帳號:guest(18.118.217.197)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許蕙梃
作者(外文):Hsu, Huei-Ting
論文名稱(中文):以4-硝基苯乙炔修飾之氧化亞銅立方體進行光催化可逆-失活自由基聚合反應
論文名稱(外文):4-Nitrophenylacetylene-Modified Cu2O Cubes as the Photocatalyst for Reversible-Deactivation Radical Polymerization
指導教授(中文):黃郁文
指導教授(外文):Huang, Yu-Wen
口試委員(中文):彭之皓
黃暄益
口試委員(外文):Peng, Chi-How
Huang, Hsuan-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:110023586
出版年(民國):112
畢業學年度:112
語文別:中文
論文頁數:79
中文關鍵詞:環庚三烯酮氧化亞銅立方體可逆-失活自由基聚合反應光催化劑
外文關鍵詞:troponeCopper(I) oxide cubesreversible-deactivation radical polymerizationphotocatalyst
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
本實驗室先前的研究中,成功地利用傳統的偶氮類熱引發劑及只含碳、氫、氧的有機調控劑-環庚三烯酮,進行N,N-二甲基丙烯醯胺在水中的可逆-失活自由基聚合反應。在本研究中,借助黃暄益教授的半導體材料專長,利用4-硝基苯乙炔修飾之氧化亞銅立方體優異的光催化能力,結合環庚三烯酮進行N,N-二甲基丙烯醯胺的光催化可逆-失活自由基聚合反應,並利用高分子鏈尾端活性合成嵌段共聚物,值得注意的是,水溶液環境及可見光波段之光源即可驅動反應,為綠色化學帶來一些助益。
在進一步探討在聚合反應調控機制時,發現巨分子起始劑結構帶有原子轉移自由基聚合反應之中間物特徵。因此引入原子轉移自由基聚合反應的概念,將反應物更換為文獻中原子轉移自由基聚合反應常用之引發劑及配基,但是結果呈現的分子量分布皆不如預期,更無法符合可逆-失活自由基聚合反應的特徵,藉此可以推斷反應調控機制與原子轉移自由基聚合反應不同,但確切機制尚未明確,待後人釐清。
In our previous works, we successfully conducted a reversible-deactivation radical polymerization (RDRPs) of N,N-dimethylacrylamide in water using traditional azo-based thermal initiators and an organo-mediators containing only C, H and O atoms namely tropone. In this study, leveraging Professor Michael Hsuan-Yi Huang’s expertise in semiconductor materials, we utilized 4-nitrophenylacetylene-modified Copper(I) oxide cubes (4-NA-Cu2O cubes) with excellent photocatalytic capability, combining them with tropone to carry out a photo-catalyzed reversible-deactivation radical polymerization of N,N-dimethylacrylamide, and synthesized block copolymers to verify the fidelity of end-groups in the polymer chains. Notably, the reaction could be driven by visible light sources in an aqueous environment, contributing to green chemistry practices.
Further investigation into the polymerization controlled mechanism revealed that the structure of the macroinitiator exhibited characteristics of atom transfer radical polymerization (ATRP) intermediates. Therefore, we introduced the concept of ATRP. The reaction was carried out by replacing the reactants with commonly used initiators and ligands for literature-known ATRP. Unfortunately, the resulting molecular weight distributions did not meet the expected outcomes and deviated significantly from the concept of RDRP. This suggests that the reaction mechanism is incompatible with ATRP. However, the exact mechanism remains unclear and requires further investigation by future researchers to elucidate.
摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 vi
表目錄 x
式目錄 xii
第一章 緒論 1
1-1 傳統聚合反應 1
1-2 自由基聚合反應 (Radical Polymerization) 3
1-3 可逆-失活自由基聚合反應 (Reversible-Deactivation Radical Polymerization, RDRP) 5
1-3-1 氮氧自由基聚合反應 (Nitroxide Mediated Radical Polymerization, NMP) 8
1-3-2 原子轉移自由基聚合反應 (Atom Transfer Radical Polymerization, ATRP) 10
1-3-3 可逆加成-斷裂鏈轉移聚合反應 (Reversible Addition−Fragmentation Chain-Transfer Polymerization, RAFT) 12
1-4 有機化合物應用於可逆-失活自由基聚合反應 14
1-5 奈米半導體材料應用於光催化聚合反應 17
1-6 研究動機 21
第二章 實驗及藥品 23
2-1 化學藥品 23
2-2 實驗儀器 24
2-3 實驗步驟 26
第三章 實驗結果與討論 29
3-1 4-NA-Cu2O cubes奈米粒子的鑑定 29
3-2 4-NA-Cu2O cubes於光催化聚合反應之應用 32
3-2-1 討論4-硝基苯乙炔對聚合反應的影響 35
3-2-2 氧化亞銅溶解度對光催化效果的影響 40
3-3 4-NA-Cu2O cubes結合環庚三烯酮應用於可逆-失活自由基聚合反應 44
3-3-1 環庚三烯酮與自由基之比例對可逆-失活自由基聚合反應的影響 45
3-3-2 4-NA-Cu2O cubes結合環庚三烯酮調控之聚合反應機制探討 50
3-3-3 合成嵌段共聚物 61
3-3-4 時間控制光催化可逆-失活自由基聚合反應 64
3-4 結論 65
第四章 附錄 66
4-1 原始聚合數據 66
4-2 Cu2O cubes原始SEM影像 69
第五章 參考文獻 75

(1) Colebatch, A. L.; Weller, A. S. Amine–Borane Dehydropolymerization: Challenges and Opportunities. Chem. Eur. J. 2019, 25 (6), 1379-1390.
(2) Braunecker, W. A.; Matyjaszewski, K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32 (1), 93-146.
(3) Otsu, T.; Yoshida, M. Efficient synthesis of two or multi component block copolymers through living radical polymerization with polymeric photoiniferters. Polym. Bull. 1982, 7, 197-203.
(4) Szwarc, M. ‘Living’polymers. Nature 1956, 178, 1168-1169.
(5) Szwarc, M.; Levy, M.; Milkovich, R. Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers1. J. Am. Chem. Soc. 1956, 78 (11), 2656-2657.
(6) Jenkins, A. D.; Jones, R. G.; Moad, G. Terminology for reversible-deactivation radical polymerization previously called" controlled" radical or" living" radical polymerization (IUPAC Recommendations 2010). Pure Appl. Chem. 2009, 82 (2), 483-491.
(7) Goto, A.; Fukuda, T. Kinetics of living radical polymerization. Prog. Polym. Sci. 2004, 29 (4), 329-385.
(8) Pan, X.; Tasdelen, M. A.; Laun, J.; Junkers, T.; Yagci, Y.; Matyjaszewski, K. Photomediated controlled radical polymerization. Prog. Polym. Sci. 2016, 62, 73-125.
(9) Georges, M. K.; Veregin, R. P.; Kazmaier, P. M.; Hamer, G. K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 1993, 26 (11), 2987-2988.
(10) Sciannamea, V.; Jerome, R.; Detrembleur, C. In-situ nitroxide-mediated radical polymerization (NMP) processes: their understanding and optimization. Chem. Rev. 2008, 108 (3), 1104-1126.
(11) Debuigne, A.; Radhakrishnan, T.; Georges, M. K. Stable free radical polymerization of acrylates promoted by α-hydroxycarbonyl compounds. Macromolecules 2006, 39 (16), 5359-5363.
(12) Hawker, C. J.; Bosman, A. W.; Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 2001, 101 (12), 3661-3688.
(13) Wang, J.-S.; Matyjaszewski, K. Controlled/" living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117 (20), 5614-5615.
(14) Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine) ruthenium (II)/methylaluminum bis (2, 6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 1995, 28 (5), 1721-1723.
(15) Dworakowska, S.; Lorandi, F.; Gorczyński, A.; Matyjaszewski, K. Toward green atom transfer radical polymerization: current status and future challenges. Adv. Sci. 2022, 9 (19), 2106076.
(16) Jones, G. R.; Anastasaki, A.; Whitfield, R.; Engelis, N.; Liarou, E.; Haddleton, D. M. Copper‐Mediated Reversible Deactivation Radical Polymerization in Aqueous Media. Angew. Chem. Int. Ed. Engl. 2018, 57 (33), 10468-10482.
(17) Braunecker, W. A.; Brown, W. C.; Morelli, B. C.; Tang, W.; Poli, R.; Matyjaszewski, K. Origin of activity in Cu-, Ru-, and Os-mediated radical polymerization. Macromolecules 2007, 40 (24), 8576-8585.
(18) Wang, Y.; Zhang, Y.; Parker, B.; Matyjaszewski, K. ATRP of MMA with ppm levels of iron catalyst. Macromolecules 2011, 44 (11), 4022-4025.
(19) Tang, W.; Matyjaszewski, K. Effect of ligand structure on activation rate constants in ATRP. Macromolecules 2006, 39 (15), 4953-4959.
(20) Jiang, M.; Wang, J.; Li, L.; Pan, K.; Cao, B. Poly (N, N-dimethylaminoethyl methacrylate) modification of a regenerated cellulose membrane using ATRP method for copper (II) ion removal. Rsc Adv 2013, 3 (43), 20625-20632.
(21) Whitfield, R.; Parkatzidis, K.; Bradford, K. G.; Truong, N. P.; Konkolewicz, D.; Anastasaki, A. Low ppm CuBr-triggered atom transfer radical polymerization under mild conditions. Macromolecules 2021, 54 (7), 3075-3083.
(22) Liarou, E.; Han, Y.; Sanchez, A. M.; Walker, M.; Haddleton, D. M. Rapidly self-deoxygenating controlled radical polymerization in water via in situ disproportionation of Cu (I). Chem. Sci. 2020, 11 (20), 5257-5266.
(23) Chiefari, J.; Chong, Y.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P.; Mayadunne, R. T.; Meijs, G. F.; Moad, C. L.; Moad, G. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 1998, 31 (16), 5559.
(24) Perrier, S. 50th Anniversary Perspective: RAFT Polymerization A User Guide. Macromolecules 2017, 50 (19), 7433-7447.
(25) Zhang, Z.; Corrigan, N.; Bagheri, A.; Jin, J.; Boyer, C. A versatile 3D and 4D printing system through photocontrolled RAFT polymerization. Angew. Chem. Int. Ed. Engl. 2019, 58 (50), 17954-17963.
(26) Chang, C.-W.; Jen, Y.-Y.; Tang, S.-C.; Zhang, P.; Chen, C.; Peng, C.-H. Reversible-deactivation radical polymerization of vinyl acetate mediated by tralen, an organomediator. Polym. Chem. 2021, 12 (36), 5159-5167.
(27) Hartonen, K.; Riekkola, M.-L. Water as the first choice green solvent. In The application of green solvents in separation processes, Elsevier, 2017; pp 19-55.
(28) De Bon, F.; Marenzi, S.; Isse, A. A.; Durante, C.; Gennaro, A. Electrochemically Mediated Aqueous Atom Transfer Radical Polymerization of N, N‐Dimethylacrylamide. ChemElectroChem. 2020, 7 (6), 1378-1388.
(29) Algi, M. P.; Okay, O. Highly stretchable self-healing poly (N, N-dimethylacrylamide) hydrogels. Eur. Polym. J. 2014, 59, 113-121.
(30) 林庭聿. 環庚三烯酮及其衍生物應用於水相中的可逆-失活自由基聚合反應. 國立清華大學, 2022. https://hdl.handle.net/11296/fdxg63.
(31) Corrigan, N.; Jung, K.; Moad, G.; Hawker, C. J.; Matyjaszewski, K.; Boyer, C. Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Prog. Polym. Sci. 2020, 111, 101311.
(32) Fantin, M.; Isse, A. A.; Matyjaszewski, K.; Gennaro, A. ATRP in water: kinetic analysis of active and super-active catalysts for enhanced polymerization control. Macromolecules 2017, 50 (7), 2696-2705.
(33) Zhang, B.; Wang, X.; Zhu, A.; Ma, K.; Lv, Y.; Wang, X.; An, Z. Enzyme-initiated reversible addition–fragmentation chain transfer polymerization. Macromolecules 2015, 48 (21), 7792-7802.
(34) Aydogan, C.; Yilmaz, G.; Shegiwal, A.; Haddleton, D. M.; Yagci, Y. Photoinduced controlled/living polymerizations. Angew. Chem. Int. Ed. Engl. 2022, 61 (23), e202117377.
(35) Theriot, J. C.; Lim, C.-H.; Yang, H.; Ryan, M. D.; Musgrave, C. B.; Miyake, G. M. Organocatalyzed atom transfer radical polymerization driven by visible light. Science 2016, 352 (6289), 1082-1086.
(36) Dadashi-Silab, S.; Kim, K.; Lorandi, F.; Szczepaniak, G.; Kramer, S.; Peteanu, L.; Matyjaszewski, K. Red-light-induced, copper-catalyzed atom transfer radical polymerization. ACS Macro Lett. 2022, 11 (3), 376-381.
(37) Liang, E.; Liu, M. s.; He, B.; Wang, G. X. ZnO as photocatalyst for photoinduced electron transfer–reversible addition–fragmentation chain transfer of methyl methacrylate. Adv. Polym. Technol. 2018, 37 (8), 2879-2884.
(38) Qiao, L.; Zhou, M.; Shi, G.; Cui, Z.; Zhang, X.; Fu, P.; Liu, M.; Qiao, X.; He, Y.; Pang, X. Ultrafast visible-light-induced ATRP in aqueous media with carbon quantum dots as the catalyst and its application for 3D printing. J. Am. Chem. Soc. 2022, 144 (22), 9817-9826.
(39) Liu, C.; Wang, L.; Tang, Y.; Luo, S.; Liu, Y.; Zhang, S.; Zeng, Y.; Xu, Y. Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution. Appl. Catal. B 2015, 164, 1-9.
(40) Habisreutinger, S. N.; Schmidt‐Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. Engl. 2013, 52 (29), 7372-7408.
(41) An, Z.; Zhu, S.; An, Z. Heterogeneous photocatalytic reversible deactivation radical polymerization. Polym. Chem. 2021, 12 (16), 2357-2373.
(42) Huang, M. H. Facet‐Dependent Optical Properties of Semiconductor Nanocrystals. Small 2019, 15 (7), 1804726.
(43) Naresh, G.; Hsieh, P.-L.; Meena, V.; Lee, S.-K.; Chiu, Y.-H.; Madasu, M.; Lee, A.-T.; Tsai, H.-Y.; Lai, T.-H.; Hsu, Y.-J. Facet-dependent photocatalytic behaviors of ZnS-decorated Cu2O polyhedra arising from tunable interfacial band alignment. ACS Appl. Mater. 2018, 11 (3), 3582-3589.
(44) Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H. Synthesis of Ag3PO4 crystals with tunable shapes for facet-dependent optical property, photocatalytic activity, and electrical conductivity examinations. ACS Appl. Mater. 2017, 9 (44), 39086-39093.
(45) Liang, T.-Y.; Chan, S.-J.; Patra, A. S.; Hsieh, P.-L.; Chen, Y.-A.; Ma, H.-H.; Huang, M. H. Inactive Cu2O cubes become highly photocatalytically active with Ag2S deposition. ACS Appl. Mater. 2021, 13 (9), 11515-11523.
(46) Chen, T.-N.; Kao, J.-C.; Zhong, X.-Y.; Chan, S.-J.; Patra, A. S.; Lo, Y.-C.; Huang, M. H. Facet-specific photocatalytic activity enhancement of Cu2O polyhedra functionalized with 4-ethynylanaline resulting from band structure tuning. ACS Cent. Sci. 2020, 6 (6), 984-994.
(47) Chan, S.-J.; Kao, J.-C.; Chou, P.-J.; Lo, Y.-C.; Chou, J.-P.; Huang, M. H. 4-Nitrophenylacetylene-modified Cu2O cubes and rhombic dodecahedra showing superior photocatalytic activity through surface band structure modulation. J. Mater. Chem. C 2022, 10 (21), 8422-8431.
(48) 黃星輔. 在水相利用表面含4-硝基苯乙炔修飾的氧化亞銅粒子進行光催化聚合反應. 國立清華大學, 2022. https://hdl.handle.net/11296/ntmc73.
(49) Arundhathi, K. V.; Vaishnavi, P.; Aneeja, T.; Anilkumar, G. Copper-catalyzed Sonogashira reactions: advances and perspectives since 2014. Rsc Adv 2023, 13 (7), 4823-4834.
(50) Patra, A. S.; Kao, J.-C.; Chan, S.-J.; Chou, P.-J.; Chou, J.-P.; Lo, Y.-C.; Huang, M. H. Photocatalytic activity enhancement of Cu2O cubes functionalized with 2-ethynyl-6-methoxynaphthalene through band structure modulation. J. Mater. Chem. C 2022, 10 (10), 3980-3989.
(51) Chanda, K.; Rej, S.; Huang, M. H. Facet‐Dependent Catalytic Activity of Cu2O Nanocrystals in the One‐Pot Synthesis of 1, 2, 3‐Triazoles by Multicomponent Click Reactions. Chem. Eur. J. 2013, 19 (47), 16036-16043.
(52) Pan, X.; Malhotra, N.; Simakova, A.; Wang, Z.; Konkolewicz, D.; Matyjaszewski, K. Photoinduced atom transfer radical polymerization with ppm-level Cu catalyst by visible light in aqueous media. J. Am. Chem. Soc. 2015, 137 (49), 15430-15433.
(53) Kadoma, Y.; Ishihara, M.; Yokoe, I.; Fujisawa, S. Kinetic radical-scavenging activity of colchicine and tropolone. In Vivo 2007, 21 (3), 481-486.
(54) Ariafard, A.; Lin, Z. Theoretical studies on the protonation behavior of tropone and its metal complexes. J. Org. Chem. 2006, 691 (21), 4545-4555.
(55) Tang, W.; Kwak, Y.; Braunecker, W.; Tsarevsky, N. V.; Coote, M. L.; Matyjaszewski, K. Understanding atom transfer radical polymerization: effect of ligand and initiator structures on the equilibrium constants. J. Am. Chem. Soc. 2008, 130 (32), 10702-10713.
(56) Alsubaie, F.; Anastasaki, A.; Wilson, P.; Haddleton, D. M. Sequence-controlled multi-block copolymerization of acrylamides via aqueous SET-LRP at 0 C. Polym. Chem. 2015, 6 (3), 406-417.
(57) Hamley, I. W. Block copolymers. Encyclopedia of Polymer Science and Technology 2002, 1.
(58) Cheng, X.; Jin, Y.; Sun, T.; Qi, R.; Fan, B.; Li, H. Oxidation-and thermo-responsive poly (N-isopropylacrylamide-co-2-hydroxyethyl acrylate) hydrogels cross-linked via diselenides for controlled drug delivery. Rsc Adv 2015, 5 (6), 4162-4170.
(59) Dadashi-Silab, S.; Lee, I.-H.; Anastasaki, A.; Lorandi, F.; Narupai, B.; Dolinski, N. D.; Allegrezza, M. L.; Fantin, M.; Konkolewicz, D.; Hawker, C. J. Investigating temporal control in photoinduced atom transfer radical polymerization. Macromolecules 2020, 53 (13), 5280-5288.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *