帳號:guest(18.191.34.169)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張家綸
作者(外文):Chang, Chia-Lun
論文名稱(中文):十二烷基苯磺酸鈉界面活性劑與樹狀高分子之靜電錯合物超分子結構研究
論文名稱(外文):Supramolecular structure of the electrostatic complex of dendrimer and sodium dodecylbenzene sulfonate
指導教授(中文):陳信龍
指導教授(外文):Chen, Hsin-Lung
口試委員(中文):蘇群仁
林裕軒
口試委員(外文):Su, Chun-Jen
Lin, Yu-Hsuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:110030604
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:89
中文關鍵詞:樹枝狀高分子兩性界面活性劑自組裝錯合物超分子結構
外文關鍵詞:dendrimersodium dodecylbenzene sulfonateself-assembled structuresmall-angle X-ray scatteringsurfactant
相關次數:
  • 推薦推薦:0
  • 點閱點閱:14
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文深入探討十二烷苯磺酸鈉(DBSNa)界面活性劑與不同質子化程度(dp)的polyamidoamine (PAMAM) G3和G4樹狀分子靜電錯合物的自組裝結構,經由同步輻射小角度X光散射(SAXS)的解析,觀察到錯合物形成了多種有序的奈米結構,導致液晶相的形成。
首先,對於PAMAM G3樹狀分子的較低質子化程度(dp = 0.3 ~ 0.35)錯合物進行探討。在低的DBSN結合比例(Xn)值下,SAXS曲線表明該錯合物形成了二維六角柱狀相(Colhex),其中DBSNa形成圓柱狀胞排列在二維六角晶格中,而樹狀分子則鑲嵌在柱狀微胞中間的空隙中。在高的Xn值下,觀察到奇特的散射圖譜,其中有兩組六角繞射,表明形成了蜂巢狀超晶格結構。隨著PAMAM G3樹狀分子的質子化程度增加(dp≧0.7),錯合物形成了平面層狀結構,其中極性層和非極性層交替堆疊。這種結構轉變是為了達到更好的電荷匹配效果,導致柱狀微胞更進一步融合,形成了平板層。
本研究進一步探討質子化程度不同的PAMAM G4 樹狀分子與DBSNa的靜電錯合物。隨著Xn的增加,錯合物的結構由Colhex相轉變為具有中心矩形堆疊的柱狀(Colcr)相。而在較高的dp值時,形成了簡單矩形晶格結構。此外,在更高的dp值下,觀察到了更複雜的散射圖譜,被歸因於一個二維與三維單斜晶混成超晶格結構的形成。
總體而言,這項研究揭示了PAMAM G3和G4樹狀分子與DBSNa錯合物形成的多種有序奈米結構,並深化了對錯合機制的理解。這些結果對設計和合成新型功能材料具有重要的參考價值。
This thesis delves into the self-assembled structures of electrostatic complexes formed between sodium dodecyl benzene sulfonate (DBSNa) surfactant and polyamidoamine (PAMAM) G3 and G4 dendrimers with different degrees of protonation (dp). Through the use of synchrotron small-angle X-ray scattering (SAXS), a variety of ordered nanostructures formed by the complexes were identified, leading to the formation of mesomorphic phases.
To begin, the complexes of PAMAM G3 dendrimers with lower degrees of protonation (dp = 0.3 ~ 0.35) were explored. At lower DBSNa binding ratios (Xn), the SAXS curves indicated the formation of a two-dimensional (2D) hexagonal columnar phase (Colhex), where DBSNa molecules formed cylindrical micelles packed into a 2D hexagonal lattice, and the dendrimer molecules were embedded in the interstitial regions between the micelles. At the higher Xn values, distinct scattering patterns featuring two sets of 2D hexagonal diffractions were observed. This scattering pattern was attributed to the formation of a honeycomb superlattice structure composed of DBSNa and the interconnected dendrimer columns cooperatively organized in a hexagonal lattice. As the degree of protonation of PAMAM G3 dendrimers increased (dp≧0.7), the complexes adopted a planar layered structure, with alternating polar and non-polar layers. This structural transition occurred to achieve better charge matching, leading to further fusion of the cylindrical micelles into plate-like layers.
The study further investigated electrostatic complexes between PAMAM G4 dendrimers with varying degrees of protonation and DBSNa. With increasing Xn, the structure of the complexes transitioned from a Colhex phase to a centered rectangular columnar phase (Colcr). At higher dp values, a simple rectangular lattice structure was formed. Moreover, at even higher dp values, more complex scattering patterns were identified and attributed to the formation of a hybrid superlattice structure combining two-dimensional and three-dimensional monoclinic lattices.
In conclusion, this study has revealed a range of ordered nanostructures formed by complexes of PAMAM G3 and G4 dendrimers with DBSNa, which deepens the understanding of the complexation mechanism. These findings hold significant value for the design and synthesis of novel functional materials.

章節目錄
(一) 背景與文獻回顧 16
1.1 前言 16
1.2 樹枝狀高分子dendrimer之文獻 17
1.3 兩性界面活性劑(surfactant)之相關文獻 24
1.4 DBSA-dendrimer自組裝研究結構探討 29
1.5 SDS-dendrimer自主裝研究結構探討 36
1.6 研究動機與目的 47
(二) 樹枝狀聚合物與界面活性劑之研究方法與工具 49
2.1錯合物樣品與材料之準備:PAMAM dendrimer(G3、G4)、界面活性劑DBSNa 49
2.1.1 PAMAM dendrimer質子化程度之調控 49
2.1.2 PAMAM dendrimer與界面活性劑錯合比例之調控 50
2.2 實驗結構分析之原理 51
2.2.2 小角度散射(SAXS, Small Angle X-ray Scattering)原理分析 51
2.2.2 偏光顯微鏡(POM, Polarized Optical Microscope)原理 54
(三) 結果與討論 55
3.1 DBSNa – G3 PAMAM dendrimer之錯合物研究探討 56
3.2 DBSNa – G4 PAMAM dendrimer之錯合物研究探討 76
(四) 總結 85
(五) 相關文獻 86
1. Whitesides, G.M., J.P. Mathias, and C.T. Seto, Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science, 1991. 254(5036): p. 1312-1319.
2. Palmer, L.C. and S.I. Stupp, Molecular self-assembly into one-dimensional nanostructures. Accounts of chemical research, 2008. 41(12): p. 1674-1684.
3. Hsiao, M.-S., H.-L. Chen, and D.-J. Liaw, A mesomorphic blend based on the solid-state complexes of polymers with surfactants. Macromolecules, 2000. 33(1): p. 221-224.
4. Yang, H.-J., et al., Monodisperse copper nanocubes: Synthesis, self-assembly, and large-area dense-packed films. Chemistry of Materials, 2014. 26(5): p. 1785-1793.
5. Eichman, J.D., et al., The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharmaceutical science & technology today, 2000. 3(7): p. 232-245.
6. Peterson, J., et al. Synthesis and CZE analysis of PAMAM dendrimers with an ethylenediamine core. in Proceedings-Estonian Academy of Sciences Chemistry. 2001. TRUEKITUD OU.
7. Fox, L.J., R.M. Richardson, and W.H. Briscoe, PAMAM dendrimer-cell membrane interactions. Advances in Colloid and Interface Science, 2018. 257: p. 1-18.
8. Charles, S., et al., Surface modification of poly (amidoamine)(PAMAM) dendrimer as antimicrobial agents. Tetrahedron letters, 2012. 53(49): p. 6670-6675.
9. Chen, W.-R., et al., Small angle neutron scattering studies of the counterion effects on the molecular conformation and structure of charged G4 PAMAM dendrimers in aqueous solutions. Macromolecules, 2007. 40(16): p. 5887-5898.
10. Devarakonda, B., R.A. Hill, and M.M. de Villiers, The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine. International journal of pharmaceutics, 2004. 284(1-2): p. 133-140.
11. Maiti, P.K., et al., Structure of PAMAM dendrimers: Generations 1 through 11. Macromolecules, 2004. 37(16): p. 6236-6254.
12. Han, M., P. Chen, and X. Yang, Molecular dynamics simulation of PAMAM dendrimer in aqueous solution. Polymer, 2005. 46(10): p. 3481-3488.
13. Liu, Y., et al., PAMAM dendrimers undergo pH responsive conformational changes without swelling. Journal of the American Chemical Society, 2009. 131(8): p. 2798-2799.
14. Maiti, P.K., et al., Effect of solvent and pH on the structure of PAMAM dendrimers. Macromolecules, 2005. 38(3): p. 979-991.
15. Sanwaria, S., et al., Helical packing of nanoparticles confined in cylindrical domains of a self‐assembled block copolymer structure. Angewandte Chemie International Edition, 2014. 53(34): p. 9090-9093.
16. Prosa, T.J., B.J. Bauer, and E.J. Amis, From stars to spheres: A SAXS analysis of dilute dendrimer solutions. Macromolecules, 2001. 34(14): p. 4897-4906.
17. Esfand, R. and D.A. Tomalia, Poly (amidoamine)(PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug discovery today, 2001. 6(8): p. 427-436.
18. Arabahmadi, V. and M. Ghorbani, Surface modified polythiophene nanocomposite using HPC and DBSNa for heavy metal ion removal. Water Science and Technology, 2017. 75(12): p. 2765-2776.
19. Chen, H.-L. and M.-S. Hsiao, Self-assembled mesomorphic complexes of branched poly (ethylenimine) and dodecylbenzenesulfonic acid. Macromolecules, 1999. 32(9): p. 2967-2973.
20. Chen, H.-L., C.-C. Ko, and T.-L. Lin, Self-assembly in the bulk complexes of poly (ethylene oxide) with amphiphilic dodecylbenzenesulfonic acid. Langmuir, 2002. 18(14): p. 5619-5623.
21. Perinelli, D.R., et al., Surfactant self-assembling and critical micelle concentration: one approach fits all? Langmuir, 2020. 36(21): p. 5745-5753.
22. Dutt, S., P.F. Siril, and S. Remita, Swollen liquid crystals (SLCs): a versatile template for the synthesis of nano structured materials. RSC advances, 2017. 7(10): p. 5733-5750.
23. Liu, C.-Y. and H.-L. Chen, Undulating the Lamellar Interface of Polymer–Surfactant Complex by Dendrimer. Macromolecules, 2017. 50(17): p. 6501-6508.
24. Chen, C.-Y., et al., Dendrimer-induced DNA bending. Soft Matter, 2011. 7(1): p. 61-63.
25. Su, C.-J., et al., Nucleosome-like structure from dendrimer-induced DNA compaction. Macromolecules, 2012. 45(12): p. 5208-5217.
26. Yang, C.-C., et al., Structure of the electrostatic complex of DNA with cationic dendrimer of intermediate generation: The role of counterion entropy. Macromolecules, 2014. 47(9): p. 3117-3127.
27. Huang, Y.-C., et al., Elucidating the DNA–Histone Interaction in Nucleosome from the DNA–Dendrimer Complex. Macromolecules, 2016. 49(11): p. 4277-4285.
28. Lai, Y.-C., et al., Helical micelle of an achiral surfactant from the template interaction with dendrimer. Giant, 2023. 14: p. 100147.
29. McGinty, R.K. and S. Tan, Nucleosome structure and function. Chemical reviews, 2015. 115(6): p. 2255-2273.
30. Fenley, A., et al., The nucleosome: from structure to function through physics. Biopolymers and Cell, 2019. 35(3): p. 171-171.
31. McGhee, J.D. and G. Felsenfeld, Nucleosome structure. Annual review of biochemistry, 1980. 49(1): p. 1115-1156.
32. Young, C.-M., et al., Ribbon Phase of Dendrimer–Surfactant Complexes. Macromolecules, 2019. 52(23): p. 9177-9185.
33. Young, C.-M., et al., Dendrimer-mediated columnar mesophase of surfactants. Soft Matter, 2021. 17(2): p. 397-409.
34. Kesharwani, P., et al., PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Materials Today, 2015. 18(10): p. 565-572.
35. Chu, B. and B.S. Hsiao, Small-angle X-ray scattering of polymers. Chemical reviews, 2001. 101(6): p. 1727-1762.
36. 陳信龍 and 鄭有舜, 小角度 X 光散射在高分子奈米結構解析之應用. 科儀新知, 2007(160): p. 7-17.
37. Li, T., A.J. Senesi, and B. Lee, Small angle X-ray scattering for nanoparticle research. Chemical reviews, 2016. 116(18): p. 11128-11180.
38. Chen, K., et al., Self-Assembly Behavior of Sugar-Based Block Copolymers in the Complex Phase Window Modulated by Molecular Architecture and Configuration. Macromolecules, 2022.
39. Nouri, B., et al., Phase Control of Colloid-like Block Copolymer Micelles by Tuning Size Distribution via Thermal Processing. Macromolecules, 2022. 55(21): p. 9820-9832.
40. Oldenbourg, R. and G. Mei, New polarized light microscope with precision universal compensator. Journal of microscopy, 1995. 180(2): p. 140-147.
41. Oldenbourg, R., A new view on polarization microscopy. Nature, 1996. 381(6585): p. 811-812.
42. Waldman, G., Introduction to light: The physics of light, vision, and color. 2002: Courier Corporation.
43. Goldstein, D.H., Polarized light. 2017: CRC press.
44. Abdelaziz, C.E.A.S.B., Electrostatic MOEMS-based Refractive Laser Beam Steering for Imaging Applications. 2018, Military Technical College.
45. Lim, S.-H., et al., Hierarchically self-assembled hexagonal honeycomb and kagome superlattices of binary 1D colloids. Nature Communications, 2017. 8(1): p. 360.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *