帳號:guest(3.15.18.80)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉詩楷
作者(外文):Liu, Shi-Kai
論文名稱(中文):環庚三烯酮製備之嵌端共聚物的性質與應用
論文名稱(外文):Properties and Application of Block Copolymer Synthesized by Tropone-mediated Polymerization
指導教授(中文):黃郁文
指導教授(外文):Huang, Yu-Wen
口試委員(中文):彭之皓
王潔
口試委員(外文):Peng, Chi-How
Wang, Jane
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:110023572
出版年(民國):112
畢業學年度:112
語文別:中文
論文頁數:116
中文關鍵詞:環庚三烯酮嵌端共聚物可逆-失活自由基聚合反應聚乙烯醇聚乙烯醇膜有機化合物調控自由基聚合反應
外文關鍵詞:TroponeBlock copolymerReversible-Deactivation Radical PolymerizationPVAPVA filmOrganic Compounds mediated Radical Polymerization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:74
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以環庚三烯酮(Tropone)有機化合物調控劑調控活性/可控自由基聚合反應,為新穎的可逆-失活自由基聚合反應技術,此調控劑可直接購買,不用進行複雜的有機合成,且因為無金屬,也符合綠色化學,所以拓展其在聚合物合成上之應用範圍是值得研究的方向。能成功控制醋酸乙烯酯與其他單體的聚合反應,進而合成由不同單體組成的嵌段共聚物 (block copolymer),也是此可控活性聚合的一大特點。
本研究成功合成之嵌端共聚物包含PVAc-b-PS,水解後PVA-b-PS,以及PVAc-b-PVP,和PVAc-b-PDMA,我們會鑑定嵌端共聚物的熱性質,從TGA儀器發現改變嵌段比例與分子量在熱裂解溫度改變不大,DSC儀器發現改變嵌段比例與分子量對玻璃轉化溫度在PVAc-b-PVP有較大影響,其他則改變不大。
在PVA膜研究上,將嵌端共聚物 (BCP)加入PVA後,以溶延法製成共混膜,機械性質分析上,若有氫鍵交聯則會上升,同樣,若有交聯亦會增加熱穩定性,若無,則會因破壞結晶性以及氫鍵,反而使機械性質及熱穩定性下降。UV-Vis上證明薄膜透明度可以維持,且對紫外光能有效阻隔。改變嵌段比例對整個趨勢不變,只改變增加嵌段比例之聚合物特性,如PS端剛性較強,若PS端比例上升則剛性較強且疏水性較高。
In this study, tropone, a novel organic compound mediator was used to mediate the living/controlled radical polymerization reaction This compound is commercially available with no need of complicated organic synthesis, and complies with green chemistry. Thus broadening the application of this method is the goal of my study. It can successfully control the polymerization of vinyl acetate and other monomers, and synthesizes the block copolymers composed of different monomers. My work focus on the block copolymers include PVAc-b-PS, PVA-b-PS, PVAc-b-PVP, and PVAc-b-PDMA. Their physical properties were characterized, including thermal properties measured by TGA, DSC, and block ratio determined by NMR spectroscopy.
And then add BCP mix with PVA to form a blend film, then measure its mechanical , such as tensile strength, DMA, etc. The mechanical properties of PVA film blended with different BCP were evaluated, the presence of hydrogen bonding leads to increased strength, while the presence of cross-linking enhances thermal stability. Conversely, the absence of cross-linking decreases mechanical properties and thermal stability due to the disruption of crystallinity and hydrogen bonding. UV-Vis analysis confirms that the addition of block copolymers retained the transparency of the film, with effective blocking of UV light.
摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 vii
式目錄 xv
第一章 緒論 16
1-1 傳統聚合反應 16
1-2 自由基聚合反應(Radical Polymerization) 17
1-3 可逆-失活自由基聚合反應(Reversible-Deactivation Radical Polymerization, RDRP) 19
1-3-1 氮氧自由基聚合反應(Nitroxide Mediated Radical Polymerization, NMP) 22
1-3-2 可逆加成-斷裂鏈轉移聚合反應(Reversible Addition−Fragmentation Chain-Transfer Polymerization, RAFT) 23
1-3-3 原子轉移自由基聚合反應 (Atom Transfer Radical Polymerization, ATRP) 25
1-3-4 鈷錯合物調控自由基聚合反應 (Cobalt-mediated Radical Polymerization, CMRP) 27
1-3-5 有機化合物調控自由基聚合反應 29
1-4 聚乙烯醇簡介 35
1-5 研究動機 36
第二章 實驗及藥品 37
2-1 化學藥品 37
2-2 實驗儀器 38
2-2-1 核磁共振光譜儀 (Nuclear Magnetic Resonance Spectroscopy, NMR) 38
2-2-2 動態機械分析儀 (Dynamic Mechanical Analyzer, DMA) 38
2-2-3 凝膠滲透層析儀 (Gel permeation chromatography, GPC) 38
2-2-4 熱重分析儀 (Thermogravimetric analysis, TGA) 39
2-2-5 熱示差掃描分析儀 (Differential scanning calorimetry, DSC) 39
2-2-6 萬能拉力機 (Tensile Strenhth Tester) 40
2-2-7 接觸角儀 (Contact angle , CA) 40
2-2-8 紫外光-可見光光譜儀 (Ultraviolet-visible Spectrophotometry, UV-vis) 40
2-3 實驗步驟 41
2-3-1 聚合反應步驟 41
2-3-2 嵌端共聚物的合成 41
2-3-3 聚乙烯醇高分子膜的製備步驟 42
2-3-4 聚乙烯醇高分子膜動態機械測試 42
2-3-5 聚乙烯醇高分子膜拉伸強度測試 42
第三章 實驗討論與結論 43
3-1 以tropone為調控劑合成嵌端共聚物 43
3-1-1 嵌端共聚物PVAc-b-PS之合成與條件優化 44
3-1-2 嵌端共聚物PVAc-b-PVP之合成 49
3-1-3 嵌端共聚物PVA-b-PS之合成 52
3-1-4 嵌端共聚物PVAc-b-PDMA之合成 55
3-2 嵌端共聚物熱性質分析 58
3-2-1 熱重分析 58
3-2-2 熱示差掃描分析 65
3-3 聚乙烯醇高分子膜性質探討 70
3-3-1 熱重分析 72
3-3-2 動態機械分析 76
3-3-3 拉伸強度分析 83
3-3-4 Contact angle分析 90
3-3-5 UV-VIS透明度分析 94
第四章 結論 98
第五章 附錄 100
5-1 聚合反應之原始數據 100
5-2 嵌段共聚物之DOSY-NMR及NMR數據 102
參考文獻 110

(1) Staudinger, H. Berichte der deutschen chemischen Gesellschaft (A and B Series). Polymer Chemistry 1920, 53, 1073-1085.
(2) Stiile, J. K. Step-growth polymerization. J. Chem. Educ. 1981, 58, 862-866.
(3) Carothers, W. H. Polymerization. Chemical Reviews 1931, 8 (3), 353-426.
(4) Colombani, D. Chain-growth control in free radical polymerization. Progress in Polymer Science 1997, 22 (8), 1649-1720.
(5) Szwarc, M. L., M.; Milkovich, R. Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers1. Journal of the American Chemical Society 1956, 78 (11), 2656-2657.
(6) Miyamoto, M.; Sawamoto, M.; Higashimura, T. Living Polymerization of Isobutyl Vinyl Ether with the Hydrogen Iodide Iodine Initiating System. Macromolecules 1984, 17 (3), 265-268.
(7) Szwarc, M. Living Polymers and Mechanisms of Anionic-Polymerization. Advances in Polymer Science 1983, 49, 1-177.
(8) Corrigan, N.; Jung, K.; Moad, G.; Hawker, C. J.; Matyjaszewski, K.; Boyer, C. Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Progress in Polymer Science 2020, 111, 101311-101337.
(9) Becker, G.; Wurm, F. R. Functional biodegradable polymers via ring-opening polymerization of monomers without protective groups. Chem Soc Rev 2018, 47 (20), 7739-7782.
(10) Phillips, A. M. F.; Suo, H. Y.; da Silva, M. D. C. G.; Pombeiro, A. J. L.; Sun, W. H. Recent developments in vanadium-catalyzed olefin coordination polymerization. Coordination Chemistry Reviews 2020, 416, 213332-213360.
(11) Jenkins, A. D.; Jones, R. G.; Moad, G. Terminology for reversible-deactivation radical polymerization previously called "controlled" radical or "living" radical polymerization (IUPAC Recommendations 2010). Pure and Applied Chemistry 2009, 82 (2), 483-491.
(12) Georges, M. K. V., R. P.; Kazmaier, P. M.; Hamer, G. K. . Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 1993, 26(11), 2987-2988.
(13) Sciannamea, V.; Jerome, R.; Detrembleur, C. In-situ nitroxide-mediated radical polymerization (NMP) processes: their understanding and optimization. Chem Rev 2008, 108 (3), 1104-1126.
(14) Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process. Macromolecules 1998, 31 (16), 5559-5562.
(15) Moad, G.; Rizzardo, E.; Thang, S. H. RAFT polymerization and some of its applications. Chem Asian J 2013, 8 (8), 1634-1644.
(16) Keddie, D. J.; Moad, G.; Rizzardo, E.; Thang, S. H. RAFT Agent Design and Synthesis. Macromolecules 2012, 45 (13), 5321-5342.
(17) Wang, J.-S. M., K. . Controlled/" living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society 1995, 117 (20), 5614-5615.
(18) Liao, C.-M.; Hsu, C.-C.; Wang, F.-S.; Wayland, B. B.; Peng, C.-H. Living radical polymerization of vinyl acetate and methyl acrylate mediated by Co (Salen*) complexes. Polymer Chemistry 2013, 4 (10), 3098-3104.
(19) Matyjaszewski, K. Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules 2012, 45 (10), 4015-4039.
(20) Wayland, B. B. P., G.; Mukerjee, S. L.; Fryd, M. Living radical polymerization of acrylates by organocobalt porphyrin complexes. Journal of the American Chemical Society 1994, 116 (17), 7943-7944.
(21) Debuigne, A.; Caille, J. R.; Jérôme, R. Highly efficient cobalt‐mediated radical polymerization of vinyl acetate. Angewandte Chemie International Edition 2005, 44 (7), 1101-1104.
(22) Chang, C.-W.; Jen, Y.-Y.; Tang, S.-C.; Zhang, P.; Chen, C.; Peng, C.-H. Reversible-deactivation radical polymerization of vinyl acetate mediated by tralen, an organomediator. Polymer Chemistry 2021, 12 (36), 5159-5167.
(23) 任淯羽. 環庚三烯酮及其衍伸物在可逆-失活自由基聚合反應中的應用. 國立清華大學, 新竹市, 2021.
(24) 林庭聿. 環庚三烯酮及其衍生物應用於水相中的可逆-失活自由基聚合反應. 國立清華大學, 新竹市, 2022.
(25) Teodorescu, M.; Bercea, M.; Morariu, S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnology advances 2019, 37 (1), 109-131.
(26) Yang, A.; Zou, L.; Zha, S.; Zhou, P.; Wu, P.; Guan, R. Nano-cavitation structure toughness mechanism and optical properties of amphiphilic acrylate block copolymer modified epoxy system. Journal of Polymer Research 2021, 28, 1-10.
(27) Jeong, S.-J.; Kim, J. Y.; Kim, B. H.; Moon, H.-S.; Kim, S. O. Directed self-assembly of block copolymers for next generation nanolithography. Materials Today 2013, 16 (12), 468-476.
(28) Batrakova, E. V.; Kabanov, A. V. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. Journal of controlled release 2008, 130 (2), 98-106.
(29) Yuki, K.; Sato, T.; Maruyama, H.; Yamauchi, J.; Okaya, T. The role of polyvinyl alcohol in emulsion polymerization. Polymer International 1993, 30 (4), 513-517.
(30) Figueiredo, K. C. S.; Alves, T. L. M.; Borges, C. P. Poly(vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions. Journal of Applied Polymer Science 2009, 111 (6), 3074-3080.
(31) Chen, J.; Li, Y.; Zhang, Y.; Zhu, Y. Preparation and characterization of graphene oxide reinforced PVA film with boric acid as crosslinker. Journal of Applied Polymer Science 2015, 132 (22), n/a - n/a.
(32) Xu, Y.; Hong, W.; Bai, H.; Li, C.; Shi, G. Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 2009, 47 (15), 3538-3543.
(33) 張哲, 武. 一種耐水性聚乙烯純基複合膜及其製備方法. 2011.
(34) Sirousazar, M.; Kokabi, M.; Hassan, Z. M. Swelling behavior and structural characteristics of polyvinyl alcohol/montmorillonite nanocomposite hydrogels. Journal of Applied Polymer Science 2012, 123 (1), 50-58.
(35) Patil, S.; Bharimalla, A. K.; Mahapatra, A.; Dhakane-Lad, J.; Arputharaj, A.; Kumar, M.; Raja, A. S. M.; Kambli, N. Effect of polymer blending on mechanical and barrier properties of starch-polyvinyl alcohol based biodegradable composite films. Food Bioscience 2021, 44, 101352-101361.
(36) Kanatt, S. R.; Rao, M. S.; Chawla, S. P.; Sharma, A. Active chitosan-polyvinyl alcohol films with natural extracts. Food Hydrocolloids 2012, 29 (2), 290-297.
(37) 任淯羽, P., C.H. 環庚三烯酮及其衍伸物在可逆-失活自由基聚合反應中的應用; 國立清華大學, 2021.
(38) Moritani, T. Tacticity of Poly (vinyl alcohol) Studied by
Nuclear Magnetic Resonance of Hydroxyl Protons. Macromolecules 1972, 5, 577-580.
(39) Porter, R. S.; Johnson, J. F. The entanglement concept in polymer systems. Chemical Reviews 1966, 66 (1), 1-27.
(40) Teodorescu, M.; Bercea, M.; Morariu, S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnol Adv 2019, 37 (1), 109-131.
(41) Assender, H. E.; Windle, A. H. Crystallinity in poly(vinyl alcohol). An X-ray diffraction study of atactic PVOH. Polymer 1998, 39 (18), 4295-4302.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *