帳號:guest(3.138.134.140)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇培鈞
作者(外文):Su, Pei-Jun
論文名稱(中文):以超快時間解析光分解光譜研究具剛性環烷基橋雙官能基陽離子之電荷轉移與構型緩解動態學
論文名稱(外文):Ultrafast Time-resolved Photofragmentation Spectroscopic Studies of Charge Transfer and Conformational Relaxation Dynamics in A Bifunctional Molecular Cation with A Rigid Cycloalkyl Bridge
指導教授(中文):鄭博元
指導教授(外文):Cheng, Po-Yuan
口試委員(中文):林竣偉
李以仁
口試委員(外文):Lin, Chun-Wei
Lee, I-Ren
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:110023567
出版年(民國):112
畢業學年度:112
語文別:中文
論文頁數:114
中文關鍵詞:飛秒脈衝雷射電荷轉移氣相雙官能基分子飛行時間質譜儀光游離-光裂解共振增益多光子游離
外文關鍵詞:femtosecond pulsed lasercharge transfergas phasebifunctional moleculetime-of-flight mass spectrometerphotoionization-photofragmentationresonance-enhanced multiphoton ionization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
我們結合飛秒激發-探測光譜技術與飛行時間質譜技術,觀察MNMA (methyl[(1,2,3,4-tetrahydronaphthalen-2-yl)methyl]amine)分子在光游離-光裂解機制下所產生的離子損耗瞬時訊號,以研究其在陽離子態時的緩解動力學。我們使用266 nm的激發脈衝雷射,以1+1共振增益多光子游離(1+1 REMPI)的方式將MNMA分子經由苯環端局部S1 state而達到苯環端的局部游離,形成正電荷主要位於苯環端的初始陽離子D1/D2 state,隨後陽離子D1/D2 state應可經由內轉換緩解至正電荷位於胺基端的D0 state,而此過程相當於電荷轉移(charge transfer)。在MNMA陽離子緩解的過程中,我們使用另一道波長在550~1500 nm範圍內的探測脈衝雷射將母陽離子激發至更高能態,導致其發生裂解從而獲得母陽離子的離子損耗瞬時訊號,並以此瞬時訊號研究MNMA陽離子的緩解動力學過程。我們量測在各探測波長下的MNMA陽離子損耗率,獲得MNMA超快時間解析陽離子光分解光譜,在此光譜中有三個時間行為截然不同的主要譜帶,分別為625 nm、750 nm及1250 nm附近的譜帶,且三譜帶呈現相互消長的現象。我們以連續動力學模型擬合不同探測波長下的離子損耗瞬時訊號,獲得三個不同時間尺度的時間常數(time constant, τ),其中τ1為0.08~0.2 ps,τ2為15~26 ps,τ3為370~475 ps。我們認為τ1應為陽離子D1/D2 state緩解至D0 state的電荷轉移過程,τ2及τ3應為陽離子D0 state的構型緩解平衡過程。我們藉由理論計算估算MNMA陽離子在不同構形下的垂直激發能量,輔助解釋實驗及擬合的結果,由計算結果我們推測首先出現於625 nm附近,時間行為在亞皮秒尺度的譜帶,是由陽離子D1/D2 state的吸收所造成;接著出現於1250 nm附近的譜帶是由緩解至陽離子D0 state後形成的初始構型的吸收所造成;最後出現於750 nm附近的譜帶是由陽離子D0 state緩解至較穩定構型的吸收所造成。此三個物種之間的消長情形反映了MNMA陽離子由D1/D2 state內轉換至D0 state的電荷轉移過程以及後續在D0 state的構型緩解過程,而時間常數τ2及τ3的大小則受到構型轉換的能障所影響。
We investigate the ultrafast charge transfer (CT) dynamics of methyl[(1,2,3,4-tetrahydronaphthalen-2-yl)methyl]amine (MNMA) cation by using femtosecond pump-probe spectroscopy and time-of-flight mass spectrometry to observe the ion depletion transient produced with the photoionization-photofragmentation (PI-PF) mechanism. Through 1+1 resonance-enhanced multiphoton ionization (1+1 REMPI), the phenyl site of MNMA is selectively ionized via the local neutral S1 state by 266 nm pump pulse, leading to the formation of initial cationic D1/D2 states in which the positive charge is mainly localized at the phenyl site. Subsequently, the cationic D1/D2 state relax to the cationic D0 state in which the positive charge is mainly localized at the amine site. This internal conversion relaxation corresponds to a CT process. During the relaxation of MNMA cations, we use probe laser pulses at wavelengths within 550 to 1500 nm to excite the cations to higher excited states that can undergo fragmentation, resulting the depletion of MNMA cation signals. We measure MNMA cation depletion yield at various probe wavelengths and obtain an ultrafast time-resolved cation photofragmentation spectrum in which we find three major absorption bands near 625 nm, 750 nm, and 1250 nm. Using a consecutive kinetic model to fit the transients, we obtain three time constants (τ): τ1 in the range of 0.08 to 0.2 ps, τ2 in the range of 15 to 26 ps, and τ3 in the range of 370 to 475 ps. We assign τ1 to the internal conversion from the D1/D2 states to the D0 state, which correspond to the CT process. We assign τ2 and τ3 to the equilibrium processes among conformers in the D0 state. Additionally, theoretical calculations are used to estimate the vertical excitation energies of different conformers of MNMA cation. The results suggest that the band near 625 nm with a sub-picosecond temporal behavior is the absorption of the D1/D2 states, while the subsequent band near 1250 nm is the absorption of the initial conformer formed after the relaxation of D1/D2 states to the D0 state. Finally, the band near 750 nm is the absorption of the more stable conformer formed via the conformational relaxation in the D0 state. The sequential decay and rise of these three species reflect the CT process and the conformational relaxation process in the D0 state and the time constants τ2 and τ3 depend on the energy barriers between the conformers.
摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 X
表目錄 XIV
第一章 緒論 1
1.1 引文 1
1.2 文獻回顧 3
1.3 研究動機 8
第二章 實驗系統與技術 11
2.1 飛秒激發-探測脈衝雷射技術 11
2.2 共振增益多光子游離技術 13
2.3 激發-探測光譜之機制 14
2.3.1 激發-探測光激發-光游離 14
2.3.2 激發-探測光游離-光裂解 14
2.4 飛秒脈衝雷射系統 16
2.4.1 振盪器系統 17
2.4.2 脈衝能量放大器 23
2.5 波長調變裝置 30
2.5.1 非線性光學混頻區 30
2.5.2 波長調變器:TOPAS 31
2.6 分子束系統 34
2.6.1 超音速分子束 36
2.6.2 樣品載入裝置 39
2.6.3 分子束系統之架設 40
2.7 飛行時間質譜儀 42
2.8 實驗光路架設 45
2.9 訊號擷取系統 48
2.10 儀器響應函數 50
第三章 實驗結果與討論 52
3.1 MNMA分子之1+1共振增益多光子光游離質譜 52
3.2 激發-探測光游離-光裂解實驗條件及訊號驗證 54
3.2.1 激發與探測脈衝能量比例對離子瞬時訊號之影響 54
3.2.2 MNMA陽離子損耗訊號之驗證 58
3.3 離子損耗率與雷射脈衝能量之相關性 62
3.3.1 離子損耗率之測量 62
3.3.2 離子損耗率與探測脈衝能量之依存性 64
3.3.3 測量離子損耗率時各探測波長之能量條件 65
3.4 MNMA陽離子損耗瞬時訊號 68
3.4.1 短時間與極短時間尺度離子損耗瞬時訊號 68
3.4.2 中時間與長時間尺度離子損耗瞬時訊號 70
3.5 MNMA超快時間解析陽離子光分解光譜 74
3.6 MNMA離子損耗瞬時訊號之連續動力學模型擬合 83
第四章 理論計算與實驗結果分析 92
4.1 MNMA中性S0 state 92
4.2 MNMA陽離子D0 state 97
4.3 綜合討論 101
第五章 結論 105
附錄I MNMA分子在中性S0 state的36種構型結構圖 107
附錄II MNMA分子在中性S0 state的36種構型之計算結果 109
附錄III MNMA陽離子在D0 state的23種構型結構圖 110
附錄IV MNMA陽離子在D0 state的23種構型之計算結果 111
參考文獻 112
1. Barber, J.; Andersson, B. Revealing the blueprint of photosynthesis. Nature 1994, 370 (6484), 31-34.
2. Scholes, G. D.; Fleming, G. R.; Olaya-Castro, A.; Van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 2011, 3 (10), 763-774.
3. Lyu, S.; Farré, Y.; Ducasse, L.; Pellegrin, Y.; Toupance, T.; Olivier, C.; Odobel, F. Push–pull ruthenium diacetylide complexes: new dyes for p-type dye-sensitized solar cells.
RSC Adv. 2016, 6 (24), 19928-19936.
4. Shin, H.; Kim, B. M.; Jang, T.; Kim, K. M.; Roh, D. H.; Nam, J. S.; Kim, J. S.; Kim, U. Y.; Lee, B.; Pang, Y. Surface State‐Mediated Charge Transfer of Cs2SnI6 and Its Application in Dye‐Sensitized Solar Cells. Adv. Energy Mater. 2019, 9 (3), 1803243.
5. Maldon, B.; Thamwattana, N. A fractional diffusion model for dye-sensitized solar cells. Molecules 2020, 25 (13), 2966.
6. Schlag, E. W.; Sheu, S. Y.; Yang, D. Y.; Selzle, H. L.; Lin, S. H. Distal charge transport in peptides. Angew. Chem. Int. Ed. 2007, 46 (18), 3196-3210.
7. Shah, A.; Adhikari, B.; Martic, S.; Munir, A.; Shahzad, S.; Ahmad, K.; Kraatz, H.-B. Electron transfer in peptides. Chem. Soc. Rev. 2015, 44 (4), 1015-1027.
8. Yu, J.; Horsley, J. R.; Moore, K. E.; Shapter, J. G.; Abell, A. D. The effect of a macrocyclic constraint on electron transfer in helical peptides: A step towards tunable molecular wires. Chem. Commun. 2014, 50 (14), 1652-1654.
9. Kawai, K.; Majima, T. Hole transfer kinetics of DNA. Acc. Chem. Res. 2013, 46 (11), 2616-2625.
10. Takada, T.; Kawai, K.; Fujitsuka, M.; Majima, T. Direct observation of hole transfer through double-helical DNA over 100 Å. Proc. Natl. Acad. Sci. U.S.A. 2004, 101 (39), 14002-14006.
11. Isied, S. S.; Ogawa, M. Y.; Wishart, J. F. Peptide-mediated intramolecular electron transfer: long-range distance dependence. Chem. Rev. 1992, 92 (3), 381-394.
12. Lewis, F. D.; Letsinger, R. L.; Wasielewski, M. R. Dynamics of photoinduced charge transfer and hole transport in synthetic DNA hairpins. Acc. Chem. Res. 2001, 34 (2), 159-170.
13. Adams, D. M.; Brus, L.; Chidsey, C. E.; Creager, S.; Creutz, C.; Kagan, C. R.; Kamat, P. V.; Lieberman, M.; Lindsay, S.; Marcus, R. A. Charge transfer on the nanoscale: current status. J. Phys. Chem. B 2003, 107 (28), 6668-6697.
14. Gilbert, M.; Albinsson, B. Photoinduced charge and energy transfer in molecular wires. Chem. Soc. Rev. 2015, 44 (4), 845-862.
15. Jortner, J.; Bixon, M.; Wegewijs, B.; Verhoeven, J. W.; Rettschnick, R. P. Long-range, photoinduced charge separation in solvent-free donor—bridge—acceptor molecules. Chem. Phys. Lett. 1993, 205 (4-5), 451-455.
16. Bixon, M.; Jortner, J.; Cortes, J.; Heitele, H.; Michel-Beyerle, M. Energy gap law for nonradiative and radiative charge transfer in isolated and in solvated supermolecules. J. Phys. Chem. 1994, 98 (30), 7289-7299.
17. Weinkauf, R.; Schanen, P.; Yang, D.; Soukara, S.; Schlag, E. Elementary processes in peptides: electron mobility and dissociation in peptide cations in the gas phase. J. Phys. Chem. 1995, 99 (28), 11255-11265.
18. 鄭博元. Conference in Memory of the Nobel Laureate Ahmed Zewail 演講之投影片. 2018.
19. Weinkauf, R.; Lehr, L.; Metsala, A. Local ionization in 2-phenylethyl-N, Ndimethylamine: charge transfer and dissociation directly after ionization. J. Phys. Chem. A 2003, 107 (16), 2787-2799.
20. Lehr, L.; Horneff, T.; Weinkauf, R.; Schlag, E. Femtosecond dynamics after ionization: 2-phenylethyl-N, N-dimethylamine as a model system for nonresonant downhill charge transfer in peptides. J. Phys. Chem. A 2005, 109 (36), 8074-8080.
21. Cheng, W.; Kuthirummal, N.; Gosselin, J. L.; Sølling, T. I.; Weinkauf, R.; Weber, P. M. Control of local ionization and charge transfer in the bifunctional molecule 2-phenylethyl-N, N-dimethylamine using Rydberg fingerprint spectroscopy. J. Phys. Chem. A 2005, 109 (9), 1920-1925.
22. Li, S.; Bernstien, E.; Seeman, J. Stable conformations of benzylamine and N, Ndimethylbenzylamine. J. Phys. Chem. 1992, 96 (22), 8808-8813.
23. Sun, S.; Bernstein, E. Spectroscopy of neurotransmitters and their clusters. 1. Evidence for five molecular conformers of phenethylamine in a supersonic jet expansion. J. Am. Chem. Soc. 1996, 118 (21), 5086-5095.
24. Im, H.-S.; Bernstein, E. Determination of the Minimum Energy Conformations of Benzyl Alcohol and 2-Phenethyl Alcohol. Colorado State Univ Fort Collins Dept of Chemistry. 1989.
25. Law, K.; Bernstein, E. Molecular jet study of van der Waals complexes of flexible molecules: n‐Propyl benzene solvated by small alkanesa. J. Chem. Phys. 1985, 82 (7), 2856-2866.
26. Sun, S.; Mignolet, B.; Fan, L.; Li, W.; Levine, R. D.; Remacle, F. Nuclear motion driven ultrafast photodissociative charge transfer of the penna cation: An experimental and computational study. J. Phys. Chem. A 2017, 121 (7), 1442-1447.
27. 楊博竣. 超快光游離誘發2-苯基乙基-N,N-二甲基胺陽離子內之電荷轉移動態學
研究, 碩士論文, 國立清華大學, 新竹市. 2018.
28. 紀泓瑋. 超快光游離誘發雙官能基陽離子之電荷轉移動態學研究, 碩士論文, 國
立清華大學, 新竹市. 2021.
29. 顏暐儒. 光游離誘發雙官能基陽離子超快電荷轉移動態學之距離相依性研究, 碩
士論文, 國立清華大學, 新竹市. 2020.
30. 宋桓宇. 氣相超快光游離誘發雙官能基陽離子內之電荷轉移動態學研究, 碩士論
文, 國立清華大學, 新竹市. 2019.
31. 呂柏昀. 以飛秒光游離-光裂解光譜法研究雙官能基陽離子電荷轉移動態學, 碩士
論文, 國立清華大學, 新竹市. 2022.
32. Walter, K.; Weinkauf, R.; Boesl, U.; Schlag, E. Spectroscopy of the benzene cation: Resonance-enhanced multiphoton dissociation spectra of the B̃ (E2g)← X̃ (E1g) transition. Chem. Phys. Lett. 1989, 155 (1), 8-14.
33. Dryza, V.; Chalyavi, N.; Sanelli, J. A.; Bieske, E. J. Electronic absorptions of the benzylium cation. J. Chem. Phys. 2012, 137 (20).
34. Smalley, R. E.; Wharton, L.; Levy, D. H. Molecular optical spectroscopy with supersonic beams and jets. Acc. Chem. Res. 1977, 10 (4), 139-145.
35. Frisch, M.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09, revision D. 01. Gaussian, Inc., Wallingford CT: 2009.
36. Burns, L. A.; Mayagoitia, Á. V.; Sumpter, B. G.; Sherrill, C. D. Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. J. Chem. Phys. 2011, 134 (8).
37. Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10 (44), 6615-6620.
38. Li, A.; Muddana, H. S.; Gilson, M. K. Quantum mechanical calculation of noncovalent interactions: a large-scale evaluation of PMx, DFT, and SAPT approaches. J. Chem. Theory Comput. 2014, 10 (4), 1563-1575.
39. Yanai, T.; Tew, D. P.; Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393 (1-3),
51-57.
40. Amirav, A.; Even, U.; Jortner, J. Cooling of large and heavy molecules in seeded supersonic beams. Chem. Phys. 1980, 51 (1-2), 31-42.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 具烷基橋電子供體-受體陽離子電荷轉移與構型緩解動力學之超快光游離-光裂解光譜研究
2. 以超快時間解析光裂解光譜研究具烷基橋之電子供體-受體陽離子電荷轉移及構型緩解動力學
3. 光游離誘發雙官能基陽離子超快電荷轉移動態學之距離相依性研究
4. 飛秒光游離誘發雙官能基陽離子之電荷轉移動態學研究
5. 以飛秒光游離-光裂解光譜法研究雙官能基陽離子電荷轉移動態學
6. 具剛性環烷基橋雙官能基陽離子之光游離誘發超快電荷轉移與構型緩解動態學研究
7. N,N-二甲基-3-苯基丙基胺陽離子內之超快光游離誘發電荷轉移動態學研究
8. 以超快時間解析光分解光譜研究光游離誘發雙官能基陽離子電荷轉移動態學
9. 利用飛秒雷射光譜技術研究丙酮與二甲基亞碸分子之三體光分解反應動態學
10. 大氣中小分子吸收光譜之研究 1. 利用共振腔振盪衰減法研究CO及CH3OO近紅外吸收光譜 2. 利用同步輻射光研究H2O及其同位素分子之真空紫外吸收光譜
11. 氣相飛秒化學反應動態學研究 1.二甲基亞碸之超快三體光解反應動態學 2.偶氮苯陽離子在異構化途徑之同調振動
12. 以時間解析螢光光譜研究苯乙烯比啶分子及其銥錯合物之光化學
13. 分子衍生物在溶液中單體與聚集體之光譜研究
14. 氣相飛秒瞬時吸收光譜之建立與應用
15. 1.反應S(3P)+OCS、S(3P)+O2、及O(3P)+SO2之高溫化學動力學研究。2.敏化InN/TiO2太陽能電池材料之研究
 
* *