帳號:guest(18.188.192.255)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳奎丞
作者(外文):Chen, Kuei-Cheng
論文名稱(中文):合成與鑑定應用於鋰離子電池與光催化產氫光觸媒之環戊二噻吩衍生親水導電共軛高分子
論文名稱(外文):Synthesis and characterization of cyclopentadithiophene-based hydrophilic conductive conjugated polymers for lithium ion battery and photocatalyst
指導教授(中文):堀江正樹
指導教授(外文):Horie, Masaki
口試委員(中文):井手智仁
游進陽
口試委員(外文):Ide, Tomohito
Yu, Chin-Yang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:110030601
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:144
中文關鍵詞:有機合成有機材料鑑定光電材料有機共軛高分子親水性高分子
外文關鍵詞:Organic SynthesisOrganic Material CharacterizationOpto-electronic materialsOrganic Conjugated PolymersHydrophilic Polymers
相關次數:
  • 推薦推薦:0
  • 點閱點閱:95
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
自光電元件光速發展後,有機導電共軛高分子開始被廣泛應用於光電元件的開發與不同用途。在本研究中著重於合成新型態一系列包含環戊二噻吩(CPDT)衍生的親水導電共軛高分子,並鑑定該系列親油性與親水性高分子其各項基本與光電性質,並目標應用於各種新穎光電材料領域,包括鋰離子電池矽陽極導電黏著劑與光催化產氫之光催化劑。在本論文中,將詳細介紹與說明關於利用不同高分子聚合法包含鈴木偶聯反應、鈀催化直接芳基化聚合反應、鈀催化氧化性直接芳基化聚合反應,將具有CPDT結構之新型態單體與苯並噻唑的共軛單體進行共聚形成四個親油性之共軛高分子。下一步再將上述高分子進行皂化,目標獲得具有高度親水性和導電能力的光電材料。
第一章將介紹本研究中所運用之基礎背景知識以及相關資訊,除此之外也將介紹親水性有機導電共軛高分子於鋰離子電池矽陽極導電黏著劑以及光催化產氫之光催化劑的應用。第二章將介紹本研究中所有親油性以及親水性共軛高分子的合成過程及方法。另外也將介紹上述高分子所有合成、鑑定以及分析之數據資料。第三章將提供本研究目前所得之結論。第四章將呈現本研究未完成之研究項目以及未來之預期目標。第五章將呈現本研究中詳細之實驗流程以及完整合成數據。除此之外,也將呈現本研究中基本之鑑定資料與數據。
Conjugated polymers have been widely used as an essential element in opto-electronics. In this research, a series of cyclopentadithiophene-based hydrophobic and hydrophilic conjugated polymers has been synthesized, characterized, and utilized for opto-electronic applications, including lithium ion batteries (LIBs) and photocatalyst for photo-catalyzed hydrogen evolution. Hydrophobic conjugated polymers, poly[di-tert-butyl-3,3'-(2,6-dimethyl-4H-cyclopentadithiophene-4,4-diyl)dipropanoate] (DTBAPCPDT), Poly[tert-butyl-3-(4-(2-ethylhexyl)-2,6-dimethyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-4-yl)propanoate] (EHTBAPCPDT), poly[di-tert-butyl-3,3'-(2-methyl-6-(7-methylbenzo[1,2,5]thiadiazol-4-yl)-4H-cyclopentadithiophene-4,4-diyl)dipropanoate] (DTBAPCPDTBT), and poly[tert-butyl-3-(4-(2-ethylhexyl)-2-methyl-6-(7-methylbenzo[1,2,5]thiadiazol-4-yl)-4H-cyclopentadithiophen-4-yl)propanoate] (EHTBAPCPDTBT), are synthesized via oxidative direct arylation polymerization, direct arylation polymerization, and Suzuki coupling polymerization, respectively. Thereafter, the corresponding hydrophilic conjugated polymers with sodium salt groups are synthesized via saponification of these hydrophobic polymers.
In Chapter 1, the background knowledge and relevant information of this work are introduced. In addition, their applications such as conductive polymer binders and hydrophilic photocatalyst are described. In Chapter 2, the synthesis process and methods of these hydrophobic and hydrophilic conjugated polymers are described. Also, the synthetic, characterization, and analytical data related to the polymers are represented. In Chapter 3, the current conclusion of this work is provided. In Chapter 4, the future work, unfinished research, and anticipating targets are provided. In Chapter 5, the detailed experimental procedures and supporting data in this research are involved. Moreover, the fundamental characterization data are provided.
Abstract------2
摘要------3
Chapter 1 Introduction------7
1.1 Introduction of conjugated polymers------7
1.2 Synthetic methods of conjugated polymers------10
1.2.1 Overview of polymerization methods------10
1.2.2 Suzuki–Miyaura cross coupling reaction------13
1.2.3 Direct arylation polymerization------15
1.3 Applications of conjugated polymers------20
1.3.1 Conductive polymer binder for silicon-based anode in lithium ion battery------20
1.3.2 Polymer dots for photocatalyst in light-driven hydrogen evolution------26
1.4 Aim of work------29
Chapter 2 Synthesis and Characterization of Cyclopentadithiophene- Based Hydrophilic Conjugated Polymers as Conductive Binders for Silicon Lithium Ion Battery and Photocatalyst for Photo-induced Hydrogen Evolution------34
2.1 Synthesis and preparation of monomers------34
2.2 Synthesis and preparation of polymers------40
2.2.1 Synthesis of P[DTBACPDT] and P[DTBACPDTNa]------43
2.2.2 Synthesis of P[DTBACPDTBT]-S and P[DTBACPDTBTNa]------47
2.2.3 Synthesis of P[DTBACPDTBT]-DA and P[DTBACPDTBTNa]------50
2.2.4 Synthesis of P[EHTBACPDT] and P[EHTBACPDTNa] via direct arylation------52
2.2.5 Synthesis of P[EHTBACPDTBT] and P[EHTBACPDTBTNa] via direct arylation------55
2.3 KBr-FTIR Spectra of CPDT-based hydrophobic and hydrophilic polymers------58
2.3.1 KBr-FTIR Spectra of P[DTBACPDT] and P[DTBACPDTNa]------59
2.3.2 KBr-FTIR Spectra of P[DTBACPDTBT] and P[DTBACPDTBTNa]------60
2.3.3 KBr-FTIR Spectra of P[EHTBACPDT] and P[EHTBACPDTNa]------61
2.3.4 KBr-FTIR Spectra of P[EHTBACPDTBT] and P[EHTBACPDTBTNa]------62
2.4 Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) mass spectra of CPDT-based hydrophobic and hydrophilic polymers
------63
2.4.1 MALDI-TOF mass spectra of P[DTBACPDT]------63
2.4.2 MALDI-TOF mass spectra of P[DTBACPDTNa]------65
2.4.3 MALDI-TOF mass spectra of P[DTBACPDTBT]-S------67
2.4.4 MALDI-TOF mass spectra of P[DTBACPDTBTNa]-S------69
2.4.5 MALDI-TOF mass spectra of P[EHTBACPDT]------71
2.4.6 MALDI-TOF mass spectra of P[EHTBACPDTNa]------72
2.4.7 MALDI-TOF mass spectra of P[EHTBACPDTBT]------74
2.4.8 MALDI-TOF mass spectra of P[EHTBACPDTBTNa]------76
2.5 Optical properties of CPDT-based hydrophobic and hydrophilic polymers------78
2.5.1 UV-vis absorption spectra of hydrophobic CPDT- based polymers in solution and thin film state------78
2.5.2 UV-vis absorption spectra of hydrophilic CPDT-based polymers in solution state------82
2.6 Electrochemical properties of CPDT hydrophobic and hydrophilic polymers------84
2.7 Thermal Properties of CPDT-based Polymers------89
2.7.1 Thermogravimetric Analysis (TGA) Spectra of CPDT-based Polymers------89
2.8 Hydrophilic Properties of CPDT-based Polymers------91
2.9 Morphological Properties of CPDT-based Polymers------94
2.9.1 Zeta Potential of CPDT-based Hydrophilic Polymers------94
2.9.2 Particle Sizing of CPDT-based Hydrophilic Polymers------96
Chapter 3 Conclusion------99
Chapter 4 Future Work------101
Chapter 5 Experimental Section and Supporting Data------103
5.1 General Methods of Synthesis and Characterizations------103
5.2 Synthetic procedures of monomers------105
5.2.1 Synthesis of 4H-cyclopenta[2,1-b:3,4-b’]dithiophene (CPDT)------105
5.2.2 Synthesis of 4-(2-ethylhexyl)-4H-cyclopenta[1,2-b:5,4-b']dithiophene (SEHCPDT)------109
5.2.3 Synthesis of tert-butyl-3-(4-(2-ethylhexyl)-4H-cyclopenta[1,2-b:5,4-b']dithiophen-4-yl)propanoate (EHTBACPDT)------111
5.2.4 Synthesis of tert-butyl-3-(2,6-dibromo-4-(2-ethylhexyl)-4H-cyclopenta[1,2-b:5,4-b']dithiophen-4-yl)propanoate (EHTBACPDTBr)------115
5.2.5 Synthesis of di-tert-butyl-3,3'-(4H-cyclopenta[1,2-b:5,4-b']dithiophene-4,4-diyl)dipropanoate (DTBACPDT)------118
5.2.6 Synthesis of di-tert-butyl-3,3'-(2,6-dibromo-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4,4-diyl)dipropanoate (DTBACPDTBr)------122
5.3 Synthetic procedures of hydrophobic polymers------125
5.3.1 Synthesis of polymer P[DTBACPDT]------125
5.3.2 Synthesis of polymer P[DTBACPDTBT]-S------127
5.3.3 Synthesis of polymer P[DTBACPDTBT]-DA------129
5.3.4 Synthesis of polymer P[EHTBACPDT]-DA------130
5.3.5 Synthesis of polymer P[EHTBACPDTBT]-DA------132
5.4 Synthetic procedures of hydrophilic polymers------134
5.4.1 Synthesis of polymer P[DTBACPDTNa]------134
5.4.2 Synthesis of polymer P[DTBACPDTBTNa]------136
5.4.3 Synthesis of polymer P[EHTBACPDTNa]------138
5.4.4 Synthesis of polymer P[EHTBACPDTBTNa]------140

1.G. Luo, X. Ren, S. Zhang, H. Wu, W. C. Choy, Z. He and Y. Cao, Small, 2016, 12, 1547-1571.
2.J. Mei, Y. Diao, A. L. Appleton, L. Fang and Z. Bao, J. Am. Chem. Soc., 2013, 135, 6724-6746.
3.O. Ostroverkhova, Chem. Rev., 2016, 116, 13279-13412.
4.Z. Zhang, M. Liao, H. Lou, Y. Hu, X. Sun and H. Peng, Adv. Mater., 2018, 30, 1704261.
5.H. Chen, M. Ling, L. Hencz, H. Y. Ling, G. Li, Z. Lin, G. Liu and S. Zhang, Chem. Rev., 2018, 118, 8936-8982.
6.P. M. Beaujuge and J. R. Reynolds, Chem. Rev., 2010, 110, 268-320.
7.D. T. McQuade, A. E. Pullen and T. M. Swager, Chem. Rev., 2000, 100, 2537-2574.
8.P. Lin and F. Yan, Adv. Mater., 2012, 24, 34-51.
9.T. Skolheim, R. Elsenbaumer and J. Reynolds, Journal, 1998.
10.T. M. Swager, Macromolecules, 2017, 50, 4867-4886.
11.H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and A. J. Heeger, J. Chem. Soc. Chem. Comm., 1977, 578-580.
12.R. M. Pankow and B. C. Thompson, Polymer, 2020, 207, 122874.
13.T.-H. Le, Y. Kim and H. Yoon, Polymers, 2017, 9, 150.
14.S. Stafström and K. Chao, Phys. Rev. B, 1984, 30, 2098.
15.R. Ravichandran, S. Sundarrajan, J. R. Venugopal, S. Mukherjee and S. Ramakrishna, J. R. Soc. Interface, 2010, 7, S559-S579.
16.A. E. Rudenko and B. C. Thompson, J. Polym. Sci. Pol. Chem., 2015, 53, 135-147.
17.V. Saxena, B. Malhotra and R. Menon, Hdb. Polym. Elect., 2002, 3-65.
18.A. Saxman, R. Liepins and M. Aldissi, Prog. Polym. Sci., 1985, 11, 57-89.
19.H. Gilch, J. Polym. Sci. A1., 1966, 4, 1351-1357.
20.R. N. McDonald and T. W. Campbell, J. Am. Chem. Soc., 1960, 82, 4669-4671.
21.L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik and J. R. Reynolds, Adv. Mater., 2000, 12, 481-494.
22.T. Yamamoto, Y. Hayashi and A. Yamamoto, B. Chem. Soc. Jpn., 1978, 51, 2091-2097.
23.M. Rehahn, A.-D. Schlüter, G. Wegner and W. J. Feast, Polymer, 1989, 30, 1054-1059.
24.R. D. McCullough and R. D. Lowe, J. Chem. Soc. Chem. Comm., 1992, 70-72.
25.R. S. Loewe, S. M. Khersonsky and R. D. McCullough, Adv. Mater., 1999, 11, 250-253.
26.J. Sakamoto, M. Rehahn, G. Wegner and A. D. Schlüter, Macromol. Rapid. Comm., 2009, 30, 653-687.
27.Z. Bao, W. Chan and L. Yu, Chem. Mater., 1993, 5, 2-3.
28.Z. Bao, Y. Chen, R. Cai and L. Yu, Macromolecules, 1993, 26, 5281-5286.
29.M. Karikomi, C. Kitamura, S. Tanaka and Y. Yamashita, J. Am. Chem. Soc., 1995, 117, 6791-6792.
30.T. Yamamoto, Z.-h. Zhou, T. Kanbara, M. Shimura, K. Kizu, T. Maruyama, Y. Nakamura, T. Fukuda, B.-L. Lee and N. Ooba, J. Am. Chem. Soc., 1996, 118, 10389-10399.
31.A. J. Heeger, Chem. Soc. Rev., 2010, 39, 2354-2371.
32.B. C. Barnard, Platin. Met. Rev., 2008, 52, 38-45.
33.A. Suzuki, Angew. Chem. Int. Edit., 2011, 50, 6722-6737.
34.N. Miyaura, T. Yanagi and A. Suzuki, Synthetic Commun., 1981, 11, 513-519.
35.C. Len, S. Bruniaux, F. Delbecq and V. S. Parmar, Catalysts, 2017, 7, 146.
36.A. A. Braga, N. H. Morgon, G. Ujaque and F. Maseras, J. Am. Chem. Soc., 2005, 127, 9298-9307.
37.R. Martin and S. L. Buchwald, Accounts Chem. Res., 2008, 41, 1461-1473.
38.J. T. Blaskovits and M. Leclerc, Macromol. Rapid Comm., 2019, 40, 1800512.
39.F. Popowycz, E. Métay and M. Lemaire, Cr. Chim., 2011, 14, 621-628.
40.Y. Fujiwara, I. Moritani, S. Danno, R. Asano and S. Teranishi, J. Am. Chem. Soc., 1969, 91, 7166-7169.
41.D. Alberico, M. E. Scott and M. Lautens, Chem. Rev., 2007, 107, 174-238.
42.N. S. Gobalasingham and B. C. Thompson, Prog. Polym. Sci., 2018, 83, 135-201.
43.S. I. Gorelsky, D. Lapointe and K. Fagnou, J. Am. Chem. Soc., 2008, 130, 10848-10849.
44.T. Bura, J. T. Blaskovits and M. Leclerc, J. Am. Chem. Soc., 2016, 138, 10056-10071.
45.H. Bohra and M. Wang, J. Mater. Chem. A, 2017, 5, 11550-11571.
46.T. Bura, S. Beaupré, M.-A. Légaré, J. Quinn, E. Rochette, J. T. Blaskovits, F.-G. Fontaine, A. Pron, Y. Li and M. Leclerc, Chem. Sci., 2017, 8, 3913-3925.
47.A. E. Rudenko and B. C. Thompson, Macromolecules, 2015, 48, 569-575.
48.N. S. Gobalasingham, S. Noh and B. C. Thompson, Polym. Chem., 2016, 7, 1623-1631.
49.J.-M. Tarascon and M. Armand, Nature, 2001, 414, 359-367.
50.A. Manthiram, Y. Fu, S.-H. Chung, C. Zu and Y.-S. Su, Chem. Rev., 2014, 114, 11751-11787.
51.J. Zhou, Q. Shi, S. Ullah, X. Yang, A. Bachmatiuk, R. Yang and M. H. Rummeli, Adv. Funct. Mater., 2020, 30, 2004648.
52.D. W. Lee and B. R. Yoo, J. Ind. Eng. Chem., 2016, 38, 1-12.
53.J. W. Choi and D. Aurbach, Nat. Rev. Mater., 2016, 1, 1-16.
54.T.-w. Kwon, J. W. Choi and A. Coskun, Chem. Soc. Rev., 2018, 47, 2145-2164.
55.R. Barbucci, A. Magnani and M. Consumi, Macromolecules, 2000, 33, 7475-7480.
56.D. Liu, Y. Zhao, R. Tan, L.-L. Tian, Y. Liu, H. Chen and F. Pan, Nano Energy, 2017, 36, 206-212.
57.S. K. Dewangan, M. Mohan, V. Kumar, A. Sharma and B. Ahn, Int. J. Energ. Res., 2022.
58.C. Dai and B. Liu, Energ. Environ. Sci., 2020, 13, 24-52.
59.L. Wang, R. Fernández‐Terán, L. Zhang, D. L. Fernandes, L. Tian, H. Chen and H. Tian, Angew. Chem. Int. Edit., 2016, 55, 12306-12310.
60.W.-J. Ong, L.-L. Tan, Y. H. Ng, S.-T. Yong and S.-P. Chai, Chem. Rev., 2016, 116, 7159-7329.
61.F. Beuerle and B. Gole, Angew. Chem. Int. Edit., 2018, 57, 4850-4878.
62.P. Puthiaraj, Y.-R. Lee, S. Zhang and W.-S. Ahn, J. Mater. Chem. A, 2016, 4, 16288-16311.
63.S. Kundu and A. Patra, Chem. Rev., 2017, 117, 712-757.
64.R. C. Evans, J. Mater. Chem. C, 2013, 1, 4190-4200.
65.D. Tuncel and H. V. Demir, Nanoscale, 2010, 2, 484-494.
66.Z. G. Zhang and J. Wang, J. Mater. Chem., 2012, 22, 4178-4187.
67.M. H. Elsayed, M. Abdellah, Y.-H. Hung, J. Jayakumar, L.-Y. Ting, A. M. Elewa, C.-L. Chang, W.-C. Lin, K.-L. Wang and M. Abdel-Hafiez, ACS Appl. Mater. Inter., 2021, 13, 56554-56565.
68.C. Liu, K. Wang, X. Gong and A. J. Heeger, Chem. Soc. Rev., 2016, 45, 4825-4846.
69.C. Yang, B. C. Ma, L. Zhang, S. Lin, S. Ghasimi, K. Landfester, K. A. Zhang and X. Wang, Angew. Chem., 2016, 128, 9348-9352.
70.S.-L. Suraru, J. A. Lee and C. K. Luscombe, Journal, 2016.
71.L. Ye and B. C. Thompson, J. Polym. Sci., 2022, 60, 393-428.
72.Z. Liu, Z. Li, X. Zhao, L. Zhang and Q. Li, Polymers, 2018, 10, 625.
(此全文20280717後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *