帳號:guest(3.144.105.2)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周迺皓
作者(外文):Chou, Nai-Hao
論文名稱(中文):物理活動與心血管疾病之統合性分析應用於外溢型保險商品定價與回饋機制
論文名稱(外文):Meta Analysis on Physical Activity and Cardiovascular Disease – An Application on the Valuation of Spillover Insurance
指導教授(中文):蔡子晧
銀慶剛
指導教授(外文):Tsai, Tzu-Hao
Ing, Ching-Kang
口試委員(中文):曾祺峰
鄭宏文
口試委員(外文):Tzeng, Chi-Feng
Cheng, Hung-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:統計學研究所
學號:110024517
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:46
中文關鍵詞:物理活動心血管疾病研究間變異統合性分析網絡式統合性分析外溢回饋
外文關鍵詞:physical activitycardiovascular diseasebetween-study variancemeta-analysisnetwork meta-analysisspillover
相關次數:
  • 推薦推薦:0
  • 點閱點閱:68
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用統合性分析(Meta-analysis)探討物理活動(Physical activity, PA)和心血管疾病(Cardiovascular disease, CVD)之間的關聯性,並將其應用於外溢型保險商品的定價和回饋機制。通過 PM 二階動差改良法,改善隨機效應模型(Random-effect model)下對於研究間變異的估計,並利用模擬結果比較不同動差與不同估計方法之間的準確性。結合大量研究數據,包括受試者年齡、觀測區間、活動水平和心血管健康等因素,開發一種評估死亡風險的模型。透過統合性分析,本研究取得無運動狀況及有運動狀況對於心血管疾病死亡率的勝算比(Odds ratio, OR)為 0.560,再考慮不同類別設計,結合網絡式統合性分析(Network meta-analysis)計算出勝算比為 0.617,且得到活動強度超過特定水準後無助於死亡率改善的推論。根據上述結果,保險公司能夠更準確地針對不同物理活動強度進行定價,並設計了一套外溢回饋機制,通過激勵被保險人提升物理活動來降低保費。然而,該領域仍處於研究和開發階段,需要進一步的理論研究和實踐。
This study employs meta-analysis to investigate the association between physical activity (PA) and cardiovascular disease (CVD), and applies it to the pricing and feedback mechanism of a spillover insurance product. By utilizing the PM 2nd-moment difference method to enhance the estimation of between-study variance in the random-effects model, we compare the accuracy of different moments and estimation methods through simulation results. Integrating a substantial amount of research data, including factors such as subject age, observation period, activity levels, and cardiovascular health, a model for assessing mortality risk is developed. Through meta-analysis, this study obtains an odds ratio (OR) of 0.560 for the comparison between no exercise and exercise conditions regarding cardiovascular disease mortality rate. Further considering different category designs and incorporating network meta-analysis, the calculated odds ratio is 0.617, suggesting no significant improvement in mortality rate beyond a certain threshold of activity intensity. Based on these findings, insurance companies can more accurately price different levels of physical activity and design a feedback mechanism that incentivizes policyholders to increase their physical activity and reduce premiums. However, this field is still in the research and development stage, requiring further theoretical investigation and practical implementation.
1. 緒論 (Page 1)
2. 文獻回顧 (Page 2)
3. 研究方法 (Page 4)
4. 模擬結果 (Page 15)
5. CVD 與 PA 強度之實證 (Page 17)
6. 外溢商品的設計與評價 (Page 23)
7. 結論 (Page 26)
References (Page 28)
Armstrong, M. E., Green, J., Reeves, G. K., Beral, V., and Cairns, B. J. (2015). Frequent physical activity may not reduce vascular disease risk as much as moderate activity: large prospective study of women in the united kingdom. Circulation, 131(8):721–729.
Bergwall, S., Acosta, S., Ramne, S., Mutie, P., and Sonestedt, E. (2021). Leisure-time physical activities and the risk of cardiovascular mortality in the malmö diet and cancer study. BMC Public Health, 21(1):1–12.
Biscaglia, S., Campo, G., Sorbets, E., Ford, I., Fox, K. M., Greenlaw, N., Parkhomenko, A., Tardif, J.-C., Tavazzi, L., Tendera, M., et al. (2020). Relationship between physical activity and long-term outcomes in patients with stable coronary artery disease. European Journal of Preventive Cardiology, 27(4):426–436.
Bruinius, J. W., Hannan, M., Chen, J., Brown, J., Kansal, M., Meza, N., Saunders, M. R., He, J., Ricardo, A. C., Lash, J. P., et al. (2022). Self-reported physical activity and cardiovascular events in adults with ckd: Findings from the cric (chronic renal insufficiency cohort) study. American Journal of Kidney Diseases, 80(6):751–761.
Cheng, S. W. M., McKeough, Z., Alison, J., Dennis, S., Hamer, M., and Stamatakis, E. (2018). Associations of total and type-specific physical activity with mortality in chronic obstructive pulmonary disease: a population-based cohort study. BMC Public Health, 18(1):1–11.
Choi, Y. and Choi, J. W. (2022). Changes in the frequency of moderate-to-vigorous physical activity and subsequent risk of all-cause and cardiovascular disease mortality. International Journal of Environmental Research and Public Health, 19(1):504.
Chudasama, Y. V., Zaccardi, F., Gillies, C. L., Dhalwani, N. N., Yates, T., Rowlands, A. V., Davies, M. J., and Khunti, K. (2020). Leisure-time physical activity and life expectancy in people with cardiometabolic multimorbidity and depression. Journal of internal medicine, 287(1):87–99.
Clara, A., Berenguer, G., Pérez-Fernández, S., Schröder, H., Ramos, R., Grau, M., Degano, I. R., Fernandez-Sanles, A., Marrugat, J., and Elosua, R. (2021). Analysis of the doseresponse relationship of leisure-time physical activity to cardiovascular disease and all-cause mortality: the regicor study. Revista Española de Cardiología (English Edition), 74(5):414–420.
Dalene, K. E., Tarp, J., Selmer, R. M., Ariansen, I. K. H., Nystad, W., Coenen, P., Anderssen, S. A., Steene-Johannessen, J., and Ekelund, U. (2021). Occupational physical activity and longevity in working men and women in norway: a prospective cohort study. The Lancet Public Health, 6(6):e386–e395.
DeFina, L. F., Radford, N. B., Barlow, C. E., Willis, B. L., Leonard, D., Haskell, W. L., Farrell, S. W., Pavlovic, A., Abel, K., Berry, J. D., et al. (2019). Association of all-cause and cardiovascular mortality with high levels of physical activity and concurrent coronary artery calcification. JAMA cardiology, 4(2):174–181.
del Pozo Cruz, B., Ahmadi, M., Inan-Eroglu, E., Huang, B.-H., and Stamatakis, E. (2022). Prospective associations of accelerometer-assessed physical activity with mortality and incidence of cardiovascular disease among adults with hypertension: The uk biobank study. Journal of the American Heart Association, 11(6):e023290.
DerSimonian, R. and Laird, N. (1986). Meta-analysis in clinical trials. Controlled clinical trials, 7(3):177–188.
Dhaliwal, S. S., Welborn, T. A., and Howat, P. A. (2013). Recreational physical activity as an independent predictor of multivariable cardiovascular disease risk. PloS one, 8(12):e83435.
Ekblom-Bak, E., Halldin, M., Vikström, M., Stenling, A., Gigante, B., de Faire, U., Leander, K., and Hellénius, M.-L. (2021). Physical activity attenuates cardiovascular risk and mortality in men and women with and without the metabolic syndrome–a 20-year follow-up of a population-based cohort of 60-year-olds. European journal of preventive cardiology, 28(12): 1376–1385.
Fan, M., Yu, C., Guo, Y., Bian, Z., Li, X., Yang, L., Chen, Y., Li, M., Li, X., Chen, J., et al. (2018). Effect of total, domain-specific, and intensity-specific physical activity on all-cause and cardiovascular mortality among hypertensive adults in china. Journal of hypertension, 36(4):793.
Hamer, M., O'Donovan, G., and Stamatakis, E. (2019). Association between physical activity and sub-types of cardiovascular disease death causes in a general population cohort. European Journal of Epidemiology, 34:483–487.
Hao, Z., Zhang, X.-N., Zhan, S., Ling, Y., Zhang, W.-L., Kun, H., Xue, H.-Q., Xiao-Yan, Z., and Song-He, S. (2020). Association of level of leisure-time physical activity with risks of all-cause mortality and cardiovascular disease in an elderly chinese population: A prospective cohort study. Journal of Geriatric Cardiology: JGC, 17(10):628.
Hermansen, R., Jacobsen, B. K., Løchen, M.-L., and Morseth, B. (2019). Leisure time and occupational physical activity, resting heart rate and mortality in the arctic region of norway: The finnmark study. European journal of preventive cardiology, 26(15):1636–1644.
Hibler, E. A., Zhu, X., Shrubsole, M. J., Hou, L., and Dai, Q. (2020). Physical activity, dietary calcium to magnesium intake and mortality in the national health and examination survey 1999–2006 cohort. International journal of cancer, 146(11):2979–2986.
Holtermann, A., Schnohr, P., Nordestgaard, B. G., and Marott, J. L. (2021). The physical activity paradox in cardiovascular disease and all-cause mortality: the contemporary Copenhagen general population study with 104 046 adults. European heart journal, 42(15):1499–1511.
Huang, B.-H., Duncan, M. J., Cistulli, P. A., Nassar, N., Hamer, M., and Stamatakis, E. (2022). Sleep and physical activity in relation to all-cause, cardiovascular disease and cancer mortality risk. British journal of sports medicine, 56(13):718–724.
Inoue, K., Mayeda, E. R., Paul, K. C., Shih, I.-F., Yan, Q., Yu, Y., Haan, M., and Ritz, B. R. (2020). Mediation of the associations of physical activity with cardiovascular events and mortality by diabetes in older mexican americans. American journal of epidemiology, 189(10):1124–1133.
Jackson, D., Barrett, J. K., Rice, S., White, I. R., and Higgins, J. P. (2014). A design-bytreatment interaction model for network meta-analysis with random inconsistency effects. Statistics in medicine, 33(21):3639–3654.
Jackson, D., Veroniki, A. A., Law, M., Tricco, A. C., and Baker, R. (2017). Paule-mandel estimators for network meta-analysis with random inconsistency effects. Research synthesis methods, 8(4):416–434.
Kamada, M., Shiroma, E. J., Buring, J. E., Miyachi, M., and Lee, I.-M. (2017). Strength training and all-cause, cardiovascular disease, and cancer mortality in older women: A cohort study. Journal of the American Heart Association, 6(11):e007677.
Kazemi, A., Sasani, N., Mokhtari, Z., Keshtkar, A., Babajafari, S., Poustchi, H., Hashemian, M., and Malekzadeh, R. (2022). Comparing the risk of cardiovascular diseases and all-cause mortality in four lifestyles with a combination of high/low physical activity and healthy/unhealthy diet: a prospective cohort study. International Journal of Behavioral Nutrition and Physical Activity, 19(1):1–9.
Kim, Y., Sharp, S., Hwang, S., and Jee, S. H. (2019). Exercise and incidence of myocardial infarction, stroke, hypertension, type 2 diabetes and site-specific cancers: prospective cohort study of 257 854 adults in south korea. BMJ open, 9(3):e025590.
Koolhaas, C. M., Dhana, K., Schoufour, J. D., Ikram, M. A., Kavousi, M., and Franco, O. H. (2017). Impact of physical activity on the association of overweight and obesity with cardiovascular disease: The rotterdam study. European journal of preventive cardiology, 24(9): 934–941.
Lee, D.-c., Pate, R. R., Lavie, C. J., Sui, X., Church, T. S., and Blair, S. N. (2014). Leisure-time running reduces all-cause and cardiovascular mortality risk. Journal of the American College of Cardiology, 64(5):472–481.
Mu, X., Liu, S., Fu, M., Luo, M., Ding, D., Chen, L., and Yu, K. (2022). Associations of physical activity intensity with incident cardiovascular diseases and mortality among 366,566 uk adults. The international journal of behavioral nutrition and physical activity, 19(1):151–159.
Nauman, J., Sui, X., Lavie, C. J., Wen, C. P., Laukkanen, J. A., Blair, S. N., Dunn, P., Arena, R., and Wisløff, U. (2021). Personal activity intelligence and mortality–data from the aerobics center longitudinal study. Progress in cardiovascular diseases, 64:121–126.
Paule, R. C. and Mandel, J. (1982). Consensus values and weighting factors. Journal of research of the National Bureau of Standards, 87(5):377.
Rees-Punia, E., Deubler, E., Campbell, P., Gapstur, S. M., and Patel, A. (2020). Light-intensity physical activity in a large prospective cohort of older us adults: a 21-year follow-up of mortality. Gerontology, 66(3):259–265.
Ried-Larsen, M., Rasmussen, M. G., Blond, K., Overvad, T. F., Overvad, K., Steindorf, K., Katzke, V., Andersen, J. L., Petersen, K. E., Aune, D., et al. (2021). Association of cycling with all-cause and cardiovascular disease mortality among persons with diabetes: The european prospective investigation into cancer and nutrition (epic) study. JAMA internal medicine, 181(9):1196–1205.
Saltin, B. and Grimby, G. (1968). Physiological analysis of middle-aged and old former athletes: comparison with still active athletes of the same ages. Circulation, 38(6):1104–1115.
Sidik, K. and Jonkman, J. N. (2005). Simple heterogeneity variance estimation for metaanalysis. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(2):367–384.
Yang, X., Li, Q., Liu, D., Han, M., Qie, R., Huang, S., Zhang, Y., Wu, X., Zhao, Y., Feng, Y., et al. (2022). Joint effect of physical activity and blood lipid levels on all-cause and cardiovascular disease mortality: The rural chinese cohort study. Nutrition, Metabolism and Cardiovascular Diseases, 32(6):1445–1453.
Yerramalla, M. S., Fayosse, A., Dugravot, A., Tabak, A. G., Kivimäki, M., Singh-Manoux, A., and Sabia, S. (2020). Association of moderate and vigorous physical activity with incidence of type 2 diabetes and subsequent mortality: 27 year follow-up of the whitehall ii study. Diabetologia, 63:537–548.
莊聲和, 吳唯帆, and 喬治華(2020). 健康保險無理賠獎勵機制之外溢效果. 保險專刊, 36(2): 143–158.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *