|
(1) Colebatch, A. L.; Weller, A. S. Amine–Borane Dehydropolymerization: Challenges and Opportunities. Chem. Eur. J. 2019, 25 (6), 1379-1390. (2) Braunecker, W. A.; Matyjaszewski, K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32 (1), 93-146. (3) Otsu, T.; Yoshida, M. Efficient synthesis of two or multi component block copolymers through living radical polymerization with polymeric photoiniferters. Polym. Bull. 1982, 7, 197-203. (4) Szwarc, M. ‘Living’polymers. Nature 1956, 178, 1168-1169. (5) Szwarc, M.; Levy, M.; Milkovich, R. Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers1. J. Am. Chem. Soc. 1956, 78 (11), 2656-2657. (6) Jenkins, A. D.; Jones, R. G.; Moad, G. Terminology for reversible-deactivation radical polymerization previously called" controlled" radical or" living" radical polymerization (IUPAC Recommendations 2010). Pure Appl. Chem. 2009, 82 (2), 483-491. (7) Goto, A.; Fukuda, T. Kinetics of living radical polymerization. Prog. Polym. Sci. 2004, 29 (4), 329-385. (8) Pan, X.; Tasdelen, M. A.; Laun, J.; Junkers, T.; Yagci, Y.; Matyjaszewski, K. Photomediated controlled radical polymerization. Prog. Polym. Sci. 2016, 62, 73-125. (9) Georges, M. K.; Veregin, R. P.; Kazmaier, P. M.; Hamer, G. K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 1993, 26 (11), 2987-2988. (10) Sciannamea, V.; Jerome, R.; Detrembleur, C. In-situ nitroxide-mediated radical polymerization (NMP) processes: their understanding and optimization. Chem. Rev. 2008, 108 (3), 1104-1126. (11) Debuigne, A.; Radhakrishnan, T.; Georges, M. K. Stable free radical polymerization of acrylates promoted by α-hydroxycarbonyl compounds. Macromolecules 2006, 39 (16), 5359-5363. (12) Hawker, C. J.; Bosman, A. W.; Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 2001, 101 (12), 3661-3688. (13) Wang, J.-S.; Matyjaszewski, K. Controlled/" living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117 (20), 5614-5615. (14) Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine) ruthenium (II)/methylaluminum bis (2, 6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 1995, 28 (5), 1721-1723. (15) Dworakowska, S.; Lorandi, F.; Gorczyński, A.; Matyjaszewski, K. Toward green atom transfer radical polymerization: current status and future challenges. Adv. Sci. 2022, 9 (19), 2106076. (16) Jones, G. R.; Anastasaki, A.; Whitfield, R.; Engelis, N.; Liarou, E.; Haddleton, D. M. Copper‐Mediated Reversible Deactivation Radical Polymerization in Aqueous Media. Angew. Chem. Int. Ed. Engl. 2018, 57 (33), 10468-10482. (17) Braunecker, W. A.; Brown, W. C.; Morelli, B. C.; Tang, W.; Poli, R.; Matyjaszewski, K. Origin of activity in Cu-, Ru-, and Os-mediated radical polymerization. Macromolecules 2007, 40 (24), 8576-8585. (18) Wang, Y.; Zhang, Y.; Parker, B.; Matyjaszewski, K. ATRP of MMA with ppm levels of iron catalyst. Macromolecules 2011, 44 (11), 4022-4025. (19) Tang, W.; Matyjaszewski, K. Effect of ligand structure on activation rate constants in ATRP. Macromolecules 2006, 39 (15), 4953-4959. (20) Jiang, M.; Wang, J.; Li, L.; Pan, K.; Cao, B. Poly (N, N-dimethylaminoethyl methacrylate) modification of a regenerated cellulose membrane using ATRP method for copper (II) ion removal. Rsc Adv 2013, 3 (43), 20625-20632. (21) Whitfield, R.; Parkatzidis, K.; Bradford, K. G.; Truong, N. P.; Konkolewicz, D.; Anastasaki, A. Low ppm CuBr-triggered atom transfer radical polymerization under mild conditions. Macromolecules 2021, 54 (7), 3075-3083. (22) Liarou, E.; Han, Y.; Sanchez, A. M.; Walker, M.; Haddleton, D. M. Rapidly self-deoxygenating controlled radical polymerization in water via in situ disproportionation of Cu (I). Chem. Sci. 2020, 11 (20), 5257-5266. (23) Chiefari, J.; Chong, Y.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P.; Mayadunne, R. T.; Meijs, G. F.; Moad, C. L.; Moad, G. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 1998, 31 (16), 5559. (24) Perrier, S. 50th Anniversary Perspective: RAFT Polymerization A User Guide. Macromolecules 2017, 50 (19), 7433-7447. (25) Zhang, Z.; Corrigan, N.; Bagheri, A.; Jin, J.; Boyer, C. A versatile 3D and 4D printing system through photocontrolled RAFT polymerization. Angew. Chem. Int. Ed. Engl. 2019, 58 (50), 17954-17963. (26) Chang, C.-W.; Jen, Y.-Y.; Tang, S.-C.; Zhang, P.; Chen, C.; Peng, C.-H. Reversible-deactivation radical polymerization of vinyl acetate mediated by tralen, an organomediator. Polym. Chem. 2021, 12 (36), 5159-5167. (27) Hartonen, K.; Riekkola, M.-L. Water as the first choice green solvent. In The application of green solvents in separation processes, Elsevier, 2017; pp 19-55. (28) De Bon, F.; Marenzi, S.; Isse, A. A.; Durante, C.; Gennaro, A. Electrochemically Mediated Aqueous Atom Transfer Radical Polymerization of N, N‐Dimethylacrylamide. ChemElectroChem. 2020, 7 (6), 1378-1388. (29) Algi, M. P.; Okay, O. Highly stretchable self-healing poly (N, N-dimethylacrylamide) hydrogels. Eur. Polym. J. 2014, 59, 113-121. (30) 林庭聿. 環庚三烯酮及其衍生物應用於水相中的可逆-失活自由基聚合反應. 國立清華大學, 2022. https://hdl.handle.net/11296/fdxg63. (31) Corrigan, N.; Jung, K.; Moad, G.; Hawker, C. J.; Matyjaszewski, K.; Boyer, C. Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Prog. Polym. Sci. 2020, 111, 101311. (32) Fantin, M.; Isse, A. A.; Matyjaszewski, K.; Gennaro, A. ATRP in water: kinetic analysis of active and super-active catalysts for enhanced polymerization control. Macromolecules 2017, 50 (7), 2696-2705. (33) Zhang, B.; Wang, X.; Zhu, A.; Ma, K.; Lv, Y.; Wang, X.; An, Z. Enzyme-initiated reversible addition–fragmentation chain transfer polymerization. Macromolecules 2015, 48 (21), 7792-7802. (34) Aydogan, C.; Yilmaz, G.; Shegiwal, A.; Haddleton, D. M.; Yagci, Y. Photoinduced controlled/living polymerizations. Angew. Chem. Int. Ed. Engl. 2022, 61 (23), e202117377. (35) Theriot, J. C.; Lim, C.-H.; Yang, H.; Ryan, M. D.; Musgrave, C. B.; Miyake, G. M. Organocatalyzed atom transfer radical polymerization driven by visible light. Science 2016, 352 (6289), 1082-1086. (36) Dadashi-Silab, S.; Kim, K.; Lorandi, F.; Szczepaniak, G.; Kramer, S.; Peteanu, L.; Matyjaszewski, K. Red-light-induced, copper-catalyzed atom transfer radical polymerization. ACS Macro Lett. 2022, 11 (3), 376-381. (37) Liang, E.; Liu, M. s.; He, B.; Wang, G. X. ZnO as photocatalyst for photoinduced electron transfer–reversible addition–fragmentation chain transfer of methyl methacrylate. Adv. Polym. Technol. 2018, 37 (8), 2879-2884. (38) Qiao, L.; Zhou, M.; Shi, G.; Cui, Z.; Zhang, X.; Fu, P.; Liu, M.; Qiao, X.; He, Y.; Pang, X. Ultrafast visible-light-induced ATRP in aqueous media with carbon quantum dots as the catalyst and its application for 3D printing. J. Am. Chem. Soc. 2022, 144 (22), 9817-9826. (39) Liu, C.; Wang, L.; Tang, Y.; Luo, S.; Liu, Y.; Zhang, S.; Zeng, Y.; Xu, Y. Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution. Appl. Catal. B 2015, 164, 1-9. (40) Habisreutinger, S. N.; Schmidt‐Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. Engl. 2013, 52 (29), 7372-7408. (41) An, Z.; Zhu, S.; An, Z. Heterogeneous photocatalytic reversible deactivation radical polymerization. Polym. Chem. 2021, 12 (16), 2357-2373. (42) Huang, M. H. Facet‐Dependent Optical Properties of Semiconductor Nanocrystals. Small 2019, 15 (7), 1804726. (43) Naresh, G.; Hsieh, P.-L.; Meena, V.; Lee, S.-K.; Chiu, Y.-H.; Madasu, M.; Lee, A.-T.; Tsai, H.-Y.; Lai, T.-H.; Hsu, Y.-J. Facet-dependent photocatalytic behaviors of ZnS-decorated Cu2O polyhedra arising from tunable interfacial band alignment. ACS Appl. Mater. 2018, 11 (3), 3582-3589. (44) Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H. Synthesis of Ag3PO4 crystals with tunable shapes for facet-dependent optical property, photocatalytic activity, and electrical conductivity examinations. ACS Appl. Mater. 2017, 9 (44), 39086-39093. (45) Liang, T.-Y.; Chan, S.-J.; Patra, A. S.; Hsieh, P.-L.; Chen, Y.-A.; Ma, H.-H.; Huang, M. H. Inactive Cu2O cubes become highly photocatalytically active with Ag2S deposition. ACS Appl. Mater. 2021, 13 (9), 11515-11523. (46) Chen, T.-N.; Kao, J.-C.; Zhong, X.-Y.; Chan, S.-J.; Patra, A. S.; Lo, Y.-C.; Huang, M. H. Facet-specific photocatalytic activity enhancement of Cu2O polyhedra functionalized with 4-ethynylanaline resulting from band structure tuning. ACS Cent. Sci. 2020, 6 (6), 984-994. (47) Chan, S.-J.; Kao, J.-C.; Chou, P.-J.; Lo, Y.-C.; Chou, J.-P.; Huang, M. H. 4-Nitrophenylacetylene-modified Cu2O cubes and rhombic dodecahedra showing superior photocatalytic activity through surface band structure modulation. J. Mater. Chem. C 2022, 10 (21), 8422-8431. (48) 黃星輔. 在水相利用表面含4-硝基苯乙炔修飾的氧化亞銅粒子進行光催化聚合反應. 國立清華大學, 2022. https://hdl.handle.net/11296/ntmc73. (49) Arundhathi, K. V.; Vaishnavi, P.; Aneeja, T.; Anilkumar, G. Copper-catalyzed Sonogashira reactions: advances and perspectives since 2014. Rsc Adv 2023, 13 (7), 4823-4834. (50) Patra, A. S.; Kao, J.-C.; Chan, S.-J.; Chou, P.-J.; Chou, J.-P.; Lo, Y.-C.; Huang, M. H. Photocatalytic activity enhancement of Cu2O cubes functionalized with 2-ethynyl-6-methoxynaphthalene through band structure modulation. J. Mater. Chem. C 2022, 10 (10), 3980-3989. (51) Chanda, K.; Rej, S.; Huang, M. H. Facet‐Dependent Catalytic Activity of Cu2O Nanocrystals in the One‐Pot Synthesis of 1, 2, 3‐Triazoles by Multicomponent Click Reactions. Chem. Eur. J. 2013, 19 (47), 16036-16043. (52) Pan, X.; Malhotra, N.; Simakova, A.; Wang, Z.; Konkolewicz, D.; Matyjaszewski, K. Photoinduced atom transfer radical polymerization with ppm-level Cu catalyst by visible light in aqueous media. J. Am. Chem. Soc. 2015, 137 (49), 15430-15433. (53) Kadoma, Y.; Ishihara, M.; Yokoe, I.; Fujisawa, S. Kinetic radical-scavenging activity of colchicine and tropolone. In Vivo 2007, 21 (3), 481-486. (54) Ariafard, A.; Lin, Z. Theoretical studies on the protonation behavior of tropone and its metal complexes. J. Org. Chem. 2006, 691 (21), 4545-4555. (55) Tang, W.; Kwak, Y.; Braunecker, W.; Tsarevsky, N. V.; Coote, M. L.; Matyjaszewski, K. Understanding atom transfer radical polymerization: effect of ligand and initiator structures on the equilibrium constants. J. Am. Chem. Soc. 2008, 130 (32), 10702-10713. (56) Alsubaie, F.; Anastasaki, A.; Wilson, P.; Haddleton, D. M. Sequence-controlled multi-block copolymerization of acrylamides via aqueous SET-LRP at 0 C. Polym. Chem. 2015, 6 (3), 406-417. (57) Hamley, I. W. Block copolymers. Encyclopedia of Polymer Science and Technology 2002, 1. (58) Cheng, X.; Jin, Y.; Sun, T.; Qi, R.; Fan, B.; Li, H. Oxidation-and thermo-responsive poly (N-isopropylacrylamide-co-2-hydroxyethyl acrylate) hydrogels cross-linked via diselenides for controlled drug delivery. Rsc Adv 2015, 5 (6), 4162-4170. (59) Dadashi-Silab, S.; Lee, I.-H.; Anastasaki, A.; Lorandi, F.; Narupai, B.; Dolinski, N. D.; Allegrezza, M. L.; Fantin, M.; Konkolewicz, D.; Hawker, C. J. Investigating temporal control in photoinduced atom transfer radical polymerization. Macromolecules 2020, 53 (13), 5280-5288.
|