帳號:guest(13.59.20.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖唯瑄
作者(外文):Liao, Wei-Hsuan
論文名稱(中文):以多材料3D列印三度週期最小曲面互穿相及三明治複合材料之壓縮機械性質研究
論文名稱(外文):Investigation on Compressive Mechanical Performance of TPMS-based Interpenetrating Phase and Sandwich Composites Fabricated by Multi-material 3D Printing
指導教授(中文):陳柏宇
指導教授(外文):Chen, Po-Yu
口試委員(中文):周佳靚
張書瑋
口試委員(外文):Chou, Chia-Ching
Chang, Shu-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:110031525
出版年(民國):112
畢業學年度:112
語文別:英文
論文頁數:132
中文關鍵詞:三度週期最小表面增材製造互穿相複合材料機械性能多層材料
外文關鍵詞:Triply periodic minimal surfacesAdditive manufacturingInterpenetrating phase compositesMechanical propertiesMulti-layered material
相關次數:
  • 推薦推薦:0
  • 點閱點閱:58
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為了展現出卓越的機械特性,天然的雙相複合材料將互補的不同材料結合在一起,提供機械強度、保護和支撐,同時保持靈活性。而自然中的三度週期最小曲面(TPMS)結構則兼具輕且強的優異機械性能。受大自然啟發,我們結合兩者優勢,設計出能夠吸收和分散能量的複合材料,提高單一材料的耐損性,為各種工程應用提供創新解決方案。
本研究檢驗了一系列具TPMS結構的多材料雙相複合材料的能量吸收能力。通過多材料3D列印、多尺度結構觀察、壓縮測試和有限元模擬,評估了互穿相複合材料(IPC)和三明治複合材料的力學性能和應力分佈。TPMS IPC的結果強調了增強相剛度和拓撲對機械性能的影響。我們發現具有剛性增強相的 IPC表現出更高的能量吸收,並且比能量吸收會隨增強相拓撲改變。根據結果可以確定在增強損傷容限和機械性能方面最有效的TPMS IPC設計。而在TPMS三明治複合材料中,我們發現軟芯的性能優於硬芯,表現出均勻的變形和有效的能量吸收。我們量化硬包層相的體積-性能關係,發現是軟芯和硬包層之間的相互作用促進了負載轉移和能量耗散,增強了需要抗衝擊的應用的韌性。
總體而言,本研究針對具三週期最小表面之多材料雙相複合材料,提出其壓縮變形機制並量化其能量吸收能力。此結果強調了材料選擇和拓撲設計在優化多材料複合材料結構力學性能方面的重要性。IPC可以通過選擇不同拓樸的增強相來定制特性,且複合材料中不同材料特性的協同相互作用有助於它們承受外加載荷和恢復形狀,使它們具有彈性並應用於各種工程,包括能量存儲和轉換。使用增材製造技術來製造IPC和夾層複合材料可實現創新和多功能設計,為先進材料和工程應用開闢新的可能性。本研究在交通、國防、體育器材、能源存儲和建築等各個行業具有巨大的應用潛力。
To exhibit superior mechanical properties, natural dual-phase composites combine complementary dissimilar materials to provide mechanical strength, protection, and support while maintaining flexibility. The three-dimensional periodic minimal surface (TPMS) structure in nature has excellent mechanical properties of lightness and strength. Inspired by nature, we combine the advantages of both to design composite materials that can absorb and disperse energy, improve the damage resistance of a single material, and provide innovative solutions for various engineering applications.
This study examines the energy absorption capabilities of a series of multi-material dual-phase composites with TPMS structures. The mechanical properties and stress distribution of interpenetrating phase composites (IPCs) and sandwich composites were evaluated by multi-material 3D printing, multiscale structural observation, compression testing, and finite element simulation. The results of TPMS IPCs highlight the effect of enhanced phase stiffness and topology on mechanical properties. We found that IPCs with rigid reinforcing phases exhibit higher energy absorption, and the specific energy absorption is affected by the topology of the reinforcing phase. From the results, the most effective TPMS IPCs in enhancing damage tolerance and mechanical properties can be identified. In the TPMS sandwich composite, we found that the soft-core outperformed the hard-core, exhibiting uniform deformation and efficient energy absorption. We also quantified the volume-property relationship of the hard-cladding phase. It was found that the interaction between the soft-core and the hard-cladding facilitates load transfer and energy dissipation, enhancing toughness in applications requiring impact resistance.
Overall, this study proposes the compression deformation mechanism and quantifies the energy absorption capacity of a multi-material dual-phase composite with a three-period minimum surface. This result highlights the importance of material selection and topology design in optimizing the mechanical properties of multi-material composite structures. The properties of IPCs can be tailored by selecting reinforcement phases with different topologies, and the synergistic interaction of varying material properties in composites enables them to withstand applied loads and recover shape, making them elastic and applicable to various projects, including energy storage and conversion. Using additive manufacturing techniques to fabricate IPCs and sandwich composites enables innovative and multifunctional designs, giving new possibilities for advanced materials and engineering applications. The research has application potential in various industries such as transportation, defense, sports equipment, energy storage, and construction.
摘要 I
Abstract III
致謝 V
Figure Caption VII
Table Caption XII
目錄 XIII
Chapter. 1 Introduction 1
Chapter. 2 Literature Review 4
2.1 Composite Structures in Nature 4
2.2 Triply Periodic Minimal Surface (TPMS) 8
2.3 Interpenetrating Phase Composites (IPCs) 13
2.4 Manufacturability of TPMS-Based Metamaterials 17
2.5 Computational Modeling 22
Chapter. 3 Experimental Method 26
3.1 Model Designs 28
3.1.1 TPMS IPCs 28
3.1.2 Sandwich Structure 32
3.2 Additive Manufacturing 36
3.3 Structural Observation 38
3.4 Compression Test 40
3.5 Finite Element Simulation 44
Chapter. 4 Results and Discussion 47
4.1 Microstructural characterization 48
4.1.1 Printing quality analysis 48
4.1.2 Fracture surface analysis 57
4.2 Compressive Mechanical Properties of TPMS IPCs 61
4.2.1 Effect of Rigidity 61
4.2.2 Effect of Topology 74
4.2.3 Specific Energy Absorption 86
4.3 TPMS Sandwich Structure 92
4.3.1 Hard-Core Sandwich Composites 92
4.3.2 Soft-Core Sandwich Composites 102
4.3.3 Comparison of hard-core and soft-core composites 113
4.3.4 Finite Element Analysis 116
Chapter. 5 Conclusions 124
Chapter. 6 Future Works 127
References 129
References
[1] Meyers, Marc André, Joanna McKittrick, and Po-Yu Chen. "Structural biological materials: critical mechanics-materials connections." science 339.6121 (2013): 773-779.
[2] Chen, Po-Yu, Joanna McKittrick, and Marc André Meyers. "Biological materials: functional adaptations and bioinspired designs." Progress in Materials Science 57.8 (2012): 1492-1704.
[3] Lazarus BS, Velasco-Hogan A, Río TG-d, Meyers MA, Jasiuk I, A Review of Impact Resistant Biological and Bioinspired Materials and Structures, Journal of Materials Research and Technology,
[4] Xie, Yong, et al. "A novel bionic structure inspired by luffa sponge and its cushion properties." Applied Sciences 10.7 (2020): 2584.
[5] Wang, Zhonggang, et al. "On the crashworthiness of bio-inspired hexagonal prismatic tubes under axial compression." International Journal of Mechanical Sciences 186 (2020): 105893.
[6] Brezny, R., Green, D.J. Characterization of edge effects in cellular materials. J Mater Sci 25, 4571–4578 (1990). https://doi.org/10.1007/BF01129908
[7] H. Ronge, S. Krishnan and S. Ramamoorthy, "Evaluation of Stochastic and Periodic Cellular Materials for Combined Heat Dissipation and Noise Reduction: Experiments and Modeling," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 10, no. 7, pp. 1185-1203, July 2020.
[8] Jian Song, Wenzhao Zhou, Yuejiao Wang, Rong Fan, Yinchu Wang, Junying Chen, Yang Lu, Lixiao Li,
Octet-truss cellular materials for improved mechanical properties and specific energy absorption,
Materials & Design, Volume 173, 2019, 107773, ISSN 0264-1275.
[9] L.J. Gibson, Modelling the mechanical behavior of cellular materials, Materials Science and Engineering: A, Volume 110, 1989, Pages 1-36, ISSN 0921-5093.
[10] Josephine V. Carstensen, Reza Lotfi, Wen Chen, Stefan Szyniszewski, Stavros Gaitanaros, Jan Schroers, James K. Guest, Topology-optimized bulk metallic glass cellular materials for energy absorption, Scripta Materialia, Volume 208, 2022, 114361, ISSN 1359-6462.
[11] R. Brezny, D.J. Green, The effect of cell size on the mechanical behavior of cellular materials, Acta Metallurgica et Materialia, Volume 38, Issue 12, 1990, Pages 2517-2526, ISSN 0956-7151.
[12] H. Zhao, I. Elnasri, S. Abdennadher, An experimental study on the behaviour under impact loading of metallic cellular materials, International Journal of Mechanical Sciences, Volume 47, Issues 4–5, 2005, Pages 757-774, ISSN 0020-7403.
[13] Arredondo-Soto, M.; Cuan-Urquizo, E.; Gómez-Espinosa, A. A Review on Tailoring Stiffness in Compliant Systems, via Removing Material: Cellular Materials and Topology Optimization. Appl. Sci. 2021, 11, 3538.
[14] Zhang, W. and Sun, S. (2006), Scale-related topology optimization of cellular materials and structures. Int. J. Numer. Meth. Engng., 68: 993-1011. https://doi.org/10.1002/nme.1743
[15] Coelho, P.G., Guedes, J.M. & Cardoso, J.B. Topology optimization of cellular materials with periodic microstructure under stress constraints. Struct Multidisc Optim 59, 633–645 (2019).
[16] Ferro, N., Perotto, S., Bianchi, D. et al. Design of cellular materials for multiscale topology optimization: application to patient-specific orthopedic devices. Struct Multidisc Optim 65, 79 (2022).
[17] Minzu Liang, Zhibin Li, Fangyun Lu, Xiangyu Li, Theoretical and numerical investigation of blast responses of continuous-density graded cellular materials, Composite Structures, Volume 164, 2017, Pages 170-179, ISSN 0263-8223.
[18] Huina Mao, Mathieu Gaborit, Eva Lundberg, Romain Rumpler, Binglun Yin, Peter Göransson, Dynamic behaviour of low- to high-density anisotropic cellular materials, Journal of Sound and Vibration, Volume 536,
2022, 117137, ISSN 0022-460X.
[19] Han, S.C., Lee, J.W. and Kang, K. (2015), A New Type of Low Density Material: Shellular. Adv. Mater., 27: 5506-5511. https://doi.org/10.1002/adma.201501546.
[20] Karcher Hermann and Polthier Konrad 1996Construction of triply periodic minimal surfacesPhil. Trans. R. Soc. A.3542077–2104.
[21] Han L and Che S 2018 An overview of materials with triply reriodic minimal surfaces and related geometry: from biological structures to self-assembled systems Adv. Mater. 30 1705708
[22] Gan Z, Turner M D and Gu M 2016 Biomimetic gyroid nanostructures exceeding their natural origins Sci. Adv. 2 e160008
[23] Shevchenko, V.Y., Sychev, M.M., Lapshin, A.E. et al. Polymer Structures with the Topology of Triply Periodic Minimal Surfaces. Glass Phys Chem 43, 608–610 (2017).
[24] Liu, X, Wang, Q, Zhou, S, and Liu, Z. A study of interline power flow analysis based on a new mathematical model of interconnected power system with IPC. Canada: N. p., 2005. Web.
[25] Y. Sun, H. F. Zhang, A. M. Wang, H. M. Fu, Z. Q. Hu, C. E. Wen, P. D. Hodgson; Mg-based metallic glass/titanium interpenetrating phase composite with high mechanical performance. Appl. Phys. Lett. 26 October 2009; 95 (17): 171910.
[26] Kwonhwan Ko, Suyeong Jin, Sang Eon Lee, Jung-Wuk Hong, Impact resistance of nacre-like omposites diversely patterned by 3D printing, Composite Structures, Volume 238, 2020, 111951, ISSN 0263-8223.
[27] Frank Stoeckel, Johannes Konnerth, Wolfgang Gindl-Altmutter, Mechanical properties of adhesives for bonding wood—A review, International Journal of Adhesion and Adhesives,Volume 45, 2013, Pages 32-41, ISSN 0143-7496.
[28] C.S. Verma, V.M. Chariar, Development of layered laminate bamboo composite and their mechanical properties, Composites Part B: Engineering, Volume 43, Issue 3, 2012, Pages 1063-1069, ISSN 1359-8368.
[29] Rosa N, Moura MFSF, Olhero S, Simoes R, Magalhães FD, Marques AT, Ferreira JPS, Reis AR, Carvalho M, Parente M. Bone: An Outstanding Composite Material. Applied Sciences. 2022; 12(7):3381.
[30] Sandholzer, Michael. (2010). Micro-CT analysis of human teeth after exposure to controlled thermal stress.
[31] Ben Achrai, H. Daniel Wagner, Micro-structure and mechanical properties of the turtle carapace as a biological composite shield, Acta Biomaterialia, Volume 9, Issue 4, 2013, Pages 5890-5902, ISSN 1742-7061.
[32] Marc André Meyers, Po-Yu Chen, Albert Yu-Min Lin, Yasuaki Seki, Biological materials: Structure and mechanical properties, Progress in Materials Science, Volume 53, Issue , 2008, Pages 1-206, ISSN 0079-6425.
[33] Owuamanam, S.; Cree, D. Progress of Bio-Calcium Carbonate Waste Eggshell and Seashell Fillers in Polymer Composites: A Review. J. Compos. Sci. 2020, 4, 70.
[34] Fangxi Ren, Changdong Zhang, Wenhe Liao, Tingting Liu, Dawei Li, Xin Shi, Weiming Jiang, Cong Wang, Junfeng Qi, Yi Chen, Zhen Wang, Transition boundaries and stiffness optimal design for multi-TPMS lattices, Materials & Design, Volume 210, 2021, 110062, ISSN 0264-1275.
[35] M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, G. E. Schröder-Turk, Phys. Rev. Lett. 2011, 106, 103902.
[36] Sanjairaj Vijayavenkataraman, Lei Zhang, Shuo Zhang, Jerry Ying Hsi Fuh, and Wen Feng Lu ACS Applied Bio Materials 2018 1 (2), 259-269 DOI: 10.1021/acsabm.8b00052.
[37] Hussain I, Al-Ketan O, Renda F, et al. Design and prototyping soft–rigid tendon-driven modular grippers using interpenetrating phase composites materials. The International Journal of Robotics Research. 2020;39(14):1635-1646.
[38] Petrolo, Marco, et al. Finite element analysis of structures through unified formulation. John Wiley & Sons, 2014.
[39] Al-Ketan, O., Al-Rub, R. K. A., Rowshan, R., Adv. Mater. Technol. 2017, 2, 1600235.
[40] Oraib Al-Ketan, Mhd Adel Assad, Rashid K. Abu Al-Rub, Mechanical properties of periodic interpenetrating phase composites with novel architected microstructures, Composite Structures, Volume 176, 2017, Pages 9-19, ISSN 0263-8223.
[41] Nurshaun Sreedhar, Navya Thomas, Oraib Al-Ketan, Reza Rowshan, Hector Hernandez, Rashid K. Abu Al-Rub, Hassan A. Arafat, 3D printed feed spacers based on triply periodic minimal surfaces for flux enhancement and biofouling mitigation in RO and UF, Desalination, Volume 425, 2018, Pages 12-21, ISSN 0011-9164.
[42] Zahid Ahmed Qureshi, Salah Addin Burhan Al-Omari, Emad Elnajjar, Oraib Al-Ketan, Rashid Abu Al-Rub, Using triply periodic minimal surfaces (TPMS)-based metal foams structures as skeleton for metal-foam-PCM composites for thermal energy storage and energy management applications, International Communications in Heat and Mass Transfer, Volume 124, 2021, 105265, ISSN 0735-1933.
[43] Chung, T. J. "Finite element analysis in fluid dynamics." NASA STI/Recon Technical Report A 78 (1978): 44102.
[44] Nithiarasu, Perumal, Roland W. Lewis, and Kankanhalli N. Seetharamu. Fundamentals of the finite element method for heat and mass transfer. John Wiley & Sons, 2016.
[45] S M Fijul Kabir, Kavita Mathur, Abdel-Fattah M. Seyam, A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties, Composite Structures, Volume 232, 2020, 111476, ISSN 0263-8223.
[46] Adi Z. Zabidi, Shuguang Li, Reda M. Felfel, Kathryn G. Thomas, David M. Grant, Donal McNally, Colin Scotchford, Computational mechanical characterization of geometrically transformed Schwarz P lattice tissue scaffolds fabricated via two photon polymerization (2PP), Additive Manufacturing, Volume 25, 2019, Pages 399-411, ISSN 2214-8604.
[47] S. M. Sajadi, P. S. Owuor, S. Schara, C. F. Woellner, V. Rodrigues, R. Vajtai, J. Lou, D. S. Galvão, C. S. Tiwary, P. M. Ajayan, Adv. Mater. 2018, 30, 1704820.
[48] M.M. Sychov, L.A. Lebedev, S.V. Dyachenko, L.A. Nefedova, Mechanical properties of energy-absorbing structures with triply periodic minimal surface topology, Acta Astronautica, Volume 150, 2018, Pages 81-84, ISSN 0094-5765.
[49] Oğulcan Eren, Hüseyin Kürşad Sezer, Necati Yalçın, Effect of lattice design on mechanical response of PolyJet additively manufactured cellular structures, Journal of Manufacturing Processes, Volume 75, 2022, Pages 1175-1188, ISSN 1526-6125.
[50] Al-Ketan, O. and Abu Al-Rub, R.K. (2019), Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices. Adv. Eng. Mater., 21: 1900524.
[51] Logan, Daryl L. A first course in the finite element method. Cengage Learning, 2016.
[52] Barkanov, Evgeny. "Introduction to the finite element method." Institute of Materials and Structures Faculty of Civil Engineering Riga Technical University (2001): 1-70.
[53] Reddy, Junuthula Narasimha. An Introduction to Nonlinear Finite Element Analysis Second Edition: with applications to heat transfer, fluid mechanics, and solid mechanics. OUP Oxford, 2014.
[54] J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, M. H. Bartl, Phys. Rev. E. 2008, 77, 050904.
[55] Wu, L., Wang, W., Zhang, W., Su, H., Gu, J., Liu, Q., Zhang, D., Pantelić, D., Jelenković, B., Advanced Optical Materials 2018, 6, 1800064
[56] Jiawei Feng, Bo Liu, Zhiwei Lin, Jianzhong Fu,Isotropic porous structure design methods based on triply periodic minimal surfaces, Materials & Design, Volume 210, 2021, 110050, ISSN 0264-1275
[57] Chunze Yan, Liang Hao, Ahmed Hussein, David Raymont, Evaluations of cellular lattice structures manufactured using selective laser melting, International Journal of Machine Tools and Manufacture, Volume 62, 2012, Pages 32-38, ISSN 0890-6955.
[58] Sajadi, S. M., Owuor, P. S., Schara, S., Woellner, C. F., Rodrigues, V., Vajtai, R., Lou, J., Galvão, D. S., Tiwary, C. S., Ajayan, P. M., Adv. Mater. 2018, 30, 1704820.
[59] Diab W. Abueidda, Ahmed S. Dalaq, Rashid K. Abu Al-Rub, Iwona Jasiuk, Micromechanical finite element predictions of a reduced coefficient of thermal expansion for 3D periodic architectured interpenetrating phase composites, Composite Structures, Volume 133, 2015, Pages 85-97, ISSN 0263-8223.
[60] N.V. Viet, W. Waheed, A. Alazzam, W. Zaki, Effective compressive behavior of functionally graded TPMS titanium implants with ingrown cortical or trabecular bone, Composite Structures, Volume 303, 2023, 116288, ISSN 0263-8223.
[61] Miltz, Joseph, and Ori Ramon. "Energy absorption characteristics of polymeric foams used as cushioning materials." Polymer Engineering & Science 30.2 (1990): 129-133.
[62] Avalle, Massimiliano, Giovanni Belingardi, and R. Montanini. "Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram." International journal of impact engineering 25.5 (2001): 455-472
[63] Maiti, S. K., L. J. Gibson, and M. F. Ashby. "Deformation and energy absorption diagrams for cellular solids." Acta metallurgica 32.11 (1984): 1963-1975.
[64] Ashby, Michael F. "The properties of foams and lattices." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364.1838 (2006): 15-30
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 藉由多材料雷射積層製造技術實現低成本/高強度之多功能金屬件
2. 惡魔鐵甲蟲與菊石啟發具多階層扣鎖縫合結構之壓縮和拉伸機械性質研究
3. 透過仿生拓樸互鎖與多層結構設計增強複合材料之機械性質
4. 鱷魚骨板之啟發:防禦性生物複合材料之多尺度結構分析及機械性質研究
5. 烏賊骨板之結構與機械性質設計研究
6. 以化學氣相沉積法增強陶瓷支架之機械性質
7. 鮑魚珍珠層之仿生啟發: 以濺鍍與脈衝雷射蒸鍍複合技術合成氧化鋯/聚醯亞胺多層膜之微結構分析與機械性質研究
8. 兩種水棲昆蟲之吸附結構與機制研究:以石蛉幼蟲與網蚊幼蟲為啟發
9. 甲殼類外殼之仿生啟發:以濺鍍與脈衝雷射蒸鍍複合系統合成氧化鋯與氧化鈦/聚亞醯胺多層鍍膜之研究
10. 鯊魚牙齒之多尺度結構觀察與機械性質研究
11. 以扶桑及多孔植物為模板- 凝膠溶膠法合成TiO2及CaCO3 之研究
12. Inspirations from the Peristome of Nepenthes: Microstructural Characterization and Wettability Measurement of Multifunctional Surfaces Synthesized by Bio-replication and Surface Modification Techniques
13. Multi-scale Structural Characterization and Attachment Mechanisms of the Hillstream River Loach (Sinogastromyzon puliensis)
14. Multi-scale Structural Characterization and Mechanical Evaluation of Protective Bio-composites: Inspirations from Cobra Snake and Chinese Striped-neck Turtle Eggshells
15. 以冷凍鑄造法及矽藻土合成具多階層孔洞結構之仿生複合材料
 
* *