933–49. https://doi.org/10.1039/C2CS35103J.
[80] Ghosh Dastidar D, Chakrabarti G. Thermoresponsive Drug Delivery Systems, Characterization and Application. Appl. Target. Nano Drugs Deliv. Syst., Elsevier; 2019, p. 133–55. https://doi.org/10.1016/B978-0-12-814029-1.00006-5.
[81] Zhuo S, Zhang F, Yu J, Zhang X, Yang G, Liu X. pH-Sensitive Biomaterials for Drug Delivery. Molecules 2020;25:5649. https://doi.org/10.3390/molecules25235649.
[82] Mu Y, Gong L, Peng T, Yao J, Lin Z. Advances in pH-responsive drug delivery systems. OpenNano 2021;5:100031. https://doi.org/10.1016/j.onano.2021.100031.
[83] Guo X, Shi C, Wang J, Di S, Zhou S. pH-triggered intracellular release from actively targeting polymer micelles. Biomaterials 2013;34:4544–54. https://doi.org/10.1016/j.biomaterials.2013.02.071.
[84] Li H, Zhao Y, Jia Y, Chen G, Peng J, Li J. pH-Responsive dopamine-based nanoparticles assembled via Schiff base bonds for synergistic anticancer therapy. Chem Commun 2020;56:13347–50. https://doi.org/10.1039/D0CC04656F.
[85] Peng F, Li R, Zhang F, Qin L, Ling G, Zhang P. Potential drug delivery nanosystems for improving tumor penetration. Eur J Pharm Biopharm 2020;151:220–38. https://doi.org/10.1016/j.ejpb.2020.04.009.
[86] Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities. Front Bioeng Biotechnol 2020;8.
[87] Choi J, Kim G, Cho SB, Im H-J. Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme. J Nanobiotechnology 2020;18:122. https://doi.org/10.1186/s12951-020-00684-5.
[88] Gu Y, Yoshikiyo M, Namai A, Bonvin D, Martinez A, Piñol R, et al. Magnetic hyperthermia with ε-Fe2O3 nanoparticles. RSC Adv 2020;10:28786–97. https://doi.org/10.1039/D0RA04361C.
[89] Gao W, Chan JM, Farokhzad OC. pH-Responsive Nanoparticles for Drug Delivery. Mol Pharm 2010;7:1913–20. https://doi.org/10.1021/mp100253e.
[90] Ling D, Park W, Park S, Lu Y, Kim KS, Hackett MJ, et al. Multifunctional Tumor pH-Sensitive Self-Assembled Nanoparticles for Bimodal Imaging and Treatment of Resistant Heterogeneous Tumors. J Am Chem Soc 2014;136:5647–55. https://doi.org/10.1021/ja4108287.
[91] Ling D, Xia H, Park W, Hackett MJ, Song C, Na K, et al. pH-Sensitive Nanoformulated Triptolide as a Targeted Therapeutic Strategy for Hepatocellular Carcinoma. ACS Nano 2014;8:8027–39. https://doi.org/10.1021/nn502074x.
[92] Zhang C, Xu C, Gao X, Yao Q. Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 2022;12:2115–32. https://doi.org/10.7150/thno.69424.
[93] Xia H, Li F, Hu X, Park W, Wang S, Jang Y, et al. pH-Sensitive Pt Nanocluster Assembly Overcomes Cisplatin Resistance and Heterogeneous Stemness of Hepatocellular Carcinoma. ACS Cent Sci 2016;2:802–11. https://doi.org/10.1021/acscentsci.6b00197.
[94] El Jundi A, Buwalda SJ, Bakkour Y, Garric X, Nottelet B. Double hydrophilic block copolymers self-assemblies in biomedical applications. Adv Colloid Interface Sci 2020;283:102213. https://doi.org/10.1016/j.cis.2020.102213.
[95] Yorulmaz Avsar S, Kyropoulou M, Di Leone S, Schoenenberger C-A, Meier WP, Palivan CG. Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces. Front Chem 2019;6:645. https://doi.org/10.3389/fchem.2018.00645.
[96] Obata M, Masuda S, Takahashi M, Yazaki K, Hirohara S. Effect of the hydrophobic segment of an amphiphilic block copolymer on micelle formation, zinc phthalocyanine loading, and photodynamic activity. Eur Polym J 2021;147:110325. https://doi.org/10.1016/j.eurpolymj.2021.110325.
[97] Krishnan A, Roy S, Menon S. Amphiphilic block copolymers: From synthesis including living polymerization methods to applications in drug delivery. Eur Polym J 2022;172:111224. https://doi.org/10.1016/j.eurpolymj.2022.111224.
[98] Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Controlled Release 2021;332:312–36. https://doi.org/10.1016/j.jconrel.2021.02.031.
[99] Matsumura Y, Kataoka K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 2009;100:572–9. https://doi.org/10.1111/j.1349-7006.2009.01103.x.
[100] Hamaguchi T, Kato K, Yasui H, Morizane C, Ikeda M, Ueno H, et al. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer 2007;97:170–6. https://doi.org/10.1038/sj.bjc.6603855.
[101] Matsumura Y. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv Drug Deliv Rev 2008;60:899–914. https://doi.org/10.1016/j.addr.2007.11.010.
[102] Kim T-Y, Kim D-W, Chung J-Y, Shin SG, Kim S-C, Heo DS, et al. Phase I and Pharmacokinetic Study of Genexol-PM, a Cremophor-Free, Polymeric Micelle-Formulated Paclitaxel, in Patients with Advanced Malignancies. Clin Cancer Res 2004;10:3708–16. https://doi.org/10.1158/1078-0432.CCR-03-0655.
[103] Bouyer F, Gérardin C, Fajula F, Putaux J-L, Chopin T. Role of double-hydrophilic block copolymers in the synthesis of lanthanum-based nanoparticles. Colloids Surf Physicochem Eng Asp 2003;217:179–84. https://doi.org/10.1016/S0927-7757(02)00574-5.
[104] Al Nakeeb N, Nischang I, Schmidt BVKJ. Tannic Acid-Mediated Aggregate Stabilization of Poly(N-vinylpyrrolidone)-b-poly(oligo (ethylene glycol) methyl ether methacrylate) Double Hydrophilic Block Copolymers. Nanomaterials 2019;9:662. https://doi.org/10.3390/nano9050662.
[105] Wang J, Wang H, Zhao P, Chen Z, Lin Q. Hyperbranched-star PEI-g-PEG as a nonviral vector with efficient uptake and hypotoxicity for retinoblastoma gene therapy application. Colloid Interface Sci Commun 2022;50:100647. https://doi.org/10.1016/j.colcom.2022.100647.
[106] Harada A, Kataoka K. Polyion complex micelle formation from double-hydrophilic block copolymers composed of charged and non-charged segments in aqueous media. Polym J 2018;50:95–100. https://doi.org/10.1038/pj.2017.67.
[107] Shin SHR, McAninch PT, Henderson IM, Gomez A, Greene AC, Carnes EC, et al. Self-assembly/disassembly of giant double-hydrophilic polymersomes at biologically-relevant pH. Chem Commun 2018;54:9043–6. https://doi.org/10.1039/c8cc05155k.
[108] Insua I, Wilkinson A, Fernandez-Trillo F. Polyion complex (PIC) particles: Preparation and biomedical applications. Eur Polym J 2016;81:198–215. https://doi.org/10.1016/j.eurpolymj.2016.06.003.
[109] Sun J, Li Z. Polyion Complexes via Electrostatic Interaction of Oppositely Charged Block Copolymers. Macromolecules 2020;53:8737–40. https://doi.org/10.1021/acs.macromol.0c02031.
[110] Raisin S, Morille M, Bony C, Noël D, Devoisselle J-M, Belamie E. Tripartite polyionic complex (PIC) micelles as non-viral vectors for mesenchymal stem cell siRNA transfection. Biomater Sci 2017;5. https://doi.org/10.1039/C7BM00384F.
[111] Ramasamy T, Poudel BK, Ruttala H, Choi JY, Hieu TD, Umadevi K, et al. Cationic drug-based self-assembled polyelectrolyte complex micelles: Physicochemical, pharmacokinetic, and anticancer activity analysis. Colloids Surf B Biointerfaces 2016;146:152–60. https://doi.org/10.1016/j.colsurfb.2016.06.004.
[112] Berret J-F. Controlling electrostatic co-assembly using ion-containing copolymers: From surfactants to nanoparticles. Adv Colloid Interface Sci 2011;167:38–48. https://doi.org/10.1016/j.cis.2011.01.008.
[113] Veis A. PHASE SEPARATION IN POLYELECTROLYTE SOLUTIONS. II. INTERACTION EFFECTS. J Phys Chem 1961;65:1798–803. https://doi.org/10.1021/j100827a026.
[114] Hill LJ, Pinna N, Char K, Pyun J. Colloidal polymers from inorganic nanoparticle monomers. Prog Polym Sci 2015;40:85–120. https://doi.org/10.1016/j.progpolymsci.2014.08.003.
[115] Boles MA, Engel M, Talapin DV. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem Rev 2016;116:11220–89. https://doi.org/10.1021/acs.chemrev.6b00196.
[116] Li Z, Fan Q, Yin Y. Colloidal Self-Assembly Approaches to Smart Nanostructured Materials. Chem Rev 2022;122:4976–5067. https://doi.org/10.1021/acs.chemrev.1c00482.
[117] Wei D, Tong Q, An Q, Ma X, Jiang X, Li X, et al. Dual stimuli-responsive nanocarriers based on polyethylene glycol-mediated schiff base interactions for overcoming tumour chemoresistance. Colloids Surf B Biointerfaces 2022;213:112408. https://doi.org/10.1016/j.colsurfb.2022.112408.
[118] Grzelczak M, Liz-Marzán LM, Klajn R. Stimuli-responsive self-assembly of nanoparticles. Chem Soc Rev 2019;48:1342–61. https://doi.org/10.1039/C8CS00787J.
[119] Berret J-F, Schonbeck N, Gazeau F, El Kharrat D, Sandre O, Vacher A, et al. Controlled Clustering of Superparamagnetic Nanoparticles Using Block Copolymers: Design of New Contrast Agents for Magnetic Resonance Imaging. J Am Chem Soc 2006;128:1755–61. https://doi.org/10.1021/ja0562999.
[120] Bridonneau N, Noël V, Zrig S, Carn F. Self-Assembly of Gold Nanoparticles with Oppositely Charged, Long, Linear Chains of Periodic Copolymers. J Phys Chem B 2020;124:900–8. https://doi.org/10.1021/acs.jpcb.9b09590.
[121] Berret J-F. Stoichiometry of Electrostatic Complexes Determined by Light Scattering. Macromolecules 2007;40:4260–6. https://doi.org/10.1021/ma062887a.
[122] Balomenou I, Bokias G. Water-Soluble Complexes between Cationic Surfactants and Comb-Type Copolymers Consisting of an Anionic Backbone and Hydrophilic Nonionic Poly( N , N -dimethylacrylamide) Side Chains. Langmuir 2005;21:9038–43. https://doi.org/10.1021/la0503505.
[123] Harada A, Kataoka K. Effect of Charged Segment Length on Physicochemical Properties of Core−Shell Type Polyion Complex Micelles from Block Ionomers. Macromolecules 2003;36:4995–5001. https://doi.org/10.1021/ma025737i.
[124] Oishi M, Sasaki S, Nagasaki Y, Kataoka K. pH-Responsive Oligodeoxynucleotide (ODN)−Poly(Ethylene Glycol) Conjugate through Acid-Labile β-Thiopropionate Linkage: Preparation and Polyion Complex Micelle Formation. Biomacromolecules 2003;4:1426–32. https://doi.org/10.1021/bm034164u.
[125] Boudier A, Aubert-Pouëssel A, Louis-Plence P, Gérardin C, Jorgensen C, Devoisselle J-M, et al. The control of dendritic cell maturation by pH-sensitive polyion complex micelles. Biomaterials 2009;30:233–41. https://doi.org/10.1016/j.biomaterials.2008.09.033.
[126] Yuan X, Yamasaki Y, Harada A, Kataoka K. Characterization of stable lysozyme-entrapped polyion complex (PIC) micelles with crosslinked core by glutaraldehyde. Polymer 2005;46:7749–58. https://doi.org/10.1016/j.polymer.2005.02.121.
[127] Fresnais J, Lavelle C, Berret J-F. Nanoparticle Aggregation Controlled by Desalting Kinetics. J Phys Chem C 2009;113:16371–9. https://doi.org/10.1021/jp904665u.
[128] Yan M, Qu L, Fan J, Ren Y. Electrostatic complexation of polyelectrolyte and magnetic nanoparticles: from wild clustering to controllable magnetic wires. Nanoscale Res Lett 2014;9:198. https://doi.org/10.1186/1556-276X-9-198.
[129] Dautzenberg H, Rother G. Response of Polyelectrolyte Complexes to Subsequent Addition of Sodium Chloride: Time-Dependent Static Light Scattering Studies. Macromol Chem Phys 2004;205:114–21. https://doi.org/10.1002/macp.200350083.
[130] Reboul J, Nugay T, Anik N, Cottet H, Ponsinet V, In M, et al. Synthesis of double hydrophilic block copolymers and induced assembly with oligochitosan for the preparation of polyion complex micelles. Soft Matter 2011;7:5836. https://doi.org/10.1039/c1sm05230f.
[131] van der Kooij HM, Spruijt E, Voets IK, Fokkink R, Cohen Stuart MA, van der Gucht J. On the Stability and Morphology of Complex Coacervate Core Micelles: From Spherical to Wormlike Micelles. Langmuir 2012;28:14180–91. https://doi.org/10.1021/la303211b.
[132] Qi L, Chapel J-P, Castaing J-C, Fresnais J, Berret J-F. Organic versus hybrid coacervate complexes: co-assembly and adsorption properties. Soft Matter 2008;4:577. https://doi.org/10.1039/b716178f.
[133] Feng X, Pelton R, Leduc M, Champ S. Colloidal Complexes from Poly(vinyl amine) and Carboxymethyl Cellulose Mixtures. Langmuir 2007;23:2970–6. https://doi.org/10.1021/la0628064.
[134] Boudier A, Aubert-Pouëssel A, Gérardin C, Devoisselle J-M, Bégu S. pH-sensitive double-hydrophilic block copolymer micelles for biological applications. Int J Pharm 2009;379:212–7. https://doi.org/10.1016/j.ijpharm.2009.05.032.
[135] Wei Y-Z, Chu Y-F, Uliyanchenko E, Schoenmakers PJ, Zhuo R-X, Jiang X-L. Separation and characterization of benzaldehyde-functional polyethylene glycols by liquid chromatography under critical conditions. Polym Chem 2016;7:7506–13. https://doi.org/10.1039/C6PY01653G.
[136] Zhang X, Pan S-R, Hu H-M, Wu G-F, Feng M, Zhang W, et al. Poly(ethylene glycol)-block-polyethylenimine copolymers as carriers for gene delivery: Effects of PEG molecular weight and PEGylation degree. J Biomed Mater Res A 2008;84A:795–804. https://doi.org/10.1002/jbm.a.31343.
[137] Petersen H, Fechner PM, Fischer D, Kissel T. Synthesis, Characterization, and Biocompatibility of Polyethylenimine- g raft -poly(ethylene glycol) Block Copolymers. Macromolecules 2002;35:6867–74. https://doi.org/10.1021/ma012060a.
[138] Kidera A, Higashira T, Ikeda Y, Urayama K, Kohjiya S. GPC analysis of polymer network formation: 2. Bifunctional PPG prepolymer/crosslinker system. Polym Bull 1997;38:461–8. https://doi.org/10.1007/s002890050074.
[139] Rydholm AE, Held NL, Bowman CN, Anseth KS. Gel Permeation Chromatography Characterization of the Chain Length Distributions in Thiol−Acrylate Photopolymer Networks. Macromolecules 2006;39:7882–8. https://doi.org/10.1021/ma060858u.
[140] Cabral H, Miyata K, Osada K, Kataoka K. Block Copolymer Micelles in Nanomedicine Applications. Chem Rev 2018;118:6844–92. https://doi.org/10.1021/acs.chemrev.8b00199.
[141] Berret J-F, Sehgal A, Morvan M, Sandre O, Vacher A, Airiau M. Stable oxide nanoparticle clusters obtained by complexation. J Colloid Interface Sci 2006;303:315–8. https://doi.org/10.1016/j.jcis.2006.07.025.
[142] Bordi F, Cametti C, Sennato S. Polyions act as an electrostatic glue for mesoscopic particle aggregates. Chem Phys Lett 2005;409:134–8. https://doi.org/10.1016/j.cplett.2005.04.107.
[143] Chapel J-P, Berret J-F. Versatile electrostatic assembly of nanoparticles and polyelectrolytes: Coating, clustering and layer-by-layer processes. Curr Opin Colloid Interface Sci 2012;17:97–105. https://doi.org/10.1016/j.cocis.2011.08.009.
[144] Louguet S, Kumar AC, Guidolin N, Sigaud G, Duguet E, Lecommandoux S, et al. Control of the PEO Chain Conformation on Nanoparticles by Adsorption of PEO- block -Poly( L -lysine) Copolymers and Its Significance on Colloidal Stability and Protein Repellency. Langmuir 2011;27:12891–901. https://doi.org/10.1021/la202990y.
[145] Lafuma F, Wong K, Cabane B. Bridging of colloidal particles through adsorbed polymers. J Colloid Interface Sci 1991;143:9–21. https://doi.org/10.1016/0021-9797(91)90433-9.
[146] Fresnais J, Ishow E, Sandre O, Berret J-F. Electrostatic Co-assembly of Magnetic Nanoparticles and Fluorescent Nanospheres: A Versatile Approach Towards Bimodal Nanorods. Small 2009;5:2533–6. https://doi.org/10.1002/smll.200900703.
[147] Nordmeier E, Beyer P. Nonstoichiometric polyelectrolyte complexes: A mathematical model and some experimental results. J Polym Sci Part B Polym Phys 1999;37:335–48. https://doi.org/10.1002/(SICI)1099-0488(19990215)37:4<335::AID-POLB7>3.0.CO;2-W.
[148] Borisov OV, Zhulina EB. Effect of Salt on Self-Assembly in Charged Block Copolymer Micelles. Macromolecules 2002;35:4472–80. https://doi.org/10.1021/ma010934n.
[149] Solomatin SV, Bronich TK, Bargar TW, Eisenberg A, Kabanov VA, Kabanov AV. Environmentally Responsive Nanoparticles from Block Ionomer Complexes: Effects of pH and Ionic Strength. Langmuir 2003;19:8069–76. https://doi.org/10.1021/la030015l.
[150] Cohen Stuart MA, Besseling NAM, Fokkink RG. Formation of Micelles with Complex Coacervate Cores. Langmuir 1998;14:6846–9. https://doi.org/10.1021/la980778m.
[151] Li D, Ding J, Zhuang X, Chen L, Chen X. Drug binding rate regulates the properties of polysaccharide prodrugs. J Mater Chem B 2016;4:5167–77. https://doi.org/10.1039/C6TB00991C.
[152] Hine J, Craig JC, Underwood JG, Via FA. Kinetics and mechanism of the hydrolysis of N-isobutylidenemethylamine in aqueous solution. J Am Chem Soc 1970;92:5194–9. https://doi.org/10.1021/ja00720a032.
[153] Hermawan A, Susidarti RA, Ramadani RD, Qodria L, Utomo RY, Ishimura M, et al. Cellular uptake evaluation of pentagamaboronon-0 (PGB-0) for boron neutron capture therapy (BNCT) against breast cancer cells. Invest New Drugs 2019;37:1292–9. https://doi.org/10.1007/s10637-019-00765-9.
[154] Shi Y, Fu Q, Li J, Liu H, Zhang Z, Liu T, et al. Covalent Organic Polymer as a Carborane Carrier for Imaging-Facilitated Boron Neutron Capture Therapy. ACS Appl Mater Interfaces 2020;12:55564–73. https://doi.org/10.1021/acsami.0c15251.
[155] Saqafi B, Rahbarizadeh F. Effect of PEI surface modification with PEG on cytotoxicity and transfection efficiency. Micro Nano Lett 2018;13:1090–5. https://doi.org/10.1049/mnl.2017.0457.
[156] Zhang P, Chen D, Li L, Sun K. Charge reversal nano-systems for tumor therapy. J Nanobiotechnology 2022;20:31. https://doi.org/10.1186/s12951-021-01221-8.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *