帳號:guest(3.144.28.80)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝承孝
作者(外文):Hsieh, Chen-Hsiao
論文名稱(中文):探討氧氣電漿處理對二硫化鉬與二硒化鉬表面形貌與光電特性之影響
論文名稱(外文):Surface morphology, characterizations and optoelectronic properties of MoS2 and MoSe2 with O2 plasma treatments
指導教授(中文):呂明諺
指導教授(外文):Lu, Ming-Yen
口試委員(中文):吳文偉
呂明霈
口試委員(外文):Wu, Wen-Wei
Lu, Ming-Pei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:110031501
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:77
中文關鍵詞:二硫化鉬二硒化鉬氧氣電漿表面處理電漿表面清潔電極接觸工程
外文關鍵詞:molybdenum disulfidemolybdenum diselenideoxygen plasma treatmentplasma surface cleaningcontact engineering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究製備二硫化鉬與二硒化鉬材料,以氧氣電漿轟擊材料表面,再分別製作成場效電晶體元件,同樣以氧氣電漿轟擊元件通道或電極底下接觸之材料,探討其表面形貌變化與光電特性改變。研究分為以下部分討論材料之變化:表面形貌、元素組成與光電特性。
在第一部分研究中,會以原子力顯微鏡、SEM與TEM觀察轉移後與氧氣電漿轟擊後,二硫化鉬與二硒化鉬形貌改變,同時利用拉曼與PL確認材料的層數。在表面形貌變化部分,使用氧電漿10瓦,3, 6和9秒的時間處理材料,發現材料在3秒時有最小的表面粗糙度,進行至6秒與9秒後,材料會開始出現破損和奈米捲現象。
第二部分元素組成中,以拉曼分析材料特徵峰會隨時間降低,6秒以後測量不到二硫化鉬、二硒化鉬與三氧化鉬的特徵峰。從XPS分析可以得知,隨著氧電漿轟擊時間增長,Mo4+的峰值會逐步轉換成Mo6+;從STEM影像分析可以瞭解在氧電漿處理後,雖然材料有破損與裂痕,但還可以確認到二硫化鉬與二硒化鉬晶格,表面也沒有分析到三氧化鉬的繞射點與拉曼訊號。
第三部分光電特性方面,分別量測:轉移後未處理二維材料元件、氧電漿轟擊通道元件、電漿預先處理電極底部的接觸材料。從電性結果可以確認氧電漿轟擊後會造成材料缺陷增加,氧電漿轟擊通道元件的光電流與光響應度會隨著處理時間增加而下降;預處理會有清潔效果使電阻率下降,但如果元件製作殘留有機物少則電阻率不會有顯著減少,而較長的轟擊時間反而會使電阻率升高。
透過實驗分析證實,以氧氣電漿轟擊二硫化鉬與二硒化鉬材料表面,會造成缺陷增加甚至形成奈米捲導致材料破損,使材料導電度下降,同時改變開關電流值與閾值電壓。
In this study, molybdenum disulfide and molybdenum diselenide materials were synthesized. The surfaces of these materials underwent treatment with oxygen plasma, followed by the fabrication of field-effect transistors. Subsequently, the channels or materials under the electrodes were bombarded to investigate surface morphology. The study is structured into three sections focusing on the changing of the materials: surface morphology, composition, and photoelectrical properties.
In the first part of the study, use Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) to observe the morphological alterations of molybdenum disulfide and molybdenum diselenide before and after exposure to oxygen plasma treatments. Additionally, Raman spectroscopy (Raman) and Photoluminescence (PL) techniques will be utilized to verify the number of layers present. The surface morphology was modified using oxygen plasma treatment at power levels of 10 watts for durations of 3, 6, and 9 seconds. It was observed that the material exhibited the least surface roughness at 3 seconds. After 6 and 9 seconds, the material underwent structural changes leading to the formation of nanorolls.
In the latter part of the elemental composition analysis, the characteristic peaks of the materials analyzed by Raman decrease over time. Specifically, the peaks associated molybdenum disulfide, molybdenum diselenide, and molybdenum trioxide are no longer detectable after 6 seconds. Through X-ray photoelectron spectroscopy (XPS) analysis, it is evident that with an increase in the duration of oxygen plasma treatment , the intensity of the Mo4+ will gradually transitions to Mo6+. Despite the damage incurred by the materials, the crystal lattice of molybdenum disulfide and molybdenum diselenide remains observable. Notably, no diffraction pattern corresponding to molybdenum trioxide was discernible on the surface.
In the third section, the photoelectrical characteristics were assessed for the following samples: the untreated two-dimensional material, devices channel after oxygen plasma treatments, and the treatments on materials under electrodes. It was observed that the oxygen plasma treatment led to an increase in defects. Furthermore, currents and photoresponsivity of devices subjected to channel treatments decreased with longer processing time. Resistivity (ρ) also decreases slightly after the treatments on materials under electrodes (plasma cleaning).
Experimental analysis has verified that bombarding the surface of molybdenum disulfide and molybdenum diselenide materials with oxygen plasma results in the augmentation of defects and even the formation of nanorolls, ultimately resulting in material degradation.
摘要 II
ABSTRACT III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論與文獻探討 1
1.1 奈米材料 1
1.2 二維材料 2
1.2.1 過渡金屬二硫族化物(Transition Metal Dichalcogenides, TMDs) 2
1.2.2 過渡金屬二硫族化物之合成 3
1.2.3 二硫化鉬與二硒化鉬之基本性質 4
1.2.4 過渡金屬二硫族化物之應用 5
電晶體通道 5
光感測器(Photodetectors) 6
1.3 電漿處理 7
1.3.1 電漿處理與過渡金屬二硫族化物 7
1.3.2 電漿處理與過渡金屬二硫族化物電性表現 8
1.4 研究動機 9
第二章 實驗方法與儀器 10
2.1 實驗架構與方法 10
2.1.1 實驗步驟 10
2.1.2 化學氣相沉積法合成二硫化鉬與二硒化鉬 11
2.1.3 PMMA濕式轉移製程 12
2.1.4 氧氣電漿轟擊處理 13
2.1.5 元件製備 14
2.1.6 照光電性量測 16
2.2 儀器介紹 17
2.2.1 曝光系統(exposure system) 17
2.2.2 電性量測系統 18
2.2.3 電子束蒸鍍系統(Electron beam evaporator) 19
2.2.4 旋轉塗佈機(Spin coater) 20
2.2.5 電漿表面改質系統(Plasma treatment) 21
2.2.6 原子力顯微鏡(Atomic force microscope, AFM) 22
2.2.7 顯微拉曼光譜分析儀(Micro raman spectrometer) 23
2.2.8 光致發光光譜(Photoluminescence, PL) 24
2.2.9 穿透式電子顯微鏡 (Transmission electron microscope, TEM) 25
2.2.10 掃描式電子顯微鏡 (Scanning electron microscope, SEM) 26
2.2.11 三區加熱爐管(Three zone furnace) 27
2.2.12 光學顯微鏡(Optical Microscope, OM) 28
第三章 結果與討論 29
3.1 材料分析 29
3.1.1 二維材料合成與轉移 29
3.1.2 層數分析 31
3.1.3 材料結構分析 33
3.1.4 氧氣電漿處理後表面形貌分析 35
3.1.5 氧氣電漿處理後顯微光譜分析 40
3.1.6 X射線光電子能譜分析 42
3.2 電性量測 45
3.2.1 元件結構 45
3.2.2 場效電晶體元件電性量測 47
3.2.3 元件照光電性量測 50
3.2.4 二硫化鉬與二硒化鉬電性比較 58
3.3 氧氣電漿處理元件通道(CHANNEL)與電性分析 59
3.3.1 氧氣電漿轟擊通道(Channel) 59
3.3.2 電性分析 62
3.3.3 場效電晶體元件電性量測分析 63
3.3.4 元件照光電性表現 64
3.4 電極沉積前以電漿清潔與電性量測 65
3.4.1 氧氣電漿轟擊待鍍電極區域 65
電性表現 66
場效電晶體測量 67
元件照光電性表現 68
3.4.2 氬氣電漿轟擊待鍍電極區域 69
電性表現與場效電晶體測量 70
第四章 結論 71
第五章 未來展望 72
參考文獻 73
1. Davis, J.A., et al., Interconnect limits on gigascale integration (GSI) in the 21st century. Proceedings of the IEEE, 2001. 89(3): p. 305-324.
2. Tran, T.T., Synthesis of germanium-tin alloys by ion implantation and pulsed laser melting: Towards a group IV direct band gap semiconductor. 2017, The Australian National University (Australia).
3. Pedreira, O.V., V.V. Gonzalez, and Z. Tőkei. Metal reliability mechanisms in Ruthenium interconnects. in 2020 IEEE International Reliability Physics Symposium (IRPS). 2020. IEEE.
4. Lattuada, M. and T.A. Hatton, Synthesis, properties and applications of Janus nanoparticles. Nano Today, 2011. 6(3): p. 286-308.
5. Wagner, S., 2D materials for piezoresistive strain gauges and membrane based nanoelectromechanical systems. 2018, Dissertation, RWTH Aachen University, 2018.
6. Zhao, B., et al., 2D metallic transition‐metal dichalcogenides: structures, synthesis, properties, and applications. Advanced Functional Materials, 2021. 31(48): p. 2105132.
7. Aras, F.G., et al., A review on recent advances of chemical vapor deposition technique for monolayer transition metal dichalcogenides (MX₂: Mo, W; S, Se, Te). Materials Science in Semiconductor Processing, 2022. 148: p. 106829.
8. Li, Y., et al., Recent progress on the mechanical exfoliation of 2D transition metal dichalcogenides. Materials Research Express, 2022. 9(12): p. 122001.
9. Kuc, A., T. Heine, and A. Kis, Electronic properties of transition-metal dichalcogenides. MRS bulletin, 2015. 40(7): p. 577-584.
10. Das, S., et al., Transistors based on two-dimensional materials for future integrated circuits. Nature Electronics, 2021. 4(11): p. 786-799.
11. Lopez-Sanchez, O., et al., Ultrasensitive photodetectors based on monolayer MoS₂. Nature nanotechnology, 2013. 8(7): p. 497-501.
12. Sebastian, A., et al., Benchmarking monolayer MoS₂ and WS₂ field-effect transistors. Nature communications, 2021. 12(1): p. 693.
13. Lu, M.Y., Y.T. Chang, and H.J. Chen, Efficient Self‐Driven Photodetectors Featuring a Mixed‐Dimensional van der Waals Heterojunction Formed from a CdS Nanowire and a MoTe₂ Flake. Small, 2018. 14(40): p. 1802302.
14. Fu, Q., et al., 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis. Advanced Materials, 2021. 33(6): p. 1907818.
15. Zhang, J., et al., Vanadium-doped monolayer MoS₂ with tunable optical properties for field-effect transistors. ACS Applied Nano Materials, 2020. 4(1): p. 769-777.
16. Jeon, J., et al., Layer-controlled CVD growth of large-area two-dimensional MoS₂ films. Nanoscale, 2015. 7(5): p. 1688-1695.
17. Yin, H., et al., Substrate effects on the CVD growth of MoS₂ and WS₂. Journal of materials science, 2020. 55(3): p. 990-996.
18. Wang, X., et al., Chemical vapor deposition growth of crystalline monolayer MoSe₂. ACS nano, 2014. 8(5): p. 5125-5131.
19. Peng, G., et al., Controllable epitaxial growth of MoSe₂ bilayers with different stacking orders by reverse-flow chemical vapor deposition. ACS applied materials & interfaces, 2020. 12(20): p. 23347-23355.
20. Cullen, C.P., et al., Synthesis and thermal stability of TMD thin films: A comprehensive XPS and Raman study. arXiv preprint arXiv:2106.07366, 2021.
21. Pan, X., et al., Electrochemically Exfoliating MoS₂ into Atomically Thin Planar‐Stacking Through a Selective Lateral Reaction Pathway. Advanced functional materials, 2021. 31(8): p. 2007840.
22. Young, K.K., Short-channel effect in fully depleted SOI MOSFETs. IEEE Transactions on Electron Devices, 1989. 36(2): p. 399-402.
23. Khanna, V.K. and V.K. Khanna, Short-channel effects in MOSFETs. Integrated Nanoelectronics: Nanoscale CMOS, Post-CMOS and Allied Nanotechnologies, 2016: p. 73-93.
24. Jariwala, D., et al., Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS nano, 2014. 8(2): p. 1102-1120.
25. Liu, H., et al., Van der Waals epitaxial growth of vertically stacked Sb₂Te3/MoS₂ p–n heterojunctions for high performance optoelectronics. Nano Energy, 2019. 59: p. 66-74.
26. Zhang, Y., et al., The evolution of MoS₂ properties under oxygen plasma treatment and its application in MoS₂ based devices. Journal of Materials Science: Materials in Electronics, 2019. 30: p. 18185-18190.
27. Liu, Y., et al., Layer-by-layer thinning of MoS₂ by plasma. ACS nano, 2013. 7(5): p. 4202-4209.
28. Chee, S.S. and M.H. Ham, Low‐Damaged Layer‐by‐Layer Etching of Large‐Area Molybdenum Disulfide Films via Mild Plasma Treatment. Advanced Materials Interfaces, 2020. 7(17): p. 2000762.
29. Mahlouji, R., et al., On the contact optimization of ALD-based MoS₂ FETs: correlation of processing conditions and interface chemistry with device electrical performance. ACS Applied Electronic Materials, 2021. 3(7): p. 3185-3199.
30. Bolshakov, P., et al., Contact engineering for dual-gate MoS₂ transistors using O₂ plasma exposure. ACS Applied Electronic Materials, 2019. 1(2): p. 210-219.
31. Kim, H.J., et al., Changes in the Raman spectra of monolayer MoS₂ upon thermal annealing. Journal of Raman Spectroscopy, 2018. 49(12): p. 1938-1944.
32. Buscema, M., et al., The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS₂. Nano research, 2014. 7: p. 561-571.
33. Lee, Y.-H., et al., Synthesis of large-area MoS₂ atomic layers with chemical vapor deposition. arXiv preprint arXiv:1202.5458, 2012.
34. Maia, F.C.O., et al., Defect activated optical Raman modes in single layer MoSe₂. Nanotechnology, 2021. 32(46): p. 465302.
35. Shaw, J.C., et al., Chemical vapor deposition growth of monolayer MoSe₂ nanosheets. Nano Research, 2014. 7: p. 511-517.
36. Tonndorf, P., et al., Photoluminescence emission and Raman response of monolayer MoS₂, MoSe₂, and WSe₂. Optics express, 2013. 21(4): p. 4908-4916.
37. Gołek, F., et al., AFM image artifacts. Applied surface science, 2014. 304: p. 11-19.
38. do Nascimento Barbosa, A., et al., Photoresponse of O₂ plasma treated WS₂ monolayers synthesized by chemical vapor deposition. Journal of Vacuum Science & Technology A, 2023. 41(2).
39. Huan, C., et al., Oxygen deficient α-MoO3 with enhanced adsorption and state-quenching of H₂O for gas sensing: a DFT study. Journal of Materials Chemistry C, 2022. 10(5): p. 1839-1849.
40. Fitri, D.A. and A. Purqon. Calculation study of electric properties on molybdenum disulfide by using density functional theory. in Journal of Physics: Conference Series. 2017. IOP Publishing.
41. Chu, X.S., et al., Formation of MoO3 and WO3 nanoscrolls from MoS₂ and WS₂ with atmospheric air plasma. Journal of Materials Chemistry C, 2017. 5(43): p. 11301-11309.
42. Guo, Y., et al., Electronic and optical properties of defective MoSe₂ repaired by halogen atoms from first-principles study. AIP Advances, 2019. 9(2).
43. Zou, B., et al., Optical Effect Modulation in Polarized Raman Spectroscopy of Transparent Layered α‐MoO3. Small, 2023. 19(19): p. 2206932.
44. Patel, S.K.S., et al., Synthesis of α-MoO3 nanofibers for enhanced field-emission properties. Adv. Mater. Lett., 2018. 9(8): p. 585-589.
45. Kondekar, N.P., et al., In situ XPS investigation of transformations at crystallographically oriented MoS₂ interfaces. ACS applied materials & interfaces, 2017. 9(37): p. 32394-32404.
46. Truong, Q.D., et al., Exfoliated MoS₂ and MoSe₂ Nanosheets by a supercritical fluid process for a hybrid Mg–Li-ion battery. Acs Omega, 2017. 2(5): p. 2360-2367.
47. Krbal, M., et al., 2D MoSe₂ structures prepared by atomic layer deposition. physica status solidi (RRL)–Rapid Research Letters, 2018. 12(5): p. 1800023.
48. Mao, C.-H., et al., Bifunctional Semimetal as a Plasmonic Resonator and Ohmic Contact for an Ultrasensitive MoS₂ Photodetector. ACS Photonics, 2023. 10(5): p. 1495-1503.
49. Shen, P.-C., et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021. 593(7858): p. 211-217.
50. Kim, S., et al., High-mobility and low-power thin-film transistors based on multilayer MoS₂ crystals. Nature communications, 2012. 3(1): p. 1011.
51. Rani, A., et al. Electronic characteristics of MoSe₂ and MoTe₂ for nanoelectronic applications. in 2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC). 2018. IEEE.
52. Wu, J.Y., et al., Broadband MoS₂ Field‐Effect Phototransistors: Ultrasensitive Visible‐Light Photoresponse and Negative Infrared Photoresponse. Advanced Materials, 2018. 30(7): p. 1705880.
53. Lee, H., et al., High-responsivity multilayer MoSe₂ phototransistors with fast response time. Scientific reports, 2018. 8(1): p. 11545.
54. Meng, X., et al., Giant superlinear power dependence of photocurrent based on layered Ta₂NiS5 photodetector. Advanced Science, 2023. 10(20): p. 2300413.
55. Xie, Y., et al., Ultrabroadband MoS₂ photodetector with spectral response from 445 to 2717 nm. Advanced Materials, 2017. 29(17): p. 1605972.
56. Silambarasan, K., et al., High spectral responsivity and specific detectivity of p-MoS₂/n-Si heterojunction photodetector for near-IR detection via facile solution process. Journal of Materials Science: Materials in Electronics, 2023. 34(28): p. 1975.
57. Wang, Z., et al., High-performance MoSe2 homojunction infrared photodetector. Infrared Physics & Technology, 2020. 106: p. 103272.
58. Asaithambi, A., et al., Generation of free carriers in MoSe₂ monolayers via energy transfer from CsPbBr3 nanocrystals. Advanced Optical Materials, 2022. 10(14): p. 2200638.
59. Li, J., et al., Transport properties of two-dimensional MoSe₂ and its application to high-performing all-2D photodetector. Nano Materials Science, 2024.
60. Neal, A.T., R. Pachter, and S. Mou, P-type conduction in two-dimensional MoS₂ via oxygen incorporation. Applied Physics Letters, 2017. 110(19).
61. Wu, J., et al., Plasma Treatment for Achieving Oxygen Substitution in Layered MoS₂ and the Room-Temperature Mid-Infrared (10 μm) Photoresponse. ACS Applied Materials & Interfaces, 2023. 15(50): p. 58556-58565.
62. Meng, L. and A. Yamada, Low-resistance orthorhombic MoO3-x thin film derived by two-step annealing. Thin Solid Films, 2018. 665: p. 179-183.
63. Leong, W.S., et al., Tuning the threshold voltage of MoS₂ field-effect transistors via surface treatment. Nanoscale, 2015. 7(24): p. 10823-10831.
64. Lin, Y.-J. and T.-H. Su, SiO₂ substrate passivation effects on the temperature-dependent electrical properties of MoS₂ prepared by the chemical vapor deposition method. Journal of Materials Science: Materials in Electronics, 2017. 28: p. 10106-10111.
65. Hamada, T., et al., Sheet resistance reduction of MoS₂ film using sputtering and chlorine plasma treatment followed by sulfur vapor annealing. IEEE Journal of the Electron Devices Society, 2021. 9: p. 278-285.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *