|
[1] Abraham Achterberg, Yves A. Gallant, John G. Kirk, and Axel W. Guthmann. Particle acceleration by ultrarelativistic shocks: theory and simulations. Monthly Notices of the Royal Astronomical Society, 328(2):393–408, December 2001. [2] M. Ackermann, M. Ajello, A. Allafort, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, and et al. GeV Gamma-ray Flux Upper Limits from Clusters of Galaxies. The Astrophysical Journal, 717(1):L71–L78, July 2010. [3] W. I. Axford, E. Leer, and G. Skadron. The Acceleration of Cosmic Rays by Shock Waves. 11:132, January 1977. [4] Ricarda S. Beckmann, Yohan Dubois, Alisson Pellissier, Valeria Olivares, Fiorella L. Polles, Oliver Hahn, Pierre Guillard, and Matthew D. Lehnert. Cosmic rays and thermal instability in self-regulating cooling flows of massive galaxy clusters. Astronomy and Astrophysics, 665:A129, September 2022. [5] A. R. Bell. The acceleration of cosmic rays in shock fronts – I. Monthly Notices of the Royal Astronomical Society, 182(2):147–156, February 1978. [6] R. D. Blandford and J. P. Ostriker. Particle acceleration by astrophysical shocks. The Astrophysical Journal, 221:L29–L32, April 1978. [7] C. M. Booth, Oscar Agertz, Andrey V. Kravtsov, and Nickolay Y. Gnedin. Simulations of Disk Galaxies with Cosmic Ray Driven Galactic Winds. The Astrophysical Journal, 777(1):L16, November 2013. [8] D. Breitschwerdt, J. F. McKenzie, and H. J. Voelk. Galactic winds. I. Cosmic ray and wave driven winds from the galaxy. Astronomy Astrophysics, 245:79, May 1991. [9] Gianfranco Brunetti and Thomas W. Jones. Cosmic Rays in Galaxy Clusters and Their Nonthermal Emission. International Journal of Modern Physics D, 23(4):1430007–98, March 2014. [10] D. Caprioli and A. Spitkovsky. Simulations of ion acceleration at nonrelativistic shocks. i. acceleration efficiency. The Astrophysical Journal, 783(2):91, March 2014. [11] Damiano Caprioli, Ana-Roxana Pop, and Anatoly Spitkovsky. Simulations and Theory of Ion Injection at Non-relativistic Collisionless Shocks. The Astrophysical Journal, 798(2):L28, January 2015. [12] Yohan Dubois, Benoˆıt Commer¸con, Alexandre Marcowith, and Loann Brahimi. Shock-accelerated cosmic rays and streaming instability in the adaptive mesh refinement code Ramses. Astronomy and Astrophysics - A&A, 631:A121, November 2019. [13] R. Farber, M. Ruszkowski, H. Y. K. Yang, and E. G. Zweibel. Impact of Cosmic-Ray Transport on Galactic Winds. The Astrophysical Journal, 856(2):112, April 2018. [14] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo. FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes. The Astrophysical Journal, 131(1):273–334, November 2000. [15] Fulai Guo and William G. Mathews. Cosmic-ray-dominated AGN Jets and the Formation of X-ray Cavities in Galaxy Clusters. The Astrophysical Journal, 728(2):121, February 2011. [16] Xinyi Guo, Lorenzo Sironi, and Ramesh Narayan. Non-thermal electron acceleration in low mach number collisionless shocks. i. particle energy spectra and acceleration mechanism. The Astrophysical Journal, 794(2):153, October 2014. [17] Ji-Hoon Ha, Dongsu Ryu, Hyesung Kang, and Allard Jan van Marle. Proton acceleration in weak quasi-parallel intracluster shocks: Injection and early acceleration. The Astrophysical Journal, 864(2):105, September 2018. [18] H.E.S.S. Collaboration, Abramowski, A., Acero, F., Aharonian, F., Akhperjanian, A. G., Anton, G., Balzer, A., Barnacka, A., Barres de Almeida, U., and et al. A new snr with tev shell-type morphology: Hess j1731-347. Astronomy and Astrophysics - A&A, 531:A81, July 2011. [19] F. Holguin, M. Ruszkowski, A. Lazarian, R. Farber, and H. Y. K. Yang. Role of cosmic-ray streaming and turbulent damping in driving galactic winds. Monthly Notices of the Royal Astronomical Society, 490(1):1271–1282, November 2019. [20] K. Koyama, R. Petre, E. V. Gotthelf, U. Hwang, M. Matsuura, M. Ozaki, and S. S. Holt. Evidence for shock acceleration of high-energy electrons in the supernova remnant SN1006. Nature, 378(6554):255–258, November 1995. [21] G. F. Krymskii. A regular mechanism for the acceleration of charged particles on the front of a shock wave. Akademiia Nauk SSSR Doklady, 234:1306–1308, June 1977. [22] Yen-Hsing Lin, H. Y. Karen Yang, and Ellis R. Owen. Evolution and feedback of AGN jets of different cosmic ray composition. Monthly Notices of the Royal Astronomical Society, 520(1):963–975, March 2023. [23] Francesco Miniati, Dongsu Ryu, Hyesung Kang, T. W. Jones, Renyue Cen, and Jeremiah P. Ostriker. Properties of Cosmic Shock Waves in Large-Scale Structure Formation. The Astrophysical Journal, 542(2):608–621, October 2000. [24] C. Pfrommer, R. Pakmor, K. Schaal, C. M. Simpson, and V. Springel. Simulating cosmic ray physics on a moving mesh. Monthly Notices of the Royal Astronomical Society, 465(4):4500–4529, November 2016. [25] C. Pfrommer, V. Springel, T. A. Enßlin, and M. Jubelgas. Detecting shock waves in cosmological smoothed particle hydrodynamics simulations. Monthly Notices of the Royal Astronomical Society, 367(1):113–131, March 2006. [26] Vicent Quilis, Jos´e M, . Ib´a˜nez, and Diego S´aez. On the Role of Shock Waves in Galaxy Cluster Evolution. The Astrophysical Journal, 502(2):518– 530, August 1998. [27] Mateusz Ruszkowski, H. Y. K. Yang, and Ellen Zweibel. Global Simulations of Galactic Winds Including Cosmic-ray Streaming. The Astrophysical Journal, 834(2):208, January 2017. [28] Dongsu Ryu, Hyesung Kang, and Ji-Hoon Ha. A diffusive shock acceleration model for protons in weak quasi-parallel intracluster shocks. The Astrophysical Journal, 883(1):60, September 2019. [29] Dongsu Ryu, Hyesung Kang, Eric Hallman, and T. W. Jones. Cosmological shock waves and their role in the large-scale structure of the universe. The Astrophysical Journal, 593(2):599, August 2003. [30] Kevin Schaal and Volker Springel. Shock finding on a moving mesh – i. shock statistics in non-radiative cosmological simulations. Monthly Notices of the Royal Astronomical Society, 446(4):3992–4007, December 2014. [31] Lorenzo Sironi and Anatoly Spitkovsky. Particle Acceleration in Relativistic Magnetized Collisionless Pair Shocks: Dependence of Shock Acceleration on Magnetic Obliquity. The Astrophysical Journal, 698(2):1523–1549, June 2009. [32] Anatoly Spitkovsky. Simulations of relativistic collisionless shocks: shock structure and particle acceleration. In Tomasz Bulik, Bronislaw Rudak, and Grzegorz Madejski, editors, Astrophysical Sources of High Energy Particles and Radiation, volume 801 of American Institute of Physics Conference Series, pages 345–350, November 2005. [33] Anatoly Spitkovsky. Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last? The Astrophysical Journal, 682(1):L5, July 2008. [34] Volker Springel. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Monthly Notices of the Royal Astronomical Society, 401(2):791–851, January 2010. [35] D. Wittor, F. Vazza, D. Ryu, and H. Kang. Limiting the shock acceleration of cosmic ray protons in the ICM. Monthly Notices of the Royal Astronomical Society, 495(1):L112–L117, June 2020. [36] H. Y. K. Yang, M. Ruszkowski, P. M. Ricker, E. Zweibel, and D. Lee. The fermi bubbles: Supersonic active galactic nucleus jets with anisotropic cosmicray diffusion. The Astrophysical Journal, 761(2):185, December 2012. [37] H. Y. Karen Yang, Massimo Gaspari, and Carl Marlow. The Impact of Radio AGN Bubble Composition on the Dynamics and Thermal Balance of the Intracluster Medium. The Astrophysical Journal, 871(1):6, January 2019. |