|
Asadzadeh, S. and Kiadaliry, F. (2017). Monitoring type-2 censored reliability data in multistage processes. Quality and Reliability Engineering International, 33(8):2551–2561. Dickinson, R. M., Roberts, D. A. O., Driscoll, A. R., Woodall, W. H., and Vining, G. G. (2014). CUSUM charts for monitoring the characteristic life of censored Weibull lifetimes. Journal of Quality Technology, 46(4):340–358. Dogu, E. and Noor-ul-Amin, M. (2023). Monitoring exponentially distributed time between events data: self-starting perspective. Communications in Statistics- Simulation and Computation, 52(3):1105-1119. Gong, M. and Mukherjee, A. (2019). Design and comparison of some Shewhart-type schemes for simultaneous monitoring of Weibull parameters. Quality and Reliability Engineering International, 35(4):889–901. Guo, B. and Wang, B. X. (2014). Control charts for monitoring the Weibull shape parameter based on type-II censored sample. Quality and Reliability Engineering International, 30(1):13–24. Hawkins, D. M. and Olwell, D. H. (1998). Cumulative sum charts and charting for quality improvement. Springer Science & Business Media. Hawkins, D. M., Qiu, P., and Kang, C. W. (2003). The changepoint model for statistical process control. Journal of quality technology, 35(4):355–366. Hawkins, D. M. and Zamba, K. (2005). Statistical process control for shifts in mean or variance using a changepoint formulation. Technometrics, 47(2):164–173. Huwang, L. and Lin, L.-W. (2020). New EWMA control charts for monitoring the Weibull shape parameter. Quality and Reliability Engineering International, 36(6):1872–1894. Jones, L. A., Champ, C. W., and Rigdon, S. E. (2001). The performance of exponentially weighted moving average charts with estimated parameters. Technometrics, 43(2):156–167. Lawless, J. F. (2011). Statistical models and methods for lifetime data. John Wiley & Sons. Li, J., Yu, D., Song, Z., Mukherjee, A., Chen, R., and Zhang, J. (2022). Comparisons of some memory-type control chart for monitoring Weibull-distributed time between events and some new results. Quality and Reliability Engineering International, 38(7):3598–3615. Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2):100–115. Pascual, F. and Li, S. (2012). Monitoring the Weibull shape parameter by control charts for the sample range of type II censored data. Quality and Reliability Engineering International, 28(2):233–246. Roberts, S. (1959). Control chart tests based on geometric moving averages. Technometrics, 1(3):239–250. Sullivan, J. H. and Woodall, W. H. (1996). A control chart for preliminary analysis of individual observations. Journal of Quality Technology, 28(3):265–278. Wang, F.-K., Bizuneh, B., and Abebe, T. H. (2017). A comparison study of control charts for Weibull distributed time between events. Quality and Reliability Engineering International, 33(8):2747–2759. Xu, S. and Jeske, D. R. (2018). Weighted EWMA charts for monitoring type I censored Weibull lifetimes. Journal of Quality Technology, 50(2):220–230. Zhang, C. W., Xie, M., and Goh, T. N. (2006). Design of exponential control charts using a sequential sampling scheme. IIE Transactions, 38(12):1105–1116. Zhang, C. W., Ye, Z., and Xie, M. (2017). Monitoring the shape parameter of a Weibull renewal process. IISE Transactions, 49(8):800–813. Zou, C., Zhang, Y., and Wang, Z. (2006). A control chart based on a change-point model for monitoring linear profiles. IIE transactions, 38(12):1093–1103. |