帳號:guest(18.221.220.229)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃品為
作者(外文):Huang, Pin-Wei
論文名稱(中文):調變鎳鋅摻雜之銅基板及錫銀與低溫銲料微銲點之擴散行為與機械性質分析
論文名稱(外文):Analysis of diffusion behavior and mechanical properties of Sn3.5Ag and low-temperature solder microbump on Cu substrates via Ni or Zn doping
指導教授(中文):杜正恭
張守一
指導教授(外文):Duh, Jenq-Gong
Chang, Shou-Yi
口試委員(中文):陳瑋佑
吳子嘉
口試委員(外文):Chen, Wei-Yu
Wu, Albert T.
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:110031511
出版年(民國):112
畢業學年度:112
語文別:英文
論文頁數:92
中文關鍵詞:先進封裝微銲點介金屬化合物背向散射電子繞射技術時效熱處理可靠度測試
外文關鍵詞:Advanced packagingMicrobumpIntermetallic compoundElectron backscatter diffractionThermal agingReliability test
相關次數:
  • 推薦推薦:0
  • 點閱點閱:211
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
3D-IC是一種利用三維垂直晶片堆疊的方式來提升效能以跟上對於電子產品運算能力的強烈需求。目前兩種用於垂直晶片堆疊的關鍵技術:微銲點以及銅-銅直接接合吸引到了廣大的注意。以微銲點的發展而言,銲點之間的間距越小,I/O數就越大,而I/O數和效能有直接的關聯。研究指出銲點的尺度極限約為銲點間間距的一半,因此低尺度的銲點受到了廣泛的研究。此外,隨著穿戴式可撓裝置以及高頻率通訊晶片的快速發展,現今普遍使用的傳統銲料會因過高的接合溫度而傷害到產品。為了避免這樣的情況發生,低溫接合銲料,例如銦以及錫鉍銲料在應用上有很大的潛力。
藉由在銅基板中摻雜鎳及鋅可改善傳統銅錫銅系統,並帶來許多好處,如介金屬化合物的強化、晶粒結構的改造以及阻礙孔洞的生成。本實驗闡述了使用Cu18Ni18Zn/Sn3.5Ag/Cu18Ni18Zn系統的好處,以及長時間熱處理前後的性質比較。以結果而言,Cu18Ni18Zn/Sn3.5Ag/Cu18Ni18Zn系統展現優異的機械強度以及熱穩定性,使它成為先進封裝中的理想選擇。
低溫銲料的部分則以微米尺度下的Cu/In/Cu以及Cu/In/Ni系統在內文中討論。實驗中發現兩種情況底下,在接合界面處形成的孔洞將會變得更加嚴重。第一種情況是在銲點的尺度極小的情況下,第二種情況則發生在一側的銅基板更換成鎳基板時。此外,利用ANSYS有限元素分析法模擬擴散行為,其結果也呈現相似的趨勢。綜上所述,這些劣化現象也表明銦基銲料在尺度微縮下具有其限制及極限。
3D-IC is a novel method that utilizes horizontal stacking of chips to keep up with the strong demand on computing power of electronic devices. Two key technologies in chip stacking have drawn lots of attention, which are microbump and direct Cu-Cu bonding. In terms of advancement in microbump, lower pitch size between solder joint implies higher numbers of I/O, which is directly connected to its performance. The limitation of bump height is reported to be about the half of the pitch size, thus low-scale solder joint has been widely researched. Moreover, as the rapid development of flexible wearable devices and high-frequency communication chip, the high bonding temperature of traditional Pb-free solder might cause damage. To prevent this situation from occurring, low-temperature bonding materials, such as indium and Sn-Bi solder, exhibit great potential in application.
Nickel and zinc doping into copper substrates in traditional Cu/Sn/Cu system would bring some advantages, such as strengthening of intermetallic compounds (IMCs), modification of grain structure and retardation of void formation. This study explicit the benefits of Cu18Ni18Zn/Sn3.5Ag/Cu18Ni18Zn system, as well as the properties change before and after long-term aging treatment. In short, Cu18Ni18Zn/Sn3.5Ag/Cu18Ni18Zn system demonstrates favorable high mechanical properties and thermal stability, which makes it a feasible choice in future advanced packaging.
As for the low-temperature solder joint, Cu/In/Cu and Cu/In/Ni systems are addressed in micron-meter scale. Voids formed at bonding interface are discovered to be more severe under two conditions. First, solder joint is under extremely low bump height. Second, one side of the copper substrates is replaced by nickel substrate. Moreover, commercial software ANSYS is used to simulate the diffusion behavior, and the outcome also display the similar trend. It appears that the deterioration implies the limitation and confinement in miniaturization of indium-based solder joint.
摘要 i
Abstract ii
Contents v
List of Tables vii
Figure Captions viii
Chapter 1. Introduction 1
1.1 Background 1
1.2 Motivations and Goals 2
Chapter 2. Literature Review 5
2.1 Electronic Package 5
2.2 Solder Bump 7
2.2.1 Pb-free Solder 8
2.2.2 Low-temperature solder 9
2.3 Under Bump Metallurgy (UBM) 10
2.3.1 Cu-based UBM 11
2.3.2 Novel Cu-Ni-Zn UBM 11
2.4 Metallurgical Reactions in Pb-free Solder joints 12
2.4.1 Metallurgical Reaction in traditional Sn-Ag/Cu Solder Joints 12
2.4.2 Interfacial Reaction in Cu/Sn-Ag/Cu Microbump 13
2.4.3 Thermocompression bonding (TCB) 14
2.5 Properties of Cu6Sn5-based IMC 15
2.5.1 Crystal structure of Cu6Sn5 15
2.5.2 Grain structure of Cu6Sn5 15
2.6 Ni Effect on Cu-Sn Metallurgical Reaction 16
2.6.1 Effect of Ni on Cu6Sn5 16
2.6.2 Effect of Ni on Cu3Sn 17
2.7 Zn Effect on Cu-Sn Metallurgical Reaction 18
2.7.1 Effect of Zn on Cu6Sn5 and Cu3Sn 18
Chapter 3. Experiment Design 31
3.1 Sample preparation for Cu/Sn3.5Ag/Cu and Cu18Ni18Zn/Sn3.5Ag/Cu18Ni18Zn microbumps 31
3.2 Sample preparation for Cu/In/Cu and Cu/In/Ni microbumps with diffusion analyzation 32
Chapter 4. Result and Discussion 37
4.1 Microstructural observation and quantitative analysis of Cu/Sn/Cu microbump with Ni and Zn doping into Cu substrates 37
4.1.1 Morphology and Composition of As-reflow Samples with Different Conditions 37
4.1.2 Mechanical Properties of As-reflow Samples with Different Conditions 41
4.1.3 Morphology and Composition of Aged Samples with Different Conditions 44
4.2 Thermocompression bonding process induced heterogeneous phase transformation in Cu/In/Ni microbump 65
4.2.1 Microstructure and quantitative analysis of Cu/In/Cu and Cu/In/Ni microbump 66
4.2.2 Diffusion model of Cu/In/Cu and Cu/In/Ni microbump and study of real cases 67
Chapter 5. Conclusion 76
References 79
1. Yoon, S.W., et al. Fabrication and packaging of microbump interconnections for 3D TSV. in 2009 IEEE International Conference on 3D System Integration. 2009.
2. Chen, C., D. Yu, and K.-N. Chen, Vertical interconnects of microbumps in 3D integration. MRS bulletin, 2015. 40(3): p. 257-263.
3. Tu, K.-N. and T. Tian, Metallurgical challenges in microelectronic 3D IC packaging technology for future consumer electronic products. Science China Technological Sciences, 2013. 56: p. 1740-1748.
4. Yu, A., et al. Study of 15µm pitch solder microbumps for 3D IC integration. IEEE.
5. Ghosh, G., Elastic properties, hardness, and indentation fracture toughness of intermetallics relevant to electronic packaging. Journal of Materials Research, 2004. 19(5): p. 1439-1454.
6. Wang, Y., I.M.D. Rosa, and K.N. Tu. Size effect on ductile-to-brittle transition in Cu-solder-Cu micro-joints. in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC). 2015.
7. Choudhury, S.F. and L. Ladani, Local shear stress-strain response of Sn-3.5Ag/Cu solder joint with high fraction of intermetallic compounds: Experimental analysis. Journal of Alloys and Compounds, 2016. 680: p. 665-676.
8. Tu, K.-N., Solder joint technology. Vol. 117. 2007: Springer.
9. Talebanpour, B., et al., Effect of Joint Scale and Processing on the Fractureof Sn-3Ag-0.5Cu Solder Joints: Application to Micro-bumpsin 3D Packages. Journal of Electronic Materials, 2016. 45(1): p. 57-68.
10. Wu, Z.-Y., et al., Enhancing mechanical properties via adding Ni and Zn in Cu/Sn3.5Ag/Cu transient liquid phase bonding for advanced electronic packaging. Journal of Materials Science: Materials in Electronics, 2022. 33(6): p. 3016-3023.
11. Song, J.Y., J. Yu, and T.Y. Lee, Effects of reactive diffusion on stress evolution in Cu–Sn films. Scripta Materialia, 2004. 51(2): p. 167-170.
12. Chu, K., Y. Sohn, and C. Moon, A comparative study of Cn/Sn/Cu and Ni/Sn/Ni solder joints for low temperature stable transient liquid phase bonding. Scripta Materialia, 2015. 109: p. 113-117.
13. Mei, Z., A.J. Sunwoo, and J.W. Morris, Analysis of low-temperature intermetallic growth in copper-tin diffusion couples. Metallurgical transactions A, 1992. 23: p. 857-864.
14. Park, J.-M., et al., Effect of Cu–Sn intermetallic compound reactions on the Kirkendall void growth characteristics in Cu/Sn/Cu microbumps. Japanese Journal of Applied Physics, 2014. 53(5S3): p. 05HA06.
15. Zeng, K., et al., Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability. Journal of applied physics, 2005. 97(2): p. 024508.
16. Gao, F., H. Nishikawa, and T. Takemoto, Additive effect of Kirkendall void formation in Sn-3.5 Ag solder joints on common substrates. Journal of electronic materials, 2008. 37: p. 45-50.
17. Gao, F. and J. Qu, Calculating the diffusivity of Cu and Sn in Cu3Sn intermetallic by molecular dynamics simulations. Materials Letters, 2012. 73: p. 92-94.
18. Xu, L. and J.H.L. Pang. Effect of intermetallic and Kirkendall voids growth on board level drop reliability for SnAgCu lead-free BGA solder joint. IEEE.
19. Tu, P.L., et al., Comparative study of micro-BGA reliability under bending stress. IEEE Transactions on Advanced Packaging, 2000. 23(4): p. 750-756.
20. Wang, Y.W., et al., Effects of minor Fe, Co, and Ni additions on the reaction between SnAgCu solder and Cu. Journal of alloys and compounds, 2009. 478(1-2): p. 121-127.
21. Zhang, L., et al., Effects of rare earths on properties and microstructures of lead-free solder alloys. Journal of Materials Science: Materials in Electronics, 2009. 20: p. 685-694.
22. Li, M.-l., et al., Materials modification of the lead-free solders incorporated with micro/nano-sized particles: A review. Materials & Design, 2021. 197: p. 109224.
23. Wang, Y.-C., et al., Diversifying grain orientation and expediting 10 μm Cu/Sn/Cu TLP bonding process with Ni doping. Journal of Materials Science: Materials in Electronics, 2021. 32(2): p. 2639-2646.
24. Chen, W.-Y. and J.-G. Duh, Suppression of Cu3Sn layer and formation of multi-orientation IMCs during thermal aging in Cu/Sn–3.5Ag/Cu–15Zn transient liquid-phase bonding in novel 3D-IC Technologies. Materials Letters, 2017. 186: p. 279-282.
25. Zhang, X., et al., Effect of Ni addition to the Cu substrate on the interfacial reaction and IMC growth with Sn3.0Ag0.5Cu solder. Applied Physics A, 2018. 124(4): p. 315.
26. Chen, W.-Y., R.-W. Song, and J.-G. Duh, Grain structure modification of Cu-Sn IMCs by applying Cu-Zn UBM on transient liquid-phase bonding in novel 3D-IC technologies. Intermetallics, 2017. 85: p. 170-175.
27. Song, R.-W., et al., Enhancing mechanical strength of full intermetallic microbump via grain refinement by Zn in thermocompression bonding. Materials Chemistry and Physics, 2022. 291: p. 126781.
28. Wang, Y.W., C.C. Chang, and C.R. Kao, Minimum effective Ni addition to SnAgCu solders for retarding Cu3Sn growth. Journal of Alloys and Compounds, 2009. 478(1): p. L1-L4.
29. Chen, W.-Y., C.-Y. Yu, and J.-G. Duh, Suppressing the growth of interfacial Cu–Sn intermetallic compounds in the Sn–3.0 Ag–0.5 Cu–0.1 Ni/Cu–15Zn solder joint during thermal aging. Journal of Materials Science, 2012. 47(9): p. 4012-4018.
30. Maeshima, T., et al., Effect of Ni to the Cu substrate on the interfacial reaction with Sn-Cu solder. Materials & Design, 2016. 103: p. 106-113.
31. Che, F.X., X. Zhang, and J.-K. Lin, Reliability study of 3D IC packaging based on through-silicon interposer (TSI) and silicon-less interconnection technology (SLIT) using finite element analysis. Microelectronics Reliability, 2016. 61: p. 64-70.
32. Selvanayagam, C.S., et al., Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps. IEEE transactions on advanced packaging, 2009. 32(4): p. 720-728.
33. Chou, T.-T., et al., Low thermal budget bonding for 3D-package by collapse-free hybrid solder. Materials Chemistry and Physics, 2019. 238: p. 121887.
34. Lee, J.-B., H.-Y. Hwang, and M.-W. Rhee, Reliability investigation of Cu/In TLP bonding. Journal of Electronic Materials, 2015. 44: p. 435-441.
35. Wang, Y.W., et al., Solid–liquid interdiffusion bonding of Cu/In/Ni microjoints. Journal of Materials Science: Materials in Electronics, 2022. 33(23): p. 18751-18757.
36. Song, R.-W., et al., Suppressing interfacial voids in Cu/In/Cu microbump with Sn and Cu addition. Materials Letters, 2020. 259: p. 126855.
37. Panchenko, I., et al., Characterization of low temperature Cu/In bonding for fine-pitch interconnects in three-dimensional integration. Japanese Journal of Applied Physics, 2017. 57(2S1): p. 02BC05.
38. Tian, F., P.-J. Shang, and Z.-Q. Liu, Precise Cr-marker investigation on the reactive interface in the eutectic SnIn solder joint. Materials Letters, 2014. 121: p. 185-187.
39. Ulrich, R.K. and W.D. Brown, Advanced electronic packaging. Vol. 9. 2006: John Wiley & Sons.
40. Ardebili, H., J. Zhang, and M.G. Pecht, Encapsulation technologies for electronic applications. 2018: William Andrew.
41. Papanikolaou, A., D. Soudris, and R. Radojcic, Three dimensional system integration: IC stacking process and design. 2010: Springer Science & Business Media.
42. Lau, J.H. Evolution and outlook of TSV and 3D IC/Si integration. IEEE.
43. Prasad, R., Surface mount technology: principles and practice. 2013: Springer Science & Business Media.
44. Lau, C.-S., M.Z. Abdullah, and F.C. Ani, Effect of solder joint arrangements on BGA lead-free reliability during cooling stage of reflow soldering process. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012. 2(12): p. 2098-2107.
45. Puttlitz, K.J. and K.A. Stalter, Handbook of lead-free solder technology for microelectronic assemblies. 2004: CRC Press.
46. Miller, C.M., I.E. Anderson, and J.F. Smith, A viable tin-lead solder substitute: Sn-Ag-Cu. Journal of electronic materials, 1994. 23: p. 595-601.
47. Lloyd, J.R., et al. Measurements of thermal conductivity and specific heat of lead free solder. in Seventeenth IEEE/CPMT International Electronics Manufacturing Technology Symposium. 'Manufacturing Technologies - Present and Future'. 1995.
48. Kang, S.K., et al., Studies of the mechanical and electrical properties of lead-free solder joints. Journal of Electronic Materials, 2002. 31: p. 1292-1303.
49. Puttlitz, K.J. and G.T. Galyon, Impact of the ROHS Directive on high-performance electronic systems: Part II: key reliability issues preventing the implementation of lead-free solders. Journal of Materials Science: Materials in Electronics, 2007. 18: p. 347-365.
50. Henderson, D.W., et al., Ag 3 Sn plate formation in the solidification of near ternary eutectic Sn–Ag–Cu alloys. Journal of Materials Research, 2002. 17: p. 2775-2778.
51. Chiang, H.-W., K. Chang, and J.-Y. Chen, The effect of Ag content on the formation of Ag 3 Sn plates in Sn-Ag-Cu lead-free solder. Journal of electronic materials, 2006. 35: p. 2074-2080.
52. Terashima, S., et al., Effect of silver content on thermal fatigue life of Sn-xAg-0.5 Cu flip-chip interconnects. Journal of Electronic Materials, 2003. 32: p. 1527-1533.
53. Kim, H., et al. Improved drop reliability performance with lead free solders of low Ag content and their failure modes. IEEE.
54. Liu, W. and N.-C. Lee, The effects of additives to SnAgCu alloys on microstructure and drop impact reliability of solder joints. Jom, 2007. 59: p. 26-31.
55. Melton, C., The effect of reflow process variables on the wettability of lead-free solders. JOM, 1993. 45: p. 33-35.
56. Lee, T.-K., et al., Fundamentals of lead-free solder interconnect technology. Springer (US) chapter, 2015. 1: p. 1-20.
57. Zhang, Q.K., H.F. Zou, and Z.F. Zhang, Influences of substrate alloying and reflow temperature on bi segregation behaviors at Sn-Bi/Cu interface. Journal of electronic materials, 2011. 40: p. 2320-2328.
58. Liu, P.L. and J.K. Shang, Interfacial embrittlement by bismuth segregation in copper/tin–bismuth Pb-free solder interconnect. Journal of Materials Research, 2001. 16: p. 1651-1659.
59. Liu, P.L. and J.K. Shang, Segregant-induced cavitation of Sn/Cu reactive interface. Scripta materialia, 2005. 53(6): p. 631-634.
60. Alam, M.O., Y.C. Chan, and K.-N. Tu, Effect of 0.5 wt% Cu addition in Sn–3.5% Ag solder on the dissolution rate of Cu metallization. Journal of Applied Physics, 2003. 94(12): p. 7904-7909.
61. Wojewoda-Budka, J. and P. Zięba, Formation and growth of intermetallic phases in diffusion soldered Cu/In–Bi/Cu interconnections. Journal of alloys and compounds, 2009. 476(1-2): p. 164-171.
62. Tian, F., et al., The interfacial reaction between In-48Sn solder and polycrystalline Cu substrate during solid state aging. Journal of Alloys and Compounds, 2018. 740: p. 500-509.
63. Vardaman, J., Surface Mount Technology: Recent Japanese Developments. 1993: Institute of Electrical & Electronics Engineers (IEEE).
64. Lau, J.H., Flip chip technologies. 1996: McGraw-Hill Professional.
65. Gerber, M., et al. Next generation fine pitch Cu Pillar technology—Enabling next generation silicon nodes. IEEE.
66. Koh, W., B. Lin, and J. Tai. Copper pillar bump technology progress overview. IEEE.
67. Zeng, G., et al., A review on the interfacial intermetallic compounds between Sn–Ag–Cu based solders and substrates. Journal of Materials Science: Materials in Electronics, 2010. 21: p. 421-440.
68. Gao, F., H. Nishikawa, and T. Takemoto, Intermetallics evolution in Sn-3.5 Ag based lead-free solder matrix on an OSP Cu finish. Journal of electronic materials, 2007. 36: p. 1630-1634.
69. Ma, C.H. and R.A. Swalin, A study of solute diffusion in liquid tin. Acta metallurgica, 1960. 8(6): p. 388-395.
70. Ahat, S., M. Sheng, and L. Luo, Microstructure and shear strength evolution of SnAg/Cu surface mount solder joint during aging. Journal of electronic materials, 2001. 30: p. 1317-1322.
71. Kim, D., et al., Formation and behavior of Kirkendall voids within intermetallic layers of solder joints. Journal of Materials Science: Materials in Electronics, 2011. 22: p. 703-716.
72. De Sousa, I., et al. The influence of low level doping on the thermal evolution of SAC alloy solder joints with Cu pad structures. in 56th Electronic Components and Technology Conference 2006. 2006. IEEE.
73. Zeng, K., et al., Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability. Journal of applied physics, 2005. 97(2).
74. Ansuini, F. and F. Badia, High strength microduplex Cu-Ni-Zn alloys. Metallurgical Transactions, 1973. 4: p. 15-20.
75. Ito, T. and Y. Nakayama, The Effects of Annealing on the Mechanical Properties of Cu–Ni–Zn Alloys. Transactions of the Japan Institute of Metals, 1980. 21(11): p. 745-752.
76. Hwang, J.H., et al. Intermetallic compound formation in the interface between SAC305 solder and Cu-xZn-yNi substrates. in 2012 13th International Conference on Electronic Packaging Technology & High Density Packaging. 2012.
77. Kim, Y.M., et al., Interfacial reactions between Sn–3.0Ag–0.5Cu solder and Cu–xZn (x=0–35wt%) or Cu–xZn–yNi (x=20 and 25wt%, y=15 and 10wt%) substrates. Journal of Alloys and Compounds, 2013. 575: p. 350-358.
78. Fürtauer, S., et al., The Cu–Sn phase diagram, Part I: new experimental results. Intermetallics, 2013. 34: p. 142-147.
79. Deng, X., et al., Influence of initial morphology and thickness of Cu 6 Sn 5 and Cu 3 Sn intermetallics on growth and evolution during thermal aging of Sn-Ag solder/Cu joints. Journal of Electronic Materials, 2003. 32: p. 1403-1413.
80. Tang, W.-m., et al., Solid state interfacial reactions in electrodeposited Cu/Sn couples. Transactions of nonferrous metals society of China, 2010. 20(1): p. 90-96.
81. Labie, R., W. Ruythooren, and J. Van Humbeeck, Solid state diffusion in Cu–Sn and Ni–Sn diffusion couples with flip-chip scale dimensions. Intermetallics, 2007. 15(3): p. 396-403.
82. Kumar, S., C.A. Handwerker, and M.A. Dayananda, Intrinsic and interdiffusion in Cu-Sn system. Journal of phase equilibria and diffusion, 2011. 32: p. 309-319.
83. De Monlevade, E.F. and W. Peng, Failure mechanisms and crack propagation paths in thermally aged Pb-free solder interconnects. Journal of electronic materials, 2007. 36: p. 783-797.
84. Shen, J., Y.C. Chan, and S. Liu, Growth mechanism of bulk Ag3Sn intermetallic compounds in Sn–Ag solder during solidification. Intermetallics, 2008. 16(9): p. 1142-1148.
85. Frear, D., et al., Pb-free solders for flip-chip interconnects. Jom, 2001. 53: p. 28-33.
86. Gusak, A., K.-N. Tu, and C. Chen, Extremely rapid grain growth in scallop-type Cu6Sn5 during solid–liquid interdiffusion reactions in micro-bump solder joints. Scripta Materialia, 2020. 179: p. 45-48.
87. Chuang, H., et al., Critical concerns in soldering reactions arising from space confinement in 3-D IC packages. IEEE Transactions on Device and Materials Reliability, 2012. 12(2): p. 233-240.
88. Wable, G.S., et al., Solidification shrinkage defects in electronic solders. JOM, 2005. 57: p. 38-42.
89. Liang, Y., C. Chen, and K.-N. Tu, Side wall wetting induced void formation due to small solder volume in microbumps of Ni/SnAg/Ni upon reflow. ECS Solid State Letters, 2012. 1(4): p. P60.
90. Laor, A., et al., Monitoring of thermo-mechanical stress via CMOS sensor array: Effects of warpage and tilt in flip chip thermo-compression bonding. Microelectronics Reliability, 2017. 73: p. 60-68.
91. Clauberg, H., et al. High productivity thermocompression flip chip bonding. in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC). 2015. IEEE.
92. Lee, C.-K., et al. Characterization and reliability assessment of solder microbumps and assembly for 3D IC integration. in 2011 IEEE 61st Electronic Components and Technology Conference (ECTC). 2011. IEEE.
93. Larsson, A.-K., L. Stenberg, and S. Lidin, The superstructure of domain-twinned η'-Cu6Sn5. Acta Crystallographica Section B: Structural Science, 1994. 50(6): p. 636-643.
94. Saunders, N. and A. Miodownik, The Cu-Sn (copper-tin) system. Bulletin of Alloy Phase Diagrams, 1990. 11(3): p. 278-287.
95. Nogita, K., Stabilisation of Cu6Sn5 by Ni in Sn-0.7 Cu-0.05 Ni lead-free solder alloys. Intermetallics, 2010. 18(1): p. 145-149.
96. Zeng, G., et al., Phase stability and thermal expansion behavior of Cu6Sn5 intermetallics doped with Zn, Au and In. Intermetallics, 2013. 43: p. 85-98.
97. Yang, M., et al., Cu 6 Sn 5 morphology transition and its effect on mechanical properties of eutectic Sn-Ag solder joints. Journal of electronic materials, 2011. 40: p. 176-188.
98. Tian, Y., et al., Relationship between morphologies and orientations of Cu6Sn5 grains in Sn3. 0Ag0. 5Cu solder joints on different Cu pads. Materials characterization, 2014. 88: p. 58-68.
99. Zou, H., H. Yang, and Z. Zhang, Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals. Acta Materialia, 2008. 56(11): p. 2649-2662.
100. Gusak, A. and K.-N. Tu, Kinetic theory of flux-driven ripening. Physical Review B, 2002. 66(11): p. 115403.
101. Choudhury, S.F. and L. Ladani, Grain growth orientation and anisotropy in Cu6Sn5 intermetallic: nanoindentation and electron backscatter diffraction analysis. Journal of Electronic Materials, 2014. 43(4): p. 996-1004.
102. Jiang, L., H. Jiang, and N. Chawla, The effect of crystallographic orientation on the mechanical behavior of Cu 6 Sn 5 by micropillar compression testing. Journal of Electronic Materials, 2012. 41: p. 2083-2088.
103. Mu, D., et al., Investigating the mechanical properties, creep and crack pattern of Cu6Sn5 and (Cu, Ni) 6Sn5 on diverse crystal planes. Materials Science and Engineering: A, 2013. 566: p. 126-133.
104. Wu, J., et al., Mechanical characterizations of single-crystalline (Cu, Ni) 6Sn5 through uniaxial micro-compression. Materials Science and Engineering: A, 2019. 753: p. 22-30.
105. Mu, D., H. Huang, and K. Nogita, Anisotropic mechanical properties of Cu6Sn5 and (Cu,Ni)6Sn5. Materials Letters, 2012. 86: p. 46-49.
106. Gao, F., T. Takemoto, and H. Nishikawa, Effects of Co and Ni addition on reactive diffusion between Sn–3.5 Ag solder and Cu during soldering and annealing. Materials Science and Engineering: A, 2006. 420(1-2): p. 39-46.
107. Liu, P., P. Yao, and J. Liu, Evolutions of the interface and shear strength between SnAgCu–xNi solder and Cu substrate during isothermal aging at 150 C. Journal of alloys and compounds, 2009. 486(1-2): p. 474-479.
108. Zhang, X., et al., Effect of Ni addition to the Cu substrate on the interfacial reaction and IMC growth with Sn3. 0Ag0. 5Cu solder. Applied Physics A, 2018. 124: p. 1-13.
109. Hu, X., H. Qiu, and X. Jiang, Effect of Ni addition into the Cu substrate on the interfacial IMC growth during the liquid-state reaction with Sn–58Bi solder. Journal of Materials Science: Materials in Electronics, 2019. 30: p. 1907-1918.
110. Nogita, K. and T. Nishimura, Nickel-stabilized hexagonal (Cu,Ni)6Sn5 in Sn–Cu–Ni lead-free solder alloys. Scripta Materialia, 2008. 59(2): p. 191-194.
111. Somidin, F., et al., Direct observation of the Ni stabilising effect in interfacial (Cu, Ni) 6Sn5 intermetallic compounds. Materialia, 2020. 9: p. 100530.
112. Baheti, V.A., et al., Effect of Ni content on the diffusion-controlled growth of the product phases in the Cu (Ni)–Sn system. Philosophical Magazine, 2016. 96(1): p. 15-30.
113. Henao, H.M., et al., Experimental determination of the Sn-Cu-Ni phase diagram for Pb-free solder applications. Metallurgical and Materials Transactions B, 2019. 50: p. 502-516.
114. Vuorinen, V., et al., Solid-state reactions between Cu (Ni) alloys and Sn. Journal of Electronic Materials, 2007. 36: p. 1355-1362.
115. Xian, J., et al., Influence of Ni on the refinement and twinning of primary Cu6Sn5 in Sn-0.7 Cu-0.05 Ni. Intermetallics, 2018. 102: p. 34-45.
116. Cheng, H.-K., et al., Interfacial reactions between Cu and SnAgCu solder doped with minor Ni. Journal of Alloys and Compounds, 2015. 622: p. 529-534.
117. Mu, D., et al., Growth orientations and mechanical properties of Cu6Sn5 and (Cu,Ni)6Sn5 on poly-crystalline Cu. Journal of Alloys and Compounds, 2012. 536: p. 38-46.
118. Nogita, K., et al., Inhibiting cracking of interfacial Cu6Sn5 by Ni additions to Sn-based lead-free solders. Transactions of the Japan Institute of Electronics Packaging, 2009. 2(1): p. 46-54.
119. Wang, Y., C. Chang, and C. Kao, Minimum effective Ni addition to SnAgCu solders for retarding Cu3Sn growth. Journal of Alloys and Compounds, 2009. 478(1-2): p. L1-L4.
120. Laurila, T., et al., Effect of Ag, Fe, Au and Ni on the growth kinetics of Sn–Cu intermetallic compound layers. Microelectronics Reliability, 2009. 49(3): p. 242-247.
121. Mehreen, S.U., et al., Suppression of Cu3Sn in the Sn-10Cu peritectic alloy by the addition of Ni. Journal of Alloys and Compounds, 2018. 766: p. 1003-1013.
122. Laurila, T., V. Vuorinen, and J. Kivilahti, Interfacial reactions between lead-free solders and common base materials. Materials Science and Engineering: R: Reports, 2005. 49(1-2): p. 1-60.
123. Yu, C.-Y. and J.-G. Duh, Stabilization of hexagonal Cu6(Sn,Zn)5 by minor Zn doping of Sn-based solder joints. Scripta Materialia, 2011. 65(9): p. 783-786.
124. Chen, S., W. Zhou, and P. Wu, Effect of Zn Additions on the Mechanical Properties of Cu6Sn5-Based IMCs: Theoretical and Experimental Investigations. Journal of Electronic Materials, 2015. 44(10): p. 3920-3926.
125. Yu, C.-Y., W.-Y. Chen, and J.-G. Duh, Improving the impact toughness of Sn–Ag–Cu/Cu–Zn Pb-free solder joints under high speed shear testing. Journal of alloys and compounds, 2014. 586: p. 633-638.
126. Feng, W., C. Wang, and M. Morinaga, Electronic structure mechanism for the wettability of Sn-based solder alloys. Journal of electronic materials, 2002. 31(3): p. 185-190.
127. Kim, Y.M., et al., Kinetics of intermetallic compound formation at the interface between Sn-3.0 Ag-0.5 Cu solder and Cu-Zn alloy substrates. Journal of electronic materials, 2010. 39: p. 2504-2512.
128. Wang, F.-J., et al., Depressing effect of 0.2 wt.% Zn addition into Sn-3.0 Ag-0.5 Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging. Journal of electronic materials, 2006. 35(10): p. 1818-1824.
129. Yu, C.-Y., W.-Y. Chen, and J.-G. Duh, Suppressing the growth of Cu–Sn intermetallic compounds in Ni/Sn–Ag–Cu/Cu–Zn solder joints during thermal aging. Intermetallics, 2012. 26: p. 11-17.
130. Yu, C.-Y. and J.-G. Duh, Growth mechanisms of interfacial intermetallic compounds in Sn/Cu–Zn solder joints during aging. Journal of Materials Science, 2012. 47: p. 6467-6474.
131. Song, J.-M., et al., Relationship between Nanomechanical Responses of Interfacial Intermetallic Compound Layers and Impact Reliability of Solder Joints. Nanomaterials, 2020. 10(8).
132. Leong, Y.M., et al., Microstructure and mechanical properties of Sn–1.0Ag–0.5Cu solder with minor Zn additions. Journal of Materials Science: Materials in Electronics, 2019. 30(13): p. 11914-11922.
133. Fu, S.-W., et al., Impact crack propagation through the dual-phased (Cu,Ni)6Sn5 layer in Sn–Ag–Cu/Ni solder joints. Materials Letters, 2012. 80: p. 103-105.
134. Althoff, J., et al., Electronic origins of ordering in multicomponent metallic alloys: Application to the Cu-Ni-Zn system. Physical Review B, 1996. 53(16): p. 10610.
135. Ma, H., et al., Temperature-induced effect and control of Cu3Sn on the rotation of orientation-preferred Cu6Sn5 crystals at Sn-3.0 Ag/(001) Cu interface. Materials Characterization, 2021. 171: p. 110830.
136. Nogita, K., et al., Effect of Ni on phase stability and thermal expansion of Cu6−xNixSn5 (X = 0, 0.5, 1, 1.5 and 2). Intermetallics, 2012. 26: p. 78-85.
137. Seo, S.-K., et al., The crystal orientation of β-Sn grains in Sn-Ag and Sn-Cu solders affected by their interfacial reactions with Cu and Ni (P) under bump metallurgy. Journal of Electronic Materials, 2009. 38: p. 2461-2469.
138. Qi, D., et al., Effects of Cu and In on the microstructure evolution and mechanical properties of Sn-20Bi/Cu solder joints. Journal of Materials Science: Materials in Electronics, 2023. 34(6): p. 503.
139. Sun, L., M.-h. Chen, and L. Zhang, Microstructure evolution and grain orientation of IMC in Cu-Sn TLP bonding solder joints. Journal of Alloys and Compounds, 2019. 786: p. 677-687.
140. Li, Z., et al., Ultrarapid formation of homogeneous Cu6Sn5 and Cu3Sn intermetallic compound joints at room temperature using ultrasonic waves. Ultrasonics sonochemistry, 2014. 21(3): p. 924-929.
141. Yao, P., et al., Shear strength and fracture mechanism for full Cu-Sn IMCs solder joints with different Cu3Sn proportion and joints with conventional interfacial structure in electronic packaging. Soldering & Surface Mount Technology, 2019. 31(1): p. 6-19.
142. Tsai, M.-Y., H.-Y. Chang, and M. Pecht, Warpage analysis of flip-chip PBGA packages subject to thermal loading. IEEE Transactions on Device and Materials Reliability, 2009. 9(3): p. 419-424.
143. Shimizu, K., et al., Solder joint reliability of indium-alloy interconnection. Journal of electronic materials, 1995. 24: p. 39-45.
144. Chiu, Y., et al., Phase formation and microstructure evolution in Cu/In/Cu joints. Microelectronics Reliability, 2019. 95: p. 18-27.
145. Yang, P.-F., et al., Nanoindentation identifications of mechanical properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds derived by diffusion couples. Materials Science and Engineering: A, 2008. 485(1-2): p. 305-310.
146. Huang, R., et al. Simulation of diffusion controlled intermetallic formation of Au/Al interface. in 2012 13th International Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems. 2012. IEEE.
147. Dybkov, V., Reaction diffusion in heterogeneous binary systems: Part 1 Growth of the chemical compound layers at the interface between two elementary substances: one compound layer. Journal of materials science, 1986. 21: p. 3078-3084.
148. Subramanian, P. and D. Laughlin, The Cu− In (copper-indium) system. Bulletin of Alloy Phase Diagrams, 1989. 10(5): p. 554-568.
149. Okamoto, H., In-Ni (indium-nickel). Journal of phase equilibria and diffusion, 1999. 20(5): p. 540.
150. Lin, S.-k., Y.-h. Wang, and H.-c. Kuo, Strong coupling effects during Cu/In/Ni interfacial reactions at 280° C. Intermetallics, 2015. 58: p. 91-97.
151. Weinberg, K. and T. Bohme, Condensation and growth of Kirkendall voids in intermetallic compounds. IEEE Transactions on components and packaging technologies, 2009. 32(3): p. 684-692.
152. Borg, U., C.F. Niordson, and J.W. Kysar, Size effects on void growth in single crystals with distributed voids. International journal of plasticity, 2008. 24(4): p. 688-701.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 透過鎳摻雜與溫度梯度之雙重效應以優化先進封裝中錫銀銅暫態液相接點之晶粒微結構
2. 錫銀銅鎳銲料與三維封裝中錫銀微銲點接合新穎銅鋅底層金屬後之微觀結構、晶粒方向性及可靠度測試
3. 錫銀銅銲料與無電鍍鎳(磷)/鈀/金底層金屬之微觀結構、可靠度測試及結構方向性
4. 應用於無鉛銲點之低電阻薄鎳鈀金表面處理技術:界面相變化、接合強度及最佳鎳(磷)層厚度設計
5. UBM中無電鍍鎳與以機械合金法製備 錫銀銅銲料之界面反應探討
6. 以共沈法合成鋰鎳鈷錳氧正極材料
7. 富錫相之錫銅鎳三元平衡相圖
8. 牙科合金鍍覆氮化鈦鋁薄膜之機械性質與腐蝕行為
9. 鋰離子二次電池中鋰錳氧正極材料之表面改質
10. 覆晶技術中銲錫與鎳/銅或銅/鎳(釩)/鋁底層金屬間之元素分佈與相關相變化行為探討及Cu6Sn5、Cu3Sn與Ni3Sn4介金屬化合物奈米壓痕特性分析
11. 錫銀銅無鉛銲錫與電鍍鎳磷底層金屬之富磷層相關相變化行為與相演進及即時觀測銲錫與底層金屬介面反應
12. 玻璃模造製程中以離子束輔助沈積之氮化鉻鎢硬膜做為模仁保護層之可行性研究
13. 以機械合金法製備錫銀鎳銲料並探討鎳濃度與奈米級Ni3Sn4粉末對銲錫性質之影響
14. 以化學還原法合成錫基金屬奈米粉末應用於電子封裝與鋰離子電池
15. 氮化鉻/氮化鋁奈米多層硬質薄膜氧化行為、微觀結構與熱穩定性
 
* *