帳號:guest(18.191.130.149)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃元佑
作者(外文):Huang, Yuan-Yu
論文名稱(中文):結合表面增強拉曼散射之高階繞射光柵耦合表面電漿子共振生物感測晶片
論文名稱(外文):A Dual-functional Biosensing chip based on High Diffraction Order Grating-coupled Surface Plasmon Resonance and SERS
指導教授(中文):嚴大任
指導教授(外文):Yen, Ta-Jen
口試委員(中文):陳嘉勻
江叡涵
黃宗鈺
口試委員(外文):Chen, Chia-Yun
Jiang, Ruei-Han
Huang, Tsung-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:110031508
出版年(民國):112
畢業學年度:112
語文別:英文
論文頁數:74
中文關鍵詞:表面電漿子共振表面增強拉曼光譜免標記感測
外文關鍵詞:Surface Plasmon ResonanceSurface Enhanced Raman ScatteringLabel-free Detection
相關次數:
  • 推薦推薦:0
  • 點閱點閱:130
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
超材料是一種新穎的跨領域技術,透過材料與奈米結構設計達成常態不可見的特殊性質,並廣泛應用於光電子學、電子工程、聲學與熱學等領域。在光電領域中,透過奈米尺度的結構設計,在金屬與介電質的交界面發生電子震盪形成的表面電漿子共振,由於其引發的局域電場增強與環境靈敏特性,可發展高靈敏生物元件、動態無標定檢測、奈米解析度光學顯微鏡等。
常見的表面電漿子共振激發是利用稜鏡的全反射或光柵的繞射特性,精準補償光的水平動量使與表面電漿子產生耦合。我們透過精確的模擬與製程,製作奈米尺度之光柵耦合表面電漿子共振感測晶片,用於樣品的折射率與拉曼指紋量測,並設計表面電漿子共振波長坐落在綠光雷射波長範圍,使得綠光拉曼量測時得到很強的表面增強拉曼散射效果,兼具定性與定量的雙重檢測能力。實驗結果顯示最佳的線性靈敏度337nm/RIU與解析度達4.4x10-5 RIU、拉曼增強因子高於106。我們也比較了不同偏振角度的量測,驗證入射光電場方向垂直奈米光柵時,始有表面電漿子共振效應,與預期吻合。此外,此晶片可適用於波長變化和強度變化兩種折射率量測方法,提供了系統簡化的可行性。
相較於常見的一階繞射模態光柵耦合,我們利用高階繞射激發表面電漿子共振,放寬製程的線寬要求,以應用於光罩微影製程,減少成本並提高產量。我們也使用相同的製程技術製備金屬-介電質-金屬光柵耦合表面電漿子共振感測晶片,和純銀的光柵晶片量測結果做比較,透過模擬進一步分析兩者共振模態的差異,以證實我們的模擬可信度。
最後,我們實際使用老鼠之白血球介素-六作為生物檢測對象置於光柵晶片,實驗得最佳線性檢測極限值可達1.2pg/mL,證實其奇佳的檢測能力,相較於現有常規檢測方式,我們的光柵晶片提供了即時、無標定、定量定性的多重檢測能力。
Metamaterials represent a cutting-edge technology that utilizes nano-scaled design to achieve extraordinary properties not found in traditional materials, and finds diverse applications in the fields of electronics, acoustics, thermal, and optics science. In the realm of photonic metamaterials, one fascinating phenomenon involves the excitation of surface plasmon resonance (SPR) through precisely designed nanostructures at the interface between metal and dielectric. The most commonly employed ways to excite surface plasmons (SPs) entail total internal reflection from prism or the diffraction of a grating. These approaches could compensate the horizontal momentum of light to achieve optimal coupling with surface plasmons.
SPR could generates localized field enhancements and exhibits remarkable sensitivity to the surrounding environment. Consequently, it has enabled the development of high-sensitivity biochemical devices, dynamic label-free detection techniques, and nano-scaled analysis. In this work, we aim to design a unique grating-coupled SPR sensing chips capable of measuring both refractive index and Raman fingerprints of analyte. Our design specifically targets the resonance wavelength to align with the green light spectrum, thereby benefiting from the strong surface enhanced Raman scattering effect during green laser excitation. Besides, our chips utilize the high-order diffraction mode SPR and could be applied on not only wavelength interrogation but also intensity interrogation of normal incident light, delivering the cost-efficient fabrication processes and compact system.
From the experimental results, we found that the grating chip exhibits impressive performance in both SPR sensing and Raman measurement, including the best linear sensitivity of 337nm/RIU, resolution of 4.4x10-5 RIU, and Raman enhancement factors surpassing 106. To further evaluate the performance of our chip, we used Interleukin-6 extracted from mice as the target for biochemical detection. The experiment results showcased an impressive limit of detection (LOD) value of 1.2 pg/mL, validating the exceptional detection capabilities.
In conclusion, our nano-grating sensing chip offers label-free and multiplex detection ability, thereby providing a powerful tool for dual-functional quantitative and qualitative analysis in various applications.
摘要………………………………………………………………………………………………………………………………………………………………… I
Abstract………………………………………………………………………………………………………………………………………………………II
致謝……………………………………………………………………………………………………………………………………………………………… IV
Contents…………………………………………………………………………………………………………………………………………………………V
List of Figures……………………………………………………………………………………………………………………………… IX
Chapter 1 Introduction…………………………………………………………………………………………………………………1
Chapter 2 Theory and Literature Review…………………………………………………………………………3
2.1 Surface Plasmon…………………………………………………………………………………………………………………………3
2.1.1 Surface Plasmon Resonance …………………………………………………………………………………………3
2.1.1.1 Excitation of surface plasmons ………………………………………………………………………3
2.1.1.2 Total internal reflection configuration ……………………………………………6
2.1.1.3 Grating configuration………………………………………………………………………………………………7
2.1.2 Interrogations of SPR systems………………………………………………………………………………9
2.1.2.1 Wavelength interrogation…………………………………………………………………………………………9
2.1.2.2 Angle interrogation……………………………………………………………………………………………………11
2.1.2.3 Intensity interrogation…………………………………………………………………………………………13
2.1.2.4 Phase interrogation……………………………………………………………………………………………………14
2.1.3 Localized Surface Plasmon Resonance…………………………………………………………………15
2.1.3.1 Extinction cross-section of LSPR……………………………………………………………………15
2.1.3.2 Morphology dependency…………………………………………………………………………………………………16
2.2 Plasmon Resonance-based Sensors………………………………………………………………………………18
2.2.1 Dynamic and label-free detection………………………………………………………………………18
2.2.2 Surface-Enhanced Raman Scattering (SERS) ……………………………………………21
2.3 Introduction of Interleukin-6……………………………………………………………………………………24
Chapter 3 Motivation……………………………………………………………………………………………………………………25
Chapter 4 Simulation………………………………………………………………………………………………………………………27
4.1 Simulation Setup………………………………………………………………………………………………………………………27
4.1.1 Environment setting…………………………………………………………………………………………………………27
4.1.2 Diffraction order of grating-coupled SPR…………………………………………………28
4.2 Optimization…………………………………………………………………………………………………………………………………29
4.2.1 Parametric sweep…………………………………………………………………………………………………………………29
4.2.1.1 Grating period (P) sweeping…………………………………………………………………………………30
4.2.1.2 Duty cycle (D) and refractive index (na) sweeping……………………31
4.2.2 Field distribution…………………………………………………………………………………………………………32
4.2.3 Metal-insulator-metal (MIM) grating…………………………………………………………………33
Chapter 5 Experimental Section…………………………….……………………………………………………………36
5.1 Experimental Procedure…………………………………………………………………………………………………………36
5.2 Fabrication equipment……………………………………………………………………………………………………………37
5.2.1 Physical Vapor Evaporation (E-gun Evaporator) ……………………………………37
5.2.2 Auto Spin Coater/Developer (TRACK) …………………………………………………………………38
5.2.3 Photolithography Stepper System (I-line Stepper) ……………………………39
5.3 Analysis equipment and Optical Setup……………………………………………………………………40
5.3.1 Scanning Electron Microscope (SEM) …………………………………………………………………40
5.3.2 Atomic Force Microscopy (AFM) ………………………………………………………………………………41
5.3.3 Fourier Transform Infrared Spectroscopy (FTIR) ………………………………41
5.3.4 Ultraviolet-Visible Spectroscopy (UV-vis) ……………………………………………42
5.3.5 Confocal Raman Microscopy………………………………………………………………………………………43
Chapter 6 Results and Discussion………………………………………………………………………………………44
6.1 Morphology……………………………………………………………………………………………………………………………………44
6.1.1SEM results…………………………………………………………………………………………………………………………………44
6.1.2AFM results…………………………………………………………………………………………………………………………………45
6.2 SPR Sensing Performance……………………………………………………………………………………………………46
6.2.1 Wavelength interrogation……………………………………………………………………………………………46
6.2.2 Intensity interrogation…………………………………………………………………………………………………52
6.2.3 MIM grating sensing performance…………………………………………………………………………53
6.3 SERS Sensing Performance…………………………………………………………………………………………………56
6.3.1Enhancement Factor calculation…………………………………………………………………………………56
6.3.2 Polarization dependency………………………………………………………………………………………………58
6.4 Detection of Interleukin-6……………………………………………………………………………………………59
6.4.1 SPR sensing results………………………………………………………………………………………………………59
6.4.2 SERS sensing results……………………………………………………………………………………………………60
6.5 Comparison and Improvement………………………………………………………………………………………………62
Chapter 7 Conclusion………………………………………………………………………………………………………………………64
Chapter 8 Appendix……………………………………………………………………………………………………………………………65
Chapter 9 Reference………………………………………………………………………………………………………………………68
1. Ritchie, R. H. Plasma losses by fast electrons in thin films. Physical Review 106, 874 (1957).
2. D. Paul and R. Biswas, "[INVITED] Highly sensitive LSPR based photonic crystal fiber sensor with embodiment of nanospheres in different material domain," Optics & Laser Technology, vol. 101, pp. 379-387, 2018.
3. C. Y. Chang et al., "Flexible Localized Surface Plasmon Resonance Sensor with Metal-Insulator-Metal Nanodisks on PDMS Substrate," Sci Rep, vol. 8, no. 1, p. 11812, Aug 7 2018.
4. Chou L-W, Shin N, Sivaram SV, Filler MAJJotACS. Tunable mid-infrared localized surface plasmon resonances in silicon nanowires:134(39): 16155-16158. (2012)
5. Zhao, J.; Zhang, X.; Yonzon, C.R.; Haes, A.J.; van Duyne, R.P. Localized surface plasmon resonance biosensors. Nanomedicince 2006, 1, 219–228.
6. Kaur J, Preethi M, Srivastava R, Borse VJB, X B. 2022. Role of il-6 and il-8 biomarkers for optical and electrochemical based point-of-care detection of oral cancer.100212.
7. Fano, U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). JOSA 31, 213-222 (1941).
8. Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei 216, 398-410 (1968).
9. Kretschmann, E. & Raether, H. Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23, 2135-2136 (1968).
10. Zayats AV, Smolyaninov II, Maradudin AAJPr. Nano-optics of surface plasmon polaritons. 408(3-4):131-314. (2005)
11. Yesudasu V, Pradhan HS, Pandya RJJH. Recent progress in surface plasmon resonance based sensors: A comprehensive review. 2021
12. Maier SA. Plasmonics: fundamentals and applications. Springer; 2007.
13. Homola J. Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry :377(3): 528-539 (2003)
14. Seo M, Lee MJAPA. Surface plasmon resonance and coloration in stainless steel with a 2d periodic texture:125(1-9). (2019)
15. Long S, Cao J, Wang Y, Gao S, Xu N, Gao J, Wan WJS, Reports A. Grating coupled spr sensors using off the shelf compact discs and sensitivity dependence on grating period:2(1): 100016. (2020)
16. Dostálek J, Vaisocherová H, Homola JJS, Chemical AB. Multichannel surface plasmon resonance biosensor with wavelength division multiplexing:108(1-2): 758-764. (2005)
17. Piliarik M, Vala M, Tichý I, Homola JJB, Bioelectronics. Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons:24(12): 3430-3435. (2009)
18. Homola J, Koudela I, Yee SSJS, Chemical AB. Surface plasmon resonance sensors based on diffraction gratings and prism couplers: Sensitivity comparison:54(1-2): 16-24. (1999)
19. Ho H, Wu S, Yang M, Cheung AJS, Chemical AB. Application of white light-emitting diode to surface plasmon resonance sensors: 80(2): 89-94. (2001)
20. Gwon HR, Lee SHJMt. Spectral and angular responses of surface plasmon resonance based on the kretschmann prism configuration. 2010:51(6): 1150-1155.
21. Ghosh AK, Sarkar S, Nebel LJ, Aftenieva O, Gupta V, Sander O, Das A, Joseph J, Wießner S, König TAJAFM. Exploring plasmonic resonances toward “large‐scale” flexible optical sensors with deformation stability:31(30): 2101959. (2021)
22. Cai D, Lu Y, Lin K, Wang P, Ming HJOe. Improving the sensitivity of spr sensors based on gratings by double-dips method (ddm):16(19): 14597-14602 (2008)
23. Stenberg E, Persson B, Roos H, Urbaniczky CJJoc, science i. Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins.:143(2): 513-526. (1991)
24. Yeatman EMJB, Bioelectronics. Resolution and sensitivity in surface plasmon microscopy and sensing:11(6-7): 635-649. (1996)
25. Chou C, Wu H-T, Huang Y-C, Chen Y-L, Kuo W-CJOE. Characteristics of a paired surface plasma waves biosensor:14(10): 4307-4315. (2006)
26. A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, "Phase interrogation of an integrated optical SPR sensor," Sensors and Actuators B: Chemical, vol. 97, no. 1, pp. 114-121, 2004
27. Blanchard-Dionne A, Guyot L, Patskovsky S, Gordon R, Meunier MJOe. Intensity based surface plasmon resonance sensor using a nanohole rectangular array:19(16): 15041-15046. (2011)
28. Y. Huang, H. Ho, S. Wu, and S. Kong, "Detecting phase shifts in surface plasmon resonance: a review," Advances in Optical Technologies, vol. 2012
29. Nikitin P, Beloglazov A, Kochergin V, Valeiko M, Ksenevich TJS, Chemical AB. Surface plasmon resonance interferometry for biological and chemical sensing:54(1-2): 43-50. (1999)
30. H. P. Ho, W. C. Law, S. Y. Wu et al., “Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique,” Sensors and Actuators B, vol. 114, no. 1, pp. 80–84, 2006.
31. Hammond JL, Bhalla N, Rafiee SD, Estrela PJB. Localized surface plasmon resonance as a biosensing platform for developing countries:4(2): 172-188. (2014)
32. Wang X, Zhan S, Huang Z, Hong XJIs, technology. Advances and applications of surface plasmon resonance biosensing instrumentation:41(6): 574-607. (2003)
33. Kottmann JP, Martin OJ, Smith DR, Schultz SJPRB. Plasmon resonances of silver nanowires with a nonregular cross section:64(23): 235402. (2001)
34. Ibrahim N, Jamaluddin ND, Tan LL, Mohd Yusof NYJS. A review on the development of gold and silver nanoparticles-based biosensor as a detection strategy of emerging and pathogenic rna virus:21(15): 5114. (2021)
35. Cortés E, Wendisch FJ, Sortino L, Mancini A, Ezendam S, Saris S, de S. Menezes L, Tittl A, Ren H, Maier SAJCR. Optical metasurfaces for energy conversion:122(19): 15082-15176. (2022)
36. Kuwata H, Tamaru H, Esumi K, Miyano KJApl. Resonant light scattering from metal nanoparticles: Practical analysis beyond rayleigh approximation:83(22): 4625-4627. (2003)
37. Subramanian A, Irudayaraj J, Ryan TJS, Chemical AB. Mono and dithiol surfaces on surface plasmon resonance biosensors for detection of staphylococcus aureus:114(1): 192-198. (2006)
38. Nedelkov D, Rasooly A, Nelson RWJIjofm. Multitoxin biosensor–mass spectrometry analysis: A new approach for rapid, real-time, sensitive analysis of staphylococcal toxins in food:60(1): 1-13. (2000)
39. Jiang P, Hu Y, Li GJT. Biocompatible au@ ag nanorod@ zif-8 core-shell nanoparticles for surface-enhanced raman scattering imaging and drug delivery (2019)
40. Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LMJnt. Lspr-based nanobiosensors:4(3): 244-251. (2009)
41. X.D. Hoa, A.G. Kirk, M. Tabrizian, Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress, Biosens. Bioelectron. 23 (2) 151–160. (2007)
42. Takemura KJB. Surface plasmon resonance (spr)-and localized spr (lspr)-based virus sensing systems: Optical vibration of nano-and micro-metallic materials for the development of next-generation virus detection technology:11(8): 250. (2021)
43. Lee, H.J., T.T. Goodrich, and M. Robert, SPR imaging measurements of 1-D and 2-D DNA microarrays created from microfluidic channels on gold thin films. Analytical Chemistry. 73(22): p. 5525-5531. (2001)
44. Chiang Y-L, Lin C-H, Yen M-Y, Su Y-D, Chen S-J, Chen H-fJB, Bioelectronics. Innovative antimicrobial susceptibility testing method using surface plasmon resonance:24(7): 1905-1910 (2009)
45. Fernández F, Hegnerová K, Piliarik M, Sanchez-Baeza F, Homola J, Marco M-PJB, Bioelectronics. A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples:26(4): 1231-1238 (2010)
46. Lee K-L, Huang J-B, Chang J-W, Wu S-H, Wei P-KJSr. Ultrasensitive biosensors using enhanced fano resonances in capped gold nanoslit arrays:5(1): 8547. (2015)
47. Lee K-L, You M-L, Tsai C-H, Lin E-H, Hsieh S-Y, Ho M-H, Hsu J-C, Wei P-KJB, Bioelectronics. Nanoplasmonic biochips for rapid label-free detection of imidacloprid pesticides with a smartphone:75(88-95. (2016)
48. Xu Y, Bai P, Zhou X, Akimov Y, Png CE, Ang LK, Knoll W, Wu LJAOM. Optical refractive index sensors with plasmonic and photonic structures: Promising and inconvenient truth:7(9): 1801433 (2019)
49. Singh GP, Sardana NJP. Smartphone-based surface plasmon resonance sensors: A review:17(5): 1869-1888. (2022)
50. Lin C-C, Kuo M-T, Chang H-CJJMBE. Raman spectroscopy–a novel tool for noninvasive analysis of ocular surface fluid:30(6): 343-354. (2010)
51. Guerrini L, Graham DJCSR. Molecularly-mediated assemblies of plasmonic nanoparticles for surface-enhanced raman spectroscopy applications:41(21): 7085-7107. (2012)
52. Radziuk D, Moehwald HJPCCP. Prospects for plasmonic hot spots in single molecule sers towards the chemical imaging of live cells:17(33): 21072-21093. (2015)
53. Tanaka T, Narazaki M, Kishimoto T. Interleukin (il-6) immunotherapy. Cold Spring Harbor Perspectives in Biology:10(a028456. (2017)
54. Ramanandan GKP, Ramakrishnan G, Kumar N, Adam AJL, Planken PCM. “Emission of terahertz pulses from nanostructured metal surfaces”. Journal of Physics D: Applied Physics:47(37): 374003. (2014)
55. Dai Y, Xu H, Wang H, Lu Y, Wang P. “Experimental demonstration of high sensitivity for silver rectangular grating-coupled surface plasmon resonance (spr) sensing” Optics Communications:416(66-70. (2018)
56. Shattique MR, Stepanova M. “Surface plasmon-driven reversible transformation of DNA-bound methylene blue detected in situ by sers” Plasmonics:15(2): 427-434. (2020)
57. de la O-Cuevas E, Badillo-Ramírez I, Islas SR, Araujo-Andrade C, Saniger JMJRa. Sensitive raman detection of human recombinant interleukin-6 mediated by dcdr/gers hybrid platforms:9(22): 12269-12275. (2019)
58. Adam P, Dostálek J, Homola JJS, Chemical AB. “Multiple surface plasmon spectroscopy for study of biomolecular systems”:113(2): 774-781. (2006)
59. Guo J, Li Z, Guo HJOe. “Near perfect light trapping in a 2d gold nanotrench grating at oblique angles of incidence and its application for sensing”:24(15): 17259-17271. (2016)
60. Mahmoud MA, Chamanzar M, Adibi A, El-Sayed MAJJotACS. “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems”: Silver nanocubes:134(14): 6434-6442. (2012)
61. Sherry LJ, Chang S-H, Schatz GC, Van Duyne RP, Wiley BJ, Xia YJNl. Localized surface plasmon resonance spectroscopy of single silver nanocubes:5(10): 2034-2038. (2005)
62. Tapered fiber sensor usable for head and neck cancer screening. Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XX: SPIE; date. 96-104.
63. Yang C-Y, Brooks E, Li Y, Denny P, Ho C-M, Qi F, Shi W, Wolinsky L, Wu B, Wong DTJLoaC. “Detection of picomolar levels of interleukin-8 in human saliva by spr”: 5(10): 1017-1023. (2005)
64. Rahbar M, Wu Y, Subramony JA, Liu GJFiB, Biotechnology. Sensitive colorimetric detection of interleukin-6 via lateral flow assay incorporated silver amplification method.:9(778269. (2021)
65. Huang D, Ying H, Jiang D, Liu F, Tian Y, Du C, Zhang L, Pu XJAb. “Rapid and sensitive detection of interleukin-6 in serum via time-resolved lateral flow immunoassay”:588(113468. (2020)
66. Liu X, Gao J, Yang H, Wang X, Tian S, Guo CJAOM. Hybrid plasmonic modes in multilayer trench grating structures.:5(22): 1700496. (2017)
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *