|
References [1] Meyers, Marc André, Joanna McKittrick, and Po-Yu Chen. "Structural biological materials: critical mechanics-materials connections." science 339.6121 (2013): 773-779. [2] Chen, Po-Yu, Joanna McKittrick, and Marc André Meyers. "Biological materials: functional adaptations and bioinspired designs." Progress in Materials Science 57.8 (2012): 1492-1704. [3] Lazarus BS, Velasco-Hogan A, Río TG-d, Meyers MA, Jasiuk I, A Review of Impact Resistant Biological and Bioinspired Materials and Structures, Journal of Materials Research and Technology, [4] Xie, Yong, et al. "A novel bionic structure inspired by luffa sponge and its cushion properties." Applied Sciences 10.7 (2020): 2584. [5] Wang, Zhonggang, et al. "On the crashworthiness of bio-inspired hexagonal prismatic tubes under axial compression." International Journal of Mechanical Sciences 186 (2020): 105893. [6] Brezny, R., Green, D.J. Characterization of edge effects in cellular materials. J Mater Sci 25, 4571–4578 (1990). https://doi.org/10.1007/BF01129908 [7] H. Ronge, S. Krishnan and S. Ramamoorthy, "Evaluation of Stochastic and Periodic Cellular Materials for Combined Heat Dissipation and Noise Reduction: Experiments and Modeling," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 10, no. 7, pp. 1185-1203, July 2020. [8] Jian Song, Wenzhao Zhou, Yuejiao Wang, Rong Fan, Yinchu Wang, Junying Chen, Yang Lu, Lixiao Li, Octet-truss cellular materials for improved mechanical properties and specific energy absorption, Materials & Design, Volume 173, 2019, 107773, ISSN 0264-1275. [9] L.J. Gibson, Modelling the mechanical behavior of cellular materials, Materials Science and Engineering: A, Volume 110, 1989, Pages 1-36, ISSN 0921-5093. [10] Josephine V. Carstensen, Reza Lotfi, Wen Chen, Stefan Szyniszewski, Stavros Gaitanaros, Jan Schroers, James K. Guest, Topology-optimized bulk metallic glass cellular materials for energy absorption, Scripta Materialia, Volume 208, 2022, 114361, ISSN 1359-6462. [11] R. Brezny, D.J. Green, The effect of cell size on the mechanical behavior of cellular materials, Acta Metallurgica et Materialia, Volume 38, Issue 12, 1990, Pages 2517-2526, ISSN 0956-7151. [12] H. Zhao, I. Elnasri, S. Abdennadher, An experimental study on the behaviour under impact loading of metallic cellular materials, International Journal of Mechanical Sciences, Volume 47, Issues 4–5, 2005, Pages 757-774, ISSN 0020-7403. [13] Arredondo-Soto, M.; Cuan-Urquizo, E.; Gómez-Espinosa, A. A Review on Tailoring Stiffness in Compliant Systems, via Removing Material: Cellular Materials and Topology Optimization. Appl. Sci. 2021, 11, 3538. [14] Zhang, W. and Sun, S. (2006), Scale-related topology optimization of cellular materials and structures. Int. J. Numer. Meth. Engng., 68: 993-1011. https://doi.org/10.1002/nme.1743 [15] Coelho, P.G., Guedes, J.M. & Cardoso, J.B. Topology optimization of cellular materials with periodic microstructure under stress constraints. Struct Multidisc Optim 59, 633–645 (2019). [16] Ferro, N., Perotto, S., Bianchi, D. et al. Design of cellular materials for multiscale topology optimization: application to patient-specific orthopedic devices. Struct Multidisc Optim 65, 79 (2022). [17] Minzu Liang, Zhibin Li, Fangyun Lu, Xiangyu Li, Theoretical and numerical investigation of blast responses of continuous-density graded cellular materials, Composite Structures, Volume 164, 2017, Pages 170-179, ISSN 0263-8223. [18] Huina Mao, Mathieu Gaborit, Eva Lundberg, Romain Rumpler, Binglun Yin, Peter Göransson, Dynamic behaviour of low- to high-density anisotropic cellular materials, Journal of Sound and Vibration, Volume 536, 2022, 117137, ISSN 0022-460X. [19] Han, S.C., Lee, J.W. and Kang, K. (2015), A New Type of Low Density Material: Shellular. Adv. Mater., 27: 5506-5511. https://doi.org/10.1002/adma.201501546. [20] Karcher Hermann and Polthier Konrad 1996Construction of triply periodic minimal surfacesPhil. Trans. R. Soc. A.3542077–2104. [21] Han L and Che S 2018 An overview of materials with triply reriodic minimal surfaces and related geometry: from biological structures to self-assembled systems Adv. Mater. 30 1705708 [22] Gan Z, Turner M D and Gu M 2016 Biomimetic gyroid nanostructures exceeding their natural origins Sci. Adv. 2 e160008 [23] Shevchenko, V.Y., Sychev, M.M., Lapshin, A.E. et al. Polymer Structures with the Topology of Triply Periodic Minimal Surfaces. Glass Phys Chem 43, 608–610 (2017). [24] Liu, X, Wang, Q, Zhou, S, and Liu, Z. A study of interline power flow analysis based on a new mathematical model of interconnected power system with IPC. Canada: N. p., 2005. Web. [25] Y. Sun, H. F. Zhang, A. M. Wang, H. M. Fu, Z. Q. Hu, C. E. Wen, P. D. Hodgson; Mg-based metallic glass/titanium interpenetrating phase composite with high mechanical performance. Appl. Phys. Lett. 26 October 2009; 95 (17): 171910. [26] Kwonhwan Ko, Suyeong Jin, Sang Eon Lee, Jung-Wuk Hong, Impact resistance of nacre-like omposites diversely patterned by 3D printing, Composite Structures, Volume 238, 2020, 111951, ISSN 0263-8223. [27] Frank Stoeckel, Johannes Konnerth, Wolfgang Gindl-Altmutter, Mechanical properties of adhesives for bonding wood—A review, International Journal of Adhesion and Adhesives,Volume 45, 2013, Pages 32-41, ISSN 0143-7496. [28] C.S. Verma, V.M. Chariar, Development of layered laminate bamboo composite and their mechanical properties, Composites Part B: Engineering, Volume 43, Issue 3, 2012, Pages 1063-1069, ISSN 1359-8368. [29] Rosa N, Moura MFSF, Olhero S, Simoes R, Magalhães FD, Marques AT, Ferreira JPS, Reis AR, Carvalho M, Parente M. Bone: An Outstanding Composite Material. Applied Sciences. 2022; 12(7):3381. [30] Sandholzer, Michael. (2010). Micro-CT analysis of human teeth after exposure to controlled thermal stress. [31] Ben Achrai, H. Daniel Wagner, Micro-structure and mechanical properties of the turtle carapace as a biological composite shield, Acta Biomaterialia, Volume 9, Issue 4, 2013, Pages 5890-5902, ISSN 1742-7061. [32] Marc André Meyers, Po-Yu Chen, Albert Yu-Min Lin, Yasuaki Seki, Biological materials: Structure and mechanical properties, Progress in Materials Science, Volume 53, Issue , 2008, Pages 1-206, ISSN 0079-6425. [33] Owuamanam, S.; Cree, D. Progress of Bio-Calcium Carbonate Waste Eggshell and Seashell Fillers in Polymer Composites: A Review. J. Compos. Sci. 2020, 4, 70. [34] Fangxi Ren, Changdong Zhang, Wenhe Liao, Tingting Liu, Dawei Li, Xin Shi, Weiming Jiang, Cong Wang, Junfeng Qi, Yi Chen, Zhen Wang, Transition boundaries and stiffness optimal design for multi-TPMS lattices, Materials & Design, Volume 210, 2021, 110062, ISSN 0264-1275. [35] M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, G. E. Schröder-Turk, Phys. Rev. Lett. 2011, 106, 103902. [36] Sanjairaj Vijayavenkataraman, Lei Zhang, Shuo Zhang, Jerry Ying Hsi Fuh, and Wen Feng Lu ACS Applied Bio Materials 2018 1 (2), 259-269 DOI: 10.1021/acsabm.8b00052. [37] Hussain I, Al-Ketan O, Renda F, et al. Design and prototyping soft–rigid tendon-driven modular grippers using interpenetrating phase composites materials. The International Journal of Robotics Research. 2020;39(14):1635-1646. [38] Petrolo, Marco, et al. Finite element analysis of structures through unified formulation. John Wiley & Sons, 2014. [39] Al-Ketan, O., Al-Rub, R. K. A., Rowshan, R., Adv. Mater. Technol. 2017, 2, 1600235. [40] Oraib Al-Ketan, Mhd Adel Assad, Rashid K. Abu Al-Rub, Mechanical properties of periodic interpenetrating phase composites with novel architected microstructures, Composite Structures, Volume 176, 2017, Pages 9-19, ISSN 0263-8223. [41] Nurshaun Sreedhar, Navya Thomas, Oraib Al-Ketan, Reza Rowshan, Hector Hernandez, Rashid K. Abu Al-Rub, Hassan A. Arafat, 3D printed feed spacers based on triply periodic minimal surfaces for flux enhancement and biofouling mitigation in RO and UF, Desalination, Volume 425, 2018, Pages 12-21, ISSN 0011-9164. [42] Zahid Ahmed Qureshi, Salah Addin Burhan Al-Omari, Emad Elnajjar, Oraib Al-Ketan, Rashid Abu Al-Rub, Using triply periodic minimal surfaces (TPMS)-based metal foams structures as skeleton for metal-foam-PCM composites for thermal energy storage and energy management applications, International Communications in Heat and Mass Transfer, Volume 124, 2021, 105265, ISSN 0735-1933. [43] Chung, T. J. "Finite element analysis in fluid dynamics." NASA STI/Recon Technical Report A 78 (1978): 44102. [44] Nithiarasu, Perumal, Roland W. Lewis, and Kankanhalli N. Seetharamu. Fundamentals of the finite element method for heat and mass transfer. John Wiley & Sons, 2016. [45] S M Fijul Kabir, Kavita Mathur, Abdel-Fattah M. Seyam, A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties, Composite Structures, Volume 232, 2020, 111476, ISSN 0263-8223. [46] Adi Z. Zabidi, Shuguang Li, Reda M. Felfel, Kathryn G. Thomas, David M. Grant, Donal McNally, Colin Scotchford, Computational mechanical characterization of geometrically transformed Schwarz P lattice tissue scaffolds fabricated via two photon polymerization (2PP), Additive Manufacturing, Volume 25, 2019, Pages 399-411, ISSN 2214-8604. [47] S. M. Sajadi, P. S. Owuor, S. Schara, C. F. Woellner, V. Rodrigues, R. Vajtai, J. Lou, D. S. Galvão, C. S. Tiwary, P. M. Ajayan, Adv. Mater. 2018, 30, 1704820. [48] M.M. Sychov, L.A. Lebedev, S.V. Dyachenko, L.A. Nefedova, Mechanical properties of energy-absorbing structures with triply periodic minimal surface topology, Acta Astronautica, Volume 150, 2018, Pages 81-84, ISSN 0094-5765. [49] Oğulcan Eren, Hüseyin Kürşad Sezer, Necati Yalçın, Effect of lattice design on mechanical response of PolyJet additively manufactured cellular structures, Journal of Manufacturing Processes, Volume 75, 2022, Pages 1175-1188, ISSN 1526-6125. [50] Al-Ketan, O. and Abu Al-Rub, R.K. (2019), Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices. Adv. Eng. Mater., 21: 1900524. [51] Logan, Daryl L. A first course in the finite element method. Cengage Learning, 2016. [52] Barkanov, Evgeny. "Introduction to the finite element method." Institute of Materials and Structures Faculty of Civil Engineering Riga Technical University (2001): 1-70. [53] Reddy, Junuthula Narasimha. An Introduction to Nonlinear Finite Element Analysis Second Edition: with applications to heat transfer, fluid mechanics, and solid mechanics. OUP Oxford, 2014. [54] J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, M. H. Bartl, Phys. Rev. E. 2008, 77, 050904. [55] Wu, L., Wang, W., Zhang, W., Su, H., Gu, J., Liu, Q., Zhang, D., Pantelić, D., Jelenković, B., Advanced Optical Materials 2018, 6, 1800064 [56] Jiawei Feng, Bo Liu, Zhiwei Lin, Jianzhong Fu,Isotropic porous structure design methods based on triply periodic minimal surfaces, Materials & Design, Volume 210, 2021, 110050, ISSN 0264-1275 [57] Chunze Yan, Liang Hao, Ahmed Hussein, David Raymont, Evaluations of cellular lattice structures manufactured using selective laser melting, International Journal of Machine Tools and Manufacture, Volume 62, 2012, Pages 32-38, ISSN 0890-6955. [58] Sajadi, S. M., Owuor, P. S., Schara, S., Woellner, C. F., Rodrigues, V., Vajtai, R., Lou, J., Galvão, D. S., Tiwary, C. S., Ajayan, P. M., Adv. Mater. 2018, 30, 1704820. [59] Diab W. Abueidda, Ahmed S. Dalaq, Rashid K. Abu Al-Rub, Iwona Jasiuk, Micromechanical finite element predictions of a reduced coefficient of thermal expansion for 3D periodic architectured interpenetrating phase composites, Composite Structures, Volume 133, 2015, Pages 85-97, ISSN 0263-8223. [60] N.V. Viet, W. Waheed, A. Alazzam, W. Zaki, Effective compressive behavior of functionally graded TPMS titanium implants with ingrown cortical or trabecular bone, Composite Structures, Volume 303, 2023, 116288, ISSN 0263-8223. [61] Miltz, Joseph, and Ori Ramon. "Energy absorption characteristics of polymeric foams used as cushioning materials." Polymer Engineering & Science 30.2 (1990): 129-133. [62] Avalle, Massimiliano, Giovanni Belingardi, and R. Montanini. "Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram." International journal of impact engineering 25.5 (2001): 455-472 [63] Maiti, S. K., L. J. Gibson, and M. F. Ashby. "Deformation and energy absorption diagrams for cellular solids." Acta metallurgica 32.11 (1984): 1963-1975. [64] Ashby, Michael F. "The properties of foams and lattices." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364.1838 (2006): 15-30
|