帳號:guest(3.145.70.102)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李紹恩
作者(外文):Lee, Shao-En
論文名稱(中文):使用Pt修飾的CdS/Cu2O異質結構為光催化劑增益裂解水產氫研究
論文名稱(外文):Enhancing Photocatalytic Hydrogen Production by Water Splitting with Pt Decorated CdS/Cu2O Heterostructures
指導教授(中文):陳力俊
指導教授(外文):Chen, Lih-Juann
口試委員(中文):吳文偉
呂明諺
口試委員(外文):Wu, Wen-Wei
Lu, Ming-Yen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:110031518
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:77
中文關鍵詞:硫化鎘氧化亞銅光催化產氫異質結構共觸媒
外文關鍵詞:CdSCu2OHeterostructuresPtcocatalystPhotocatalytic hydrogen production
相關次數:
  • 推薦推薦:0
  • 點閱點閱:81
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,異質結構,特別是Ⅱ型異質結構,因其在光催化水分解產氫的潛力,得到學界與業界越來越多的注意。本研究製備Cu2O/CdS的異質結構,以形成Ⅱ型異質結構,更加有效率分離電子與電洞進而加強光催化效率。同時通過以鉑奈米顆粒修飾CdS/Cu2O異質結構,進一步提升光催化效率。
藉由水熱高壓法合成了CdS奈米圓形顆粒,而Cu2O則採用化學溶液法制備。我們研究了不同摻雜比例的CdS/Cu2O異質結構,評估它們在光催化水裂解產氫的能力。結果顯示,在CdS/Cu2O異質結構中加入5 wt.%的Cu2O比單獨使用純CdS奈米顆粒增 550 %的光催化效率。
我們進而運用化學合成法生成鉑奈米顆粒修飾CdS/Cu2O(5 wt.%)異質結構,鉑作為共觸媒使電子更容易跨過固液介面,電子便會更快的與水溶液中的氫離子結合,使有鉑修飾的異質結構比沒有鉑修飾地增加了270 %的光催化效率。
本研究合成出鉑修飾在Cu2O/CdS的異質結構,透過異質結構使傳輸載子分離效率增強和共觸媒鉑提升載子傳輸的速度,提升了原材料的光催化效率。研究結果驗證異質結構和共觸媒在光水解產氫中飾演舉足輕重的角色。
Heterostructures have gained significant attention recently due to their increasing importance and relevance to combat global warming. Type II heterojunctions has been of particular interest due to their potential for enhancing hydrogen production through water splitting. The current study focused on synthesizing CdS/Cu2O heterostructures to form type II heterojunctions, enabling efficient charge separation and significantly improving hydrogen production efficiency. We also enhanced the photocatalytic performance further by decorating Pt onto the CdS/Cu2O heterostructures.
CdS nanoparticles were prepared through a hydrothermal method, while Cu2O was synthesized using a chemical synthesis approach to synthesize the heterostructures. We systematically investigated different weight percentages of CdS/Cu2O heterostructures to evaluate their performance in hydrogen production during water splitting. Our results for five wt.% Cu2O in the CdS/Cu2O heterostructures showed higher photocatalytic efficiency than pure CdS nanoparticles alone.
We employed a chemical synthesis method to optimize hydrogen production further by decorating Pt onto the five wt.% Cu2O of the CdS/Cu2O heterostructures. The decorated structures led to the highest yield in hydrogen production, which can be attributed to the effectiveness of Pt as a cocatalyst.
Our study highlights the significance of CdS/Cu2O heterostructures in improving hydrogen production efficiency through water splitting. We enhanced photocatalytic performance by utilizing Pt as a cocatalyst on the CdS/Cu2O heterostructures. These findings contribute to understanding heterostructure-based photocatalysis and offer potential avenues for developing efficient systems for renewable hydrogen production.
Contents
Abstract i
摘要 ii
致謝 iii
Chapter 1 Introduction 1
1.1 Research Background 1
1.1.1 Hydrogen Energy 1
1.1.2 Hydrogen Production by Photocatalytic Water Splitting 3
1.2 Nanomaterials 7
1.2.1 Overview 7
1.2.2 Classification of Nanomaterials 8
1.2.3 Synthesis Methods of Nanomaterials 10
1.3 Heterostructure 12
1.3.1 Overview 12
1.4 Cocatalyst 14
1.4.1 Overview 14
1.4.2 Volcano plot 15
1.5 Material Selection 17
1.5.1 Properties of CdS 17
1.5.2 Properties of Cu2O 18
1.5.3 Properties of Pt 20
1.5.4 Properties of Pt Decorated CdS/Cu2O 22
1.6 Motivation 23
Chapter 2 Experimental Section 25
2.1 Experimental Equipments and Instruments 25
2.1.1 X-ray Diffraction (XRD) 25
2.1.2 Scanning Electron Microscope (SEM) 26
2.1.3 Transmission Electron Microscope (TEM) 27
2.1.4 Ultraviolet-Visible Spectrometer (UV-Vis) 29
2.1.5 Gas Chromatography (GC) System 30
2.1.6 Photoluminescence (PL) Spectrometer 32
2.1.7 X-ray Photoelectron Spectroscope (XPS) 33
2.2 Experimental Procedures 35
2.2.1 Synthesis of CdS Nanoparticles 36
2.2.2 Synthesis of Cu2O 37
2.2.3 Synthesis of CdS/Cu2O Heterostructures 39
2.2.4 Synthesis of Pt Decorated CdS/Cu2O Heterostructure 40
2.2.5 Hydrogen Production Efficiency Measurement 40
Chapter 3 Results and Discussion 42
3.1 Characteristics of CdS NPs 42
3.1.1 SEM Analysis 42
3.1.2 XRD Analysis 43
3.1.3 UV-Vis Absorbance Spectrum 45
3.1.4 TEM Observation and Analysis 47
3.2 Characteristics of Cu2O 50
3.2.1 SEM Analysis 50
3.2.2 XRD Analysis 51
3.2.3 UV-Vis Absorbance Analysis 53
3.2.4 TEM Observation and Analysis 55
3.3 Characteristics of Pt Decorated CdS/Cu2O Heterostructure 56
3.3.1 XRD Spectrum of CdS/Cu2O 56
3.3.2 SEM Image of Pt Decorated CdS/Cu2O Heterostructure 57
3.3.3 H2 Production Measured by GC System 58
3.3.4 Effects of Different Cu2O Weight Percentages 58
3.3.5 Effects of Different Pt Weight Percentages 60
3.3.6 PL Spectrum 62
3.3.7 XPS Analysis 64
3.3.8 Stability Test 65
Chapter 4 Summary and Conclusions 68
Chapter 5 Future Prospects 70
5.1 Photocatalysis of Pt Decorated CdS/Cu2O Heterostructure Based on Various Shapes of Cu2O 70
5.2 Photocatalytic Enhancement of H2 Production by Water Splitting with CdS Thin Film Produced by Atomic Layer Deposition Combined with the Cu2O 72
References 73

1. Osman, A. I., Mehta, N., Elgarahy, A. M., Hefny, M., Al-Hinai, A., Al-Muhtaseb, A. A. H., & Rooney, D. W. Hydrogen production, storage, utilisation and environmental impacts: a review. Environ Chem Lett 2022, 20, 153–188 .
2. Tee, S.Y.; Win, K.Y.; Teo, W. S.; Koh, L. D.; Liu, S.; Teng, C. P.; Han, M.Y., Recent progress in energy-driven water splitting. Advance Science (Weinh) 2017, 4, 1600337.
3. Zhang, P., J. Zhang, and J. Gong, Tantalum-based semiconductors for solar water splitting. Chem. Soc. Rev 2014, 43, 4395-4422.
4. Zhu, S. and D. Wang, Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater 2017, 7, 1700841.
5. Turner, J.A., A realizable renewable energy future. Science 1999, 285, 687-689.
6. Chen X, Zhao J, Li G, Zhang D, Li H. Recent advances in photocatalytic renewable energy production. Energy Mater 2022, 2, 200001.
7. Nakata, K. and A. Fujishima, TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C: Photochem. Rev 2012, 13, 169-189.
8. Yuan, Y. J.; Chen, D.; Yu, Z. T.; Zou, Z. G., Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. Journal of Materials Chemistry A 2018, 6, 11606-11630.
9. Nan Xiao, Songsong Li, Xuli Li, Lei Ge, Yangqin Gao, Ning Li. "The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen." Chinese Journal of Catalysis 2020, 4, 642-671.
10. Babu, V.J., S. Vempati, T. Uyar, and S. Ramakrishna, Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Phys. Chem. Chem. Phys 2015, 17, 2960-2986.
11. Taniguchi, N., On the basic concept of nanotechnology. Proceeding of the ICPE 1974.
12. Rani, A.; Reddy, R.; Sharma, U.; Mukherjee, P.; Mishra, P.; Kuila, A.; Sim, L. C.; Saravanan, P., A review on the progress of nanostructure materials for energy harnessing and environmental remediation. Journal of Nanostructure in Chemistry 2018, 8, 255-291.
13. Dhanya, P.; Geethalakshmi, V.; Ramanathan, S.; Senthilraja, K.; Sreeraj, P.; Pradipa, C.; Bhuvaneshwari, K.; Vengateswari, M.; Dheebakaran, G.; Kokilavani, S.; et al. Impacts and Climate Change Adaptation of Agrometeorological Services among the Maize Farmers of West Tamil Nadu. AgriEngineering 2022, 4, 1030-1053.
14. Bagheri, S.; Shameli, K.; Abd Hamid, S. B., Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method. Journal of Chemistry 2013, 2013, 1-5.
15. Wu, Y. C.; Liu, Z. M.; Chen, J. T.; Cai, X. J.; Na, P., Hydrothermal fabrication of hyacinth flower-like WS2 nanorods and their photocatalytic properties. Materials Letters 2017, 189, 282-285.
16. Daulbayev, C.; Sultanov, F.; Bakbolat, B.; Daulbayev, O., 0D, 1D and 2D nanomaterials for visible photoelectrochemical water splitting. A Review. International Journal of Hydrogen Energy 2020, 45, 33325-33342.
17. Massaglia, G.; Quaglio, M., Semiconducting nanofibers in photoelectrochemistry. Materials Science in Semiconductor Processing 2018, 73, 13-2
18. Gan, X.; Lei, D.; Wong, K.-Y., Two-dimensional layered nanomaterials for visible-light-driven photocatalytic water splitting. Materials Today Energy 2018, 10, 352-367
19. Zhu, S.; Lei, J.; Zhang, L.; He, J., CoO/NF nanowires promote hydrogen and oxygen production for overall water splitting in alkaline media. International Journal of Hydrogen Energy 2020, 45, 8031-8040.
20. Krehula S, Ristic´ M, Petrovic´ Zˇ, Kratofil Krehula L, Mitar I, Music´ S. Effects of Cu doping on the microstructural, thermal, optical and photocatalytic properties of a-FeOOH and a-Fe2O3 1D nanoparticles. J Alloys Compd 2019, 802, 290-300.
21. Dolez, P. I., Nanomaterials definitions, classifications, and applications. Nanoengineering, 2015, 3-40.
22. Zhou J. Theoretical design of a novel 2D tetragonal ZnS/SnO hetero-bilayer as a promising photocatalyst for solar water splitting. Int J Hydrogen Energy 2019, 44, 27816-27824.
23. Koch, C.C., Top-Down Synthesis Of Nanostructured Materials: Mechanical And Thermal Processing Methods. Rev Adv. Mater.Sci, 2003, 5, 91-99.
24. Lu, W., Lieber, C.M., Nanoelectronics from the bottom up. Nature Materials 2007, 6, 841-850.
25. Khanna, P., Kaur, A., and Goyal, D.J., Algae-based metallic nanoparticles: Synthesis, characterization and applications. Microbiol. Methods, 2019, 163, 105656.
26. Byrappa, K.; Adschiri, T., Hydrothermal technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials 2007, 53, 117-166.
27. Habiba, K., Makarov, V. I., Weiner, B. R., & Morell, G., Fabrication of nanomaterials by pulsed laser synthesis. Manufacturing nanostructures 2014, 10, 263-292.
28. Abid, N.; Khan, A. M.; Shujait, S.; Chaudhary, K.; Ikram, M.; Imran, M.; Haider, J.; Khan, M.; Khan, Q.; Maqbool, M., Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv Colloid Interface Sci 2022, 300, 102597.
29. Tersoff, J.J., Theory of semiconductor heterojunctions: The role of quantum dipoles. Phys. Rev. B, 1984, 30, 4874.
30. Vainorius, N., Jacobsson, D., Lehmann, S., Gustafsson, A., Dick, K.A., Samuelson, L., and Pistol, M.E., Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires. Phys. Rev. B, 2014, 89, 165423.
31. Wang, Y., Wang, Q., Zhan, X., Wang, F., Safdar, M., and He, J.J., Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale, 2013, 5, 8326-8339.
32. Di Liberto, G., Cipriano, L. A., Tosoni, S., & Pacchioni, G. Rational design of semiconductor heterojunctions for photocatalysis. Chemistry–A European Journal 2021, 27, 13306-13317.
33. Chou, H.-L.; Hwang, B.-J.; Sun, C.-L. " Catalysis in Fuel Cells and Hydrogen Production, New and Future Developments in Catalysis 2013, 9, 217-270.
34. Ran, J., Zhang, J., Yu, J., Jaroniec, M., & Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chemical Society Reviews 2014, 43, 7787-7812
35. Kumar, S.; Gradzielski, M.; Mehta, S. K., The critical role of surfactants towards CdS nanoparticles: synthesis, stability, optical and PL emission properties. RSC Advances 2013, 3, 2662-2676.
36. Darwent, J. R.; Porter, G., Photochemical hydrogen production using cadmium sulphide suspensions in aerated water. Journal of the Chemical Society, Chemical Communications 1981, 4, 145-146.
37. Yuan, Y. J.; Chen, D.; Yu, Z. T.; Zou, Z. G., Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. Journal of Materials Chemistry A 2018, 6, 11606-11630.
38. Cheng, W. Y., Yu, T. H., Chao, K. J., & Lu, S. Y. Cu2O-decorated CdS nanostructures for high efficiency visible light driven hydrogen production. International Journal of Hydrogen Energy 2013, 38, 9665-9672.
39. Liu, Y., Dong, H., Jia, H., Xu, B., Yu, C., & Zhang, Z. CdS nanowires decorated with Cu2O nanospheres: Synthesis, formation process and enhanced photoactivity and stability. Journal of Alloys and Compounds 2015, 644, 159-164.
40. Liu, S., Guo, Z., Qian, X., Zhang, J., Liu, J., & Lin, J. Sonochemical deposition of ultrafine metallic Pt nanoparticles on CdS for efficient photocatalytic hydrogen evolution. Sustainable Energy & Fuels 2019, 3, 1048-1054.
41. Vamvasakis, Ioannis; Liu, Bin; ARMATAS, Gerasimos S. Size effects of platinum nanoparticles in the photocatalytic hydrogen production over 3D mesoporous networks of CdS and Pt nanojunctions. Advanced Functional Materials 2016, 26, 8062-8071.
42. Peng, Yu; Kang, Shuai; Hu, Zhuofeng. Pt nanoparticle-decorated CdS photocalysts for CO2 reduction and H2 evolution. ACS Applied Nano Materials 2020, 3, 8632-8639.
43. Li, Y., Lu, Y., Ma, Z., Dong, L., Jia, X., & Zhang, J. Enhancing Photocatalytic Hydrogen Production of g-C3N4 by Selective Deposition of Pt Cocatalyst. Nanomaterials 2021, 11, 3266.
44. Amirav, L.; Alivisatos, A. P., Photocatalytic hydrogen production with tunable nanorod heterostructures. The Journal of Physical Chemistry Letters 2010, 1, 1051-1054.
45. Qiu, J.; Zhang, X. F.; Zhang, X.; Feng, Y.; Li, Y.; Yang, L.; Lu, H.; Yao, J., Constructing Cd0.5Zn0.5S@ZIF-8 nanocomposites through self-assembly strategy to enhance Cr(VI) photocatalytic reduction. J Hazard Mater 2018, 349, 234-241.
46. Ho, J. Y., & Huang, M. H. Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity. The Journal of Physical Chemistry C 2009, 113, 14159-14164.
47. Hafeez, H. Y., Lakhera, S. K., Narayanan, N., Harish, S., Hayakawa, Y., Lee, B. K., & Neppolian, B. Environmentally sustainable synthesis of a CoFe2O4–TiO2/rGO ternary photocatalyst: a highly efficient and stable photocatalyst for high production of hydrogen (solar fuel). ACS omega 2019, 4, 880-891.
48. Wei, X., Pan, J., Wang, S., Mei, J., Zheng, Y., Cui, C., & Li, C. CdS modified Cu2O octahedral nano-heterojunction and its photocatalytic application. Journal of Materials Science: Materials in Electronics 2017, 28, 14079-14084.
49. Huang, J. Y., Hsieh, P. L., Naresh, G., Tsai, H. Y., & Huang, M. H. Photocatalytic activity suppression of CdS nanoparticle-decorated Cu2O octahedra and rhombic dodecahedra. The Journal of Physical Chemistry C 2018, 122, 12944-12950.
50. Bakke, J. R., Jung, H. J., Tanskanen, J. T., Sinclair, R., & Bent, S. F. Atomic layer deposition of CdS films. Chemistry of Materials 2010, 22, 4669-4678.
51. Yang, Yali, Dainan Zhang, and Quanjun Xiang. Plasma-modified Ti3C2Tx/CdS hybrids with oxygen-containing groups for high-efficiency photocatalytic hydrogen production. Nanoscale 2019, 11, 18797-18805.
52. Shang, L., Tong, B., Yu, H., Waterhouse, G. I., Zhou, C., Zhao, Y., ... & Zhang, T. CdS nanoparticle‐decorated Cd nanosheets for efficient visible light‐driven photocatalytic hydrogen evolution. Advanced Energy Materials. Advanced Energy Materials 2016, 6, 1501241.
53. Chen, Y., Wang, L., Lu, G. M., Yao, X., & Guo, L.Nanoparticles enwrapped with nanotubes: a unique architecture of CdS/titanate nanotubes for efficient photocatalytic hydrogen production from water. Journal of Materials Chemistry 2011, 21, 5134-5141.
54. Jiang, J., Xiong, Z., Wang, H., Xiang, K., Wu, P., & Zou, J. Anchoring Pt nanoparticles and Ti3C2Tx MXene nanosheets on CdS nanospheres as efficient synergistic photocatalysts for hydrogen evolution. Science China Technological Sciences 2022, 65, 3020-3028.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *