帳號:guest(3.136.25.16)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳奕愷
作者(外文):Chen, Yi-Kai
論文名稱(中文):調控1T/2H相轉換二硒化鉬/ 硫化鋅鎘在光催化產氫之研究
論文名稱(外文):Phase Engineering in 1T/2H MoSe2/CdZnS for Enhanced Photocatalytic Hydrogen Evolution
指導教授(中文):呂明諺
指導教授(外文):Lu, Ming-Yen
口試委員(中文):吳志明
郭俊宏
口試委員(外文):Wu, Jyh-Mig
Kuo, Chun-Hong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:110031504
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:85
中文關鍵詞:硫化鋅鎘二硒化鉬光催化產氫相轉換
外文關鍵詞:CdZnSMoSe2Photocatalytic Hydrogen EvolutionPhase Engineering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著科技快速發展,能源需求日益增加,但目前大量使用的化石燃料對環境造成許多影響,二氧化碳和溫室氣體濃度逐年升高,伴隨著地球暖化的問題。因此尋找乾淨且可再生的替代能源至關重要,氫能源因為具有高能量密度等優點而備受青睞,許多研究致力於開發產氫技術。其中,光催化產氫利用太陽光分解水產生氫氣,是一種有效產生氫氣的方法。
本研究在合成時,透過調整還原劑的含量合成出不同1T/2H比例的二硒化鉬MS4、MS6和MS8。其中,1T含量最高的MS6擁有較低的阻抗及較高的光吸收能力,接著與硫化鋅鎘(CdZnS,CZS)結合成異質結構並量測其催化產氫表現。實驗結果顯示,相較於純CZS,添加二硒化鉬的異質結構能大幅提升產氫效率,MS4/CZS和MS8/CZS的產率分別為5.1 mmol g-1 h-1和4.2 mmol g-1 h-1,而擁有最高產率的異質結構MS6/CZS,產率高達6.4 mmol g-1 h-1,為純CZS的6倍之多。而增強的光催化性能可歸因於二硒化鉬加強異質結構的可見光吸收且降低電子-電洞再結合,進而提高產氫性能。而在三種異質結構中,有最高的光催化性能為MS6/CZS,因為金屬特性的1T二硒化鉬有良好之電子傳遞速率,大幅提升載子分離效果。總結來說,適當調整二硒化鉬的1T/2H比例能增強光催化產氫效率。
With the rapid advancement of technology, the demand for energy is increasing. The use of fossil fuels has significant environmental impacts, leading to rising levels of carbon dioxide and greenhouse gases, and contributing to global warming. Therefore, finding clean and renewable alternative energy sources is important. Hydrogen energy has gained considerable attention due to its high energy density, and numerous research efforts are focused on developing hydrogen production technologies. Among these, photocatalytic hydrogen production, which utilizes solar energy to split water and generate hydrogen gas, is an effective method for producing hydrogen.
In this thesis, we synthesized different ratios of 1T/2H MoSe2 by adjusted the amount of reducing agent, label as MS4, MS6 and MS8. Among these, MS6 with highest 1T phase has lower impedance and higher visible light absorption. Subsequently, the MoSe2 were combined with CdZnS (CZS) to form heterostructure and measured the hydrogen production by GC. The hydrogen production rates for MS4/CZS and MS8/CZS were 5.1 mmol g-1 h-1 and 4.2 mmol g-1 h-1, respectively. MS6/CZS exhibited highest H2 production rate up to 6.4 mmol g-1 h-1, which was six times than that of pure CZS. The enhanced activity of MS6/CZS can be attributed to increasing visible light absorption and inhibiting electron-hole recombination, thereby improving the hydrogen production. Among these composites, MS6/CZS exhibited the highest photocatalytic performance due to the fast electron mobility of 1T-MoSe2, leading to a significant enhancement of carrier separation. In conclusion, this research highlights that adjusting the 1T/2H ratio of MoSe2 can enhance photocatalytic hydrogen production.
摘要 II
Abstract III
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論與文獻探討 1
1.1 氫能源 1
1.2 水分解產氫 3
1.3 光催化水解產氫機制 6
1.4 犧牲試劑對光催化產氫之影響 8
1.5 光催化劑的發展 9
1.6 異質結構 10
1.7 硫化鋅鎘材料 12
1.7.1 硫化鋅鎘基本性質 12
1.7.2 硫化鋅鎘合成方法 12
1.7.3 硫化鋅鎘作為光催化劑 14
1.8 二維材料 17
1.9 二硒化鉬材料 19
1.9.1 二硒化鉬基本性質 19
1.9.2 二硒化鉬合成方法 21
1.9.3 二硒化鉬作為光催化劑 24
1.9.4 二硒化鉬1T/2H相變化調控 26
1.10 研究動機 30
第二章 實驗方法與儀器 31
2.1 實驗架構 31
2.2 光催化劑之製備流程 32
2.2.1 二硒化鉬(MoSe2)之合成 32
2.2.2 硫化鋅鎘(CdZnS)之合成 33
2.2.3 二硒化鉬/硫化鋅鎘異質結構(MoSe2/CdZnS)之合成 34
2.3 電化學分析之系統架設 36
2.4 光催化水解產氫反應 36
2.5 實驗儀器介紹 37
2.5.1 X光繞射分析儀(X-Ray Diffractometer, XRD) 37
2.5.2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 38
2.5.3 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 39
2.5.4 顯微拉曼散射光譜儀(Micro-Raman Spectroscope) 41
2.5.5 X光光電子能譜儀(X-ray Photoelectron Spectroscope, XPS) 42
2.5.6 紫外光-可見光吸收光譜儀(UV-Visible Spectroscopy) 43
2.5.7 光致螢光光譜儀(Photoluminescence Spectroscopy, PL) 44
2.5.8 電化學分析儀(Electrochemical analyzer) 45
2.5.9 氣相層析儀(Gas Chromatography, GC) 46
第三章 結果與討論 47
3.1 二硒化鉬和硫化鋅鎘之材料鑑定 47
3.1.1 XRD分析 47
3.1.2 SEM影像分析 48
3.1.3 TEM分析 49
3.1.4 Raman光譜分析 52
3.1.5 XPS能譜分析 53
3.1.6 UV-vis 光譜分析 56
3.1.7 EIS分析 58
3.2 異質結構之材料鑑定 59
3.2.1 XRD分析 59
3.2.2 SEM影像分析 60
3.2.3 TEM分析 61
3.2.4 XPS能譜分析 63
3.2.5 UV-vis 光譜分析 65
3.2.6 PL分析 66
3.2.7 EIS 分析 67
3.2.8 TPC 分析 68
3.3 光催化產氫反應 69
3.4 能帶位置圖與光催化機制 72
3.5 產氫反應比較 74
第四章 結論 75
第五章 未來展望 76
參考文獻 77

1. Dicks AL, Rand DA. Fuel cell systems explained. John Wiley & Sons (2018).

2. Boudellal M. Power-to-gas: Renewable hydrogen economy for the energy transition. Walter de Gruyter GmbH & Co KG (2023).

3. Nikolaidis P, Poullikkas A. A comparative overview of hydrogen production processes. Renewable and sustainable energy reviews 67, 597-611 (2017).

4. Abe JO, Popoola A, Ajenifuja E, Popoola OM. Hydrogen energy, economy and storage: Review and recommendation. International journal of hydrogen energy 44, 15072-15086 (2019).

5. Blanco H, Faaij A. A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage. Renewable and Sustainable Energy Reviews 81, 1049-1086 (2018).

6. Brandon NP, Kurban Z. Clean energy and the hydrogen economy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, 20160400 (2017).

7. Colbertaldo P, Agustin SB, Campanari S, Brouwer J. Impact of hydrogen energy storage on California electric power system: Towards 100% renewable electricity. International Journal of Hydrogen Energy 44, 9558-9576 (2019).

8. Ersöz A. Investigation of hydrocarbon reforming processes for micro-cogeneration systems. International journal of hydrogen energy 33, 7084-7094 (2008).

9. Das D, Veziroǧlu TN. Hydrogen production by biological processes: a survey of literature. International journal of hydrogen energy 26, 13-28 (2001).

10. Riis T, Hagen EF, Vie PJ, Ulleberg Ø. Hydrogen production–gaps and priorities. IEA Hydrogen Implementing Agreement (IEA, Paris, 2005), 1-11 (2005).

11. Safari F, Dincer I. A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production. Energy Conversion and Management 205, 112182 (2020).

12. Azwar M, Hussain M, Abdul-Wahab A. Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renewable and Sustainable Energy Reviews 31, 158-173 (2014).

13. Steinfeld A. Solar thermochemical production of hydrogen––a review. Solar energy 78, 603-615 (2005).

14. Rashwan SS, Dincer I, Mohany A. Sonication to hydrogenization: Sono-hydro-gen. International Journal of Energy Research 43, 1045-1048 (2019).

15. Schmidt O, Gambhir A, Staffell I, Hawkes A, Nelson J, Few S. Future cost and performance of water electrolysis: An expert elicitation study. International journal of hydrogen energy 42, 30470-30492 (2017).

16. Marschall R. 50 years of materials research for photocatalytic water splitting. European Journal of Inorganic Chemistry 2021, 2435-2441 (2021).

17. Jafari T, Moharreri E, Amin AS, Miao R, Song W, Suib SL. Photocatalytic water splitting—the untamed dream: a review of recent advances. Molecules 21, 900 (2016).

18. Maeda K, Domen K. Photocatalytic water splitting: recent progress and future challenges. The Journal of Physical Chemistry Letters 1, 2655-2661 (2010).

19. Kahng S, Yoo H, Kim JH. Recent advances in earth-abundant photocatalyst materials for solar H2 production. Advanced Powder Technology 31, 11-28 (2020).

20. Wang M, Shen S, Li L, Tang Z, Yang J. Effects of sacrificial reagents on photocatalytic hydrogen evolution over different photocatalysts. Journal of materials science 52, 5155-5164 (2017).

21. Schneider J, Bahnemann DW. Undesired Role of Sacrificial Reagents in Photocatalysis. The Journal of Physical Chemistry Letters 4, 3479-3483 (2013).

22. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. nature 238, 37-38 (1972).

23. Liu E, et al. Photoconversion of CO2 to methanol over plasmonic Ag/TiO2 nano-wire films enhanced by overlapped visible-light-harvesting nanostructures. Ceramics International 41, 1049-1057 (2015).

24. Zhang P, Wang T, Chang X, Gong J. Effective charge carrier utilization in photocatalytic conversions. Accounts of chemical research 49, 911-921 (2016).

25. Su Q, et al. Heterojunction photocatalysts based on 2D materials: the role of configuration. Advanced Sustainable Systems 4, 2000130 (2020).

26. Bouich A, Ullah S, Ullah H, Mollar M, Marí B, Touhami ME. Electrodeposited CdZnS/CdS/CIGS/Mo: characterization and solar cell performance. Jom 72, 615-620 (2020).

27. Lee K-H, et al. Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices. ACS nano 7, 7295-7302 (2013).

28. Cho N-K, Yu J-w, Kim YH, Kang SJ. Effect of oxygen plasma treatment on CdSe/CdZnS quantum-dot light-emitting diodes. Japanese Journal of Applied Physics 53, 032101 (2014).

29. Ma X, et al. Fabrication of gC 3 N 4/Au/CdZnS Z-scheme photocatalyst to enhance photocatalysis performance. RSC advances 6, 28263-28269 (2016).

30. Su B, Huang H, Ding Z, Roeffaers MB, Wang S, Long J. S-scheme CoTiO3/Cd9. 51Zn0. 49S10 heterostructures for visible-light driven photocatalytic CO2 reduction. Journal of Materials Science & Technology 124, 164-170 (2022).

31. Sharma M, Jain T, Singh S, Pandey O. Photocatalytic degradation of organic dyes under UV–Visible light using capped ZnS nanoparticles. Solar Energy 86, 626-633 (2012).

32. Ye Z, Kong L, Chen F, Chen Z, Lin Y, Liu C. A comparative study of photocatalytic activity of ZnS photocatalyst for degradation of various dyes. Optik 164, 345-354 (2018).

33. Akyüz D, Koca A. Photocatalytic hydrogen production with reduced graphene oxide (RGO)-CdZnS nano-composites synthesized by solvothermal decomposition of dimethyl sulfoxide as the sulfur source. Journal of Photochemistry and Photobiology A: Chemistry 364, 625-634 (2018).

34. Ashok A, Regmi G, Romero-Núñez A, Solis-López M, Velumani S, Castaneda H. Comparative studies of CdS thin films by chemical bath deposition techniques as a buffer layer for solar cell applications. Journal of Materials Science: materials in Electronics 31, 7499-7518 (2020).

35. Chen Y-C, Huang Y-S, Huang H, Su P-J, Perng T-P, Chen L-J. Photocatalytic enhancement of hydrogen production in water splitting under simulated solar light by band gap engineering and localized surface plasmon resonance of ZnxCd1-xS nanowires decorated by Au nanoparticles. Nano Energy 67, 104225 (2020).

36. Wang H, et al. CoPtx‐loaded Zn0. 5Cd0. 5S nanocomposites for enhanced visible light photocatalytic H2 production. International Journal of Energy Research 40, 1280-1286 (2016).

37. Dong M, Li W, Ma X, Geng L, Li Y, Li M. 2H–MoSe2 nanosheet as noble-metal-free co-catalyst over Cd0·7Zn0·3S: optimizing interfacial charge transfer for enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy 48, 26768-26780 (2023).

38. Saleem Z, Pervaiz E, Yousaf MU, Niazi MBK. Two-dimensional materials and composites as potential water splitting photocatalysts: A review. Catalysts 10, 464 (2020).

39. Shen S, Shi J, Guo P, Guo L. Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials. International Journal of Nanotechnology 8, 523-591 (2011).

40. Su T, Shao Q, Qin Z, Guo Z, Wu Z. Role of interfaces in two-dimensional photocatalyst for water splitting. Acs Catalysis 8, 2253-2276 (2018).

41. Zhuiykov S. 20 - Nanostructured two-dimensional materials. In: Modeling, Characterization, and Production of Nanomaterials (eds Tewary VK, Zhang Y). Woodhead Publishing (2015).

42. Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. 2D transition metal dichalcogenides. Nature Reviews Materials 2, 1-15 (2017).

43. Zhu S, Gong L, Xie J, Gu Z, Zhao Y. Design, synthesis, and surface modification of materials based on transition‐metal dichalcogenides for biomedical applications. Small Methods 1, 1700220 (2017).

44. Kong D, et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano letters 13, 1341-1347 (2013).

45. Yang C-P, Yin Y-X, Guo Y-G. Elemental selenium for electrochemical energy storage. The journal of physical chemistry letters 6, 256-266 (2015).

46. Yang CP, Xin S, Yin YX, Ye H, Zhang J, Guo YG. An advanced selenium–carbon cathode for rechargeable lithium–selenium batteries. Angewandte Chemie 125, 8521-8525 (2013).

47. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. Journal of the American Chemical Society 133, 7296-7299 (2011).

48. Pathak V, Patel K, Pathak R, Srivastava R. Improved photoconversion from MoSe2 based PEC solar cells. Solar energy materials and solar cells 73, 117-123 (2002).

49. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology 7, 699-712 (2012).

50. Tongay S, et al. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano letters 12, 5576-5580 (2012).

51. Xia B, et al. Phase-transfer induced room temperature ferromagnetic behavior in 1T@ 2H-MoSe2 nanosheets. Scientific reports 7, 45307 (2017).

52. Shen J, et al. Surface tension components based selection of cosolvents for efficient liquid phase exfoliation of 2D materials. Small 12, 2741-2749 (2016).

53. Zeng Z, et al. Single‐layer semiconducting nanosheets: high‐yield preparation and device fabrication. Angewandte Chemie 123, 11289-11293 (2011).

54. Chen J, et al. Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. Journal of the American Chemical Society 139, 1073-1076 (2017).

55. Tang H, Huang H, Wang X, Wu K, Tang G, Li C. Hydrothermal synthesis of 3D hierarchical flower-like MoSe2 microspheres and their adsorption performances for methyl orange. Applied Surface Science 379, 296-303 (2016).

56. Tonndorf P, et al. Photoluminescence emission and Raman response of monolayer MoS 2, MoSe 2, and WSe 2. Optics express 21, 4908-4916 (2013).

57. Chen, Fan R. Low-temperature hydrothermal synthesis of transition metal dichalcogenides. Chemistry of materials 13, 802-805 (2001).

58. Wu Z, Ouyang M, Wang D. Construction of WS2/MoSe2 heterojunction for efficient photoelectrocatalytic hydrogen evolution. Materials Science in Semiconductor Processing 107, 104822 (2020).

59. Huang J-J, et al. A facile method to produce MoSe2/MXene hybrid nanoflowers with enhanced electrocatalytic activity for hydrogen evolution. Journal of Electroanalytical Chemistry 856, 113727 (2020).

60. Zhang C, et al. Phosphine-free synthesis and shape evolution of MoSe 2 nanoflowers for electrocatalytic hydrogen evolution reactions. CrystEngComm 20, 2491-2498 (2018).

61. Guo Z, et al. MoSe2/g-C3N4 heterojunction coupled with Pt nanoparticles for enhanced photocatalytic hydrogen evolution. Journal of Physics and Chemistry of Solids 156, 110137 (2021).

62. Ding C, Zhao C, Cheng S, Yang X. Mixed-dimensional 1D CdS/2D MoSe2 heterostructures for high-performance photocatalytic hydrogen production. Surfaces and Interfaces 25, 101192 (2021).

63. Yin Y, et al. Synergistic phase and disorder engineering in 1T‐MoSe2 nanosheets for enhanced hydrogen‐evolution reaction. Advanced Materials 29, 1700311 (2017).

64. Li H, et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature materials 15, 48-53 (2016).

65. Xie J, et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. Journal of the American Chemical Society 135, 17881-17888 (2013).

66. Xiao W, Bukhvalov D, Zou Z, Zhang L, Lin Z, Yang X. Unveiling the origin of the high catalytic activity of ultrathin 1T/2H MoSe2 nanosheets for the hydrogen evolution reaction: a combined experimental and theoretical study. ChemSusChem 12, 5015-5022 (2019).

67. Li N, et al. Stable multiphasic 1T/2H MoSe2 nanosheets integrated with 1D sulfide semiconductor for drastically enhanced visible-light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental 238, 27-37 (2018).

68. Gong H, Zhang X, Wang G, Liu Y, Li Y, Jin Z. Dodecahedron ZIF-67 anchoring ZnCdS particles for photocatalytic hydrogen evolution. Molecular Catalysis 485, 110832 (2020).

69. Qu Y, et al. Wafer scale phase‐engineered 1T‐and 2H‐MoSe2/Mo core–shell 3D‐hierarchical nanostructures toward efficient electrocatalytic hydrogen evolution reaction. Advanced Materials 28, 9831-9838 (2016).

70. Zhang J, Wang T, Liu P, Liu Y, Ma J, Gao D. Enhanced catalytic activities of metal-phase-assisted 1T@ 2H-MoSe2 nanosheets for hydrogen evolution. Electrochimica Acta 217, 181-186 (2016).

71. Deng S, et al. Phase modulation of (1T‐2H)‐MoSe2/TiC‐C shell/core arrays via nitrogen doping for highly efficient hydrogen evolution reaction. Advanced Materials 30, 1802223 (2018).

72. Jiang M, et al. Synthesis of 1T-MoSe 2 ultrathin nanosheets with an expanded interlayer spacing of 1.17 nm for efficient hydrogen evolution reaction. Journal of Materials Chemistry A 4, 14949-14953 (2016).

73. Shi H, Zhang H, Li M, Wang Y, Wang D. Nanoflower-like 1T/2H mixed-phase MoSe2 as an efficient electrocatalyst for hydrogen evolution. Journal of Alloys and Compounds 878, 160381 (2021).

74. Zhao X, et al. Construction and enhanced efficiency of Z-scheme-based ZnCdS/Bi2WO6 composites for visible-light-driven photocatalytic dye degradation. Journal of Physics and Chemistry of Solids 154, 110075 (2021).

75. Wang Y, Jin H, Li Y, Fang J, Chen C. Ce-based organic framework enhanced the hydrogen evolution ability of ZnCdS photocatalyst. International Journal of Hydrogen Energy 47, 962-970 (2022).

76. Dai D, et al. In-situ synthesis of CoP co-catalyst decorated Zn0. 5Cd0. 5S photocatalysts with enhanced photocatalytic hydrogen production activity under visible light irradiation. Applied Catalysis B: Environmental 217, 429-436 (2017).

77. Yin X-L, et al. Noble-metal-free Zn0. 5Cd0. 5S@ MoS2 core@ shell heterostructures for visible-light-driven H2 evolution with enhanced efficiency and stability. Chemical Engineering Journal 375, 121970 (2019).

78. Yang M-Q, Han C, Xu Y-J. Insight into the effect of highly dispersed MoS2 versus layer-structured MoS2 on the photocorrosion and photoactivity of CdS in graphene–CdS–MoS2 composites. The Journal of Physical Chemistry C 119, 27234-27246 (2015).

79. Yang H, et al. MOFs‐Derived Fusiform In2O3 Mesoporous Nanorods Anchored with Ultrafine CdZnS Nanoparticles for Boosting Visible‐Light Photocatalytic Hydrogen Evolution. Small 17, 2102307 (2021).

80. Tang Y, Li X, Zhang D, Pu X, Ge B, Huang Y. Noble metal-free ternary MoS2/Zn0. 5Cd0. 5S/g-C3N4 heterojunction composite for highly efficient photocatalytic H2 production. Materials Research Bulletin 110, 214-222 (2019).

81. Song L, Zhang S, Liu D, Sun S, Wei J. High-performance hydrogen evolution of NiB/ZnCdS under visible light irradiation. International Journal of Hydrogen Energy 45, 8234-8242 (2020).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *