帳號:guest(18.220.139.144)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳品勳
作者(外文):Chen, Pin-Hsun
論文名稱(中文):以超快時間解析雷射光譜研究4-硝基聯苯於溶液中之激發態緩解動力學
論文名稱(外文):Ultrafast Time-Resolved Laser Spectroscopic Studies of Excited-State Relaxation Dynamics of 4-Nitrobiphenyl in Solutions
指導教授(中文):鄭博元
指導教授(外文):Cheng, Po-Yuan
口試委員(中文):周佳駿
張君輔
口試委員(外文):Chou, Chia-Chun
Chang, Chun-Fu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:110023554
出版年(民國):112
畢業學年度:112
語文別:中文
論文頁數:109
中文關鍵詞:時間解析光譜4-硝基聯苯激發態動力學
外文關鍵詞:Time-Resolved Spectroscopic4-NitrobiphenylExcited-state dynamics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
本論文以實驗室自行架設的超快時間解析螢光光譜儀與超快瞬態吸收光譜儀研究4-硝基聯苯(4-nitobiphenyl, 4-NBP)於acetonitrile (ACN)、methanol (MeOH)、triacetin (Tri)與cyclohexane (CHX)四種溶劑中的激發態緩解動力學,並在理論計算的幫助下解讀4-NBP的激發態緩解機制。在本論文的實驗中我們皆以310 nm的飛秒脈衝雷射將4-NBP激發至S2(π, π*)態。實驗與計算結果顯示4-NBP的激發態緩解機制在所有溶劑中都類似,4-NBP在被激發至S2(π, π*)態後主要經由internal conversion (IC)緩解至S1(n, π*)態,此IC時間常數為< 100 fs,當中少部分的S2(π, π*)態與符合El-Sayed rule的triplet state進行intersystem crossing (ISC)。 S1(n, π*)態隨後再與符合El-Sayed rule的triplet state進行ISC,此ISC時間常數之數量級約為1 ps。而4-NBP在triplet manifold中的緩解機制則隨溶劑而有所不同,在ACN與CHX中,從ISC接收態緩解至最低能量的triplet state T1的過程只需要一個時間常數來描述,而在MeOH與Tri中,此過程因多了solvent specific interaction的影響而變得較複雜,需要兩個時間常數來描述。最後,從T1回到ground state S0的過程,即T1之lifetime,隨著溶劑極性的減少而有變短的趨勢,從ACN中的 > 50 ns減少到CHX中的約2 ns。與實驗室前人研究的trans-4-nitrostilbene (t-NSB)相比,4-NBP的ISC速率幾乎不受溶劑極性影響,我們認為此現象是因為相較於t-NSB進行主要ISC的起始態為能量受溶劑極性影響較大的S1(π, π*)態,4-NBP進行主要ISC的起始態為能量不太受溶劑極性影響的S1(n, π*)態的緣故。
We investigate the excited-state relaxation dynamics of 4-nitrobiphenyl (4-NBP) in acetonitrile (ACN), methanol (MeOH), triacetin (Tri), and cyclohexane (CHX) solutions using a home-built ultrafast time-resolved fluorescence spectrometer and ultrafast transient absorption spectrometer. With the assistance of theoretical calculations, we propose the excited-state relaxation mechanism of 4-NBP. In all experiments described in this thesis, 4-NBP was excited to the S2(π, π*) state with femtosecond laser pulse at 310 nm. Experimental and computational results indicate a similar excited-state relaxation mechanism for 4-NBP in all solvents. Upon excitation to the S2(π, π*) state, it predominantly undergoes internal conversion (IC) to the S1(n, π*) state with an IC time constant of < 100 fs. A minor portion of the S2(π, π*) population directly undergoes intersystem crossing (ISC) to a receiver triplet state that is allowed by the El-Sayed rule. Subsequently, the S1(n, π*) state undergoes intersystem crossing (ISC) to an El-Sayed rule allowed receiver triplet state with an ISC time constant of approximately 1 ps. The triplet manifold relaxation mechanism of 4-NBP varies with solvents: in ACN and CHX, the relaxation from ISC receiver triplet state to the lowest-energy triplet state T1 is described by a single time constant, whereas in MeOH and Tri, it becomes more complex due to the influence of solvent-specific interactions, requiring two time constants for description of the relaxation. Finally, the return process from T1 to the ground state S0, i.e., the lifetime of T1, appears to shorten as solvent polarity decreases, from > 50 ns in ACN to approximately 2 ns in CHX. Comparing with trans-4-nitrostilbene (t-NSB) studied previously in our laboratory, the ISC rate of 4-NBP is found to be unaffected by solvent polarity. We attribute this phenomenon to the fact that, compared to t-NSB, the initial state for primary ISC in 4-NBP is the S1(n, π*) state, whose energy is barely affected by solvent polarity.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 NPAHs激發態動力學文獻回顧 2
1.3 本論文研究目的 8
第二章 實驗系統與技術 9
2.1 超快飛秒雷射系統 9
2.1.1 飛秒雷射產生源 10
2.1.2 能量再生放大器 14
2.2 波長調變器: TOPAS 18
2.3 超快瞬態吸收光譜 21
2.3.1 瞬態吸收光譜原理 21
2.3.2 超快瞬態吸收光譜系統架設 23
2.3.3 超快瞬態吸收光譜自動化數據擷取系統 26
2.3.4 儀器響應函數 27
2.3.5 超快瞬態吸收光譜時間延遲校正 29
2.3.6 超快瞬態吸收光譜背景訊號扣除 31
2.4 超快時間解析螢光光譜 34
2.4.1 克爾光閘原理 34
2.4.2 超快時間解析螢光光譜系統架設 36
2.4.3 超快時間解析螢光光譜自動化數據擷取系統 43
2.4.4 儀器響應函數 45
2.4.5 超快時間解析螢光光譜靈敏度與時間延遲校正 47
2.5 實驗藥品配置 55
第三章 實驗結果與討論 56
3.1 靜態吸收光譜 56
3.2 靜態放光光譜 57
3.3 超快時間解析螢光光譜 58
3.4 超快瞬態吸收光譜 66
3.5 DFT理論計算 84
3.6 綜合討論 94
第四章 結論 103
參考文獻 106
1. Abdel-Shafy, H. I.; Mansour, M. S. M., A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25 (1), 107-123.
2. Bandowe, B. A. M.; Meusel, H., Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment – A review. Sci. Total Environ. 2017, 581-582, 237-257.
3. Perrini, G.; Tomasello, M.; Librando, V.; Minniti, Z., Nitrated Polycyclic Aromatic Hydrocarbons in the Environment: Formation, Occurrences and Analysis. Anal. Chim. 2005, 95 (7-8), 567-577.
4. Benbrahim-Tallaa, L.; Baan, R. A.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Guha, N.; Loomis, D.; Straif, K., Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes. Lancet Oncol. 2012, 13 (7), 663-664.
5. Andersson, H.; Piras, E.; Demma, J.; Hellman, B.; Brittebo, E., Low levels of the air pollutant 1-nitropyrene induce DNA damage, increased levels of reactive oxygen species and endoplasmic reticulum stress in human endothelial cells. Toxicology 2009, 262 (1), 57-64.
6. Fan, Z.; Kamens, R. M.; Hu, J.; Zhang, J.; McDow, S., Photostability of Nitro-Polycyclic Aromatic Hydrocarbons on Combustion Soot Particles in Sunlight. Environ. Sci. Technol. 1996, 30 (4), 1358-1364.
7. Tsuga, Y.; Katou, M.; Kuwabara, S.; Kanamori, T.; Ogura, S. I.; Okazaki, S.; Ohtani, H.; Yuasa, H., A Twist-Assisted Biphenyl Photosensitizer Passable Through Glucose Channel. Chem. Asian J. 2019, 14 (12), 2067-2071.
8. Suzuki, T.; Nagae, O.; Kato, Y.; Nakagawa, H.; Fukuhara, K.; Miyata, N., Photoinduced Nitric Oxide Release from Nitrobenzene Derivatives. J. Am. Chem. Soc. 2005, 127 (33), 11720-11726.
9. Culotta, E.; Koshland, D. E., NO News Is Good News. Science 1992, 258 (5090), 1862-1865.
10. Mukamel, S., Principles of nonlinear optical spectroscopy. OUP: 1995.
11. Marian, C. M., Understanding and Controlling Intersystem Crossing in Molecules. Annu. Rev. Phys. Chem. 2021, 72 (1), 617-640.
12. Englman, R.; Jortner, J., The energy gap law for radiationless transitions in large molecules. Mol. Phys. 1970, 18 (2), 145-164.
13. Braslavsky, S. E., Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006). Pure Appl. Chem. 2007, 79 (3), 293-465.
14. El‐Sayed, M. A., Spin—Orbit Coupling and the Radiationless Processes in Nitrogen Heterocyclics. J. Chem. Phys. 2004, 38 (12), 2834-2838.
15. Rodríguez-Córdoba, W.; Gutiérrez-Arzaluz, L.; Cortés-Guzmán, F.; Peon, J., Excited state dynamics and photochemistry of nitroaromatic compounds. Chem. Commun. 2021, 57 (92), 12218-12235.
16. Morales-Cueto, R.; Esquivelzeta-Rabell, M.; Saucedo-Zugazagoitia, J.; Peon, J., Singlet Excited-State Dynamics of Nitropolycyclic Aromatic Hydrocarbons:  Direct Measurements by Femtosecond Fluorescence Up-Conversion. J. Phys. Chem. A 2007, 111 (4), 552-557.
17. Crespo-Hernández, C. E.; Burdzinski, G.; Arce, R., Environmental Photochemistry of Nitro-PAHs: Direct Observation of Ultrafast Intersystem Crossing in 1-Nitropyrene. J. Phys. Chem. A 2008, 112 (28), 6313-6319.
18. Vogt, R. A.; Reichardt, C.; Crespo-Hernández, C. E., Excited-State Dynamics in Nitro-Naphthalene Derivatives: Intersystem Crossing to the Triplet Manifold in Hundreds of Femtoseconds. J. Phys. Chem. A 2013, 117 (30), 6580-6588.
19. Zobel, J. P.; Nogueira, J. J.; González, L., Mechanism of Ultrafast Intersystem Crossing in 2-Nitronaphthalene. Chem. Eur. J. 2018, 24 (20), 5379-5387.
20. Plaza-Medina, E. F.; Rodríguez-Córdoba, W.; Peon, J., Role of Upper Triplet States on the Photophysics of Nitrated Polyaromatic Compounds: S1 Lifetimes of Singly Nitrated Pyrenes. J. Phys. Chem. A 2011, 115 (35), 9782-9789.
21. López-Arteaga, R.; Stephansen, A. B.; Guarin, C. A.; Sølling, T. I.; Peon, J., The Influence of Push–Pull States on the Ultrafast Intersystem Crossing in Nitroaromatics. J. Phys. Chem. B 2013, 117 (34), 9947-9955.
22. 王芃云, 以超快時間解析飛秒雷射光譜研究反-4-硝基均二苯乙烯於溶液中之激發態動態學. 國立清華大學 2022.
23. 邱志忠, 以超快時間解析光學克爾光閘螢光光譜研究分子間與分子內電荷轉移. 國立清華大學 2013.
24. 陳冠宇, 以飛秒瞬態吸收光譜研究苯/四氰基乙烯錯合物於極性溶劑中電荷轉移態與局部激發態之電荷轉移動力學. 國立清華大學 2020.
25. 紀泓瑋, 超快光游離誘發雙官能基陽離子之
電荷轉移動態學研究. 國立清華大學 2021.
26. Lorenc, M.; Ziolek, M.; Naskrecki, R.; Karolczak, J.; Kubicki, J.; Maciejewski, A., Artifacts in femtosecond transient absorption spectroscopy. Appl. Phys. B 2002, 74 (1), 19-27.
27. Kalpouzos, C.; Lotshaw, W. T.; McMorrow, D.; Kenney-Wallace, G. A., Femtosecond laser-induced Kerr responses in liquid carbon disulfide. J. Phys. Chem. 1987, 91 (8), 2028-2030.
28. Appavoo, K.; Sfeir, M. Y., Enhanced broadband ultrafast detection of ultraviolet emission using optical Kerr gating. Rev. Sci. Instrum. 2014, 85 (5), 055114.
29. Arzhantsev, S.; Maroncelli, M., Design and Characterization of a Femtosecond Fluorescence Spectrometer Based on Optical Kerr Gating. Appl. Spectrosc. 2005, 59 (2), 206-220.
30. Schmid, P.; Laboratory, L. R., Isomerization of Stilbenes. LRL: 1959.
31. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
32. Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C., The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152 (22).
33. Nagasawa, Y.; Yartsev, A. P.; Tominaga, K.; Bisht, P. B.; Johnson, A. E.; Yoshihara, K., Dynamic aspects of ultrafast intermolecular electron transfer faster than solvation process: Substituent effects and energy gap dependence. J. Phys. Chem. 1995, 99 (2), 653-662.
34. Carmichael, I.; Hug, G. L., Triplet–Triplet Absorption Spectra of Organic Molecules in Condensed Phases. J. Phys. Chem. Ref. Data 1986, 15 (1), 1-250.
35. Snellenburg, J. J.; Laptenok, S.; Seger, R.; Mullen, K. M.; van Stokkum, I. H. M., Glotaran: A Java-Based Graphical User Interface for the R Package TIMP. J. Stat. Softw. 2012, 49 (3), 1 - 22.
36. Yu, H. S.; He, X.; Li, S. L.; Truhlar, D. G., MN15: A Kohn-Sham global-hybrid exchange-correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci. 2016, 7 (8), 5032-5051.
37. Larsen, M. A.; Thogersen, J.; Stephansen, A. B.; Peon, J.; Solling, T. I.; Keiding, S. R., Transient IR Spectroscopic Observation of Singlet and Triplet States of 2-Nitrofluorene: Revisiting the Photophysics of Nitroaromatics. J. Phys. Chem. A 2016, 120 (1), 28-35.
38. Plaza-Medina, E. F.; Rodríguez-Córdoba, W.; Morales-Cueto, R.; Peon, J., Primary Photochemistry of Nitrated Aromatic Compounds: Excited-State Dynamics and NO· Dissociation from 9-Nitroanthracene. J. Phys. Chem. A 2011, 115 (5), 577-585.
39. T Elsaesser, a.; Kaiser, W., Vibrational and Vibronic Relaxation of Large Polyatomic Molecules in Liquids. Annu. Rev. Phys. Chem. 1991, 42 (1), 83-107.
40. Heinz, B.; Schmierer, T.; Laimgruber, S.; Gilch, P., Excited state processes of nitrobenzaldehydes probed by ultrafast fluorescence and absorption spectroscopy. J. Photochem. Photobiol. A: Chem. 2008, 199 (2), 274-281.
41. Vogt, R. A.; Crespo-Hernández, C. E., Conformational Control in the Population of the Triplet State and Photoreactivity of Nitronaphthalene Derivatives. J. Phys. Chem. A 2013, 117 (51), 14100-14108.
42. Mewes, J.-M.; Jovanović, V.; Marian, C. M.; Dreuw, A., On the molecular mechanism of non-radiative decay of nitrobenzene and the unforeseen challenges this simple molecule holds for electronic structure theory. Phys. Chem. Chem. Phys. 2014, 16 (24), 12393-12406.
43. Orozco-Gonzalez, Y.; Coutinho, K.; Peon, J.; Canuto, S., Theoretical study of the absorption and nonradiative deactivation of 1-nitronaphthalene in the low-lying singlet and triplet excited states including methanol and ethanol solvent effects. J. Chem. Phys. 2012, 137 (5).
44. Jin, P.; Long, J.; Du, Y.; Zheng, X.; Xue, J., Hydrogen bond configuration and protonation of ground and lowest excited triplet states of 4‑amino‑4'‑nitrobiphenyl based on nanosecond transient absorption spectroscopy. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2019, 217, 44-50.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 4-硝基聯苯與2-硝基芴在溶液中激發態緩解動力學的飛秒雷射光譜研究
2. 利用飛秒雷射光譜技術研究丙酮與二甲基亞碸分子之三體光分解反應動態學
3. 大氣中小分子吸收光譜之研究 1. 利用共振腔振盪衰減法研究CO及CH3OO近紅外吸收光譜 2. 利用同步輻射光研究H2O及其同位素分子之真空紫外吸收光譜
4. 氣相飛秒化學反應動態學研究 1.二甲基亞碸之超快三體光解反應動態學 2.偶氮苯陽離子在異構化途徑之同調振動
5. 以時間解析螢光光譜研究苯乙烯比啶分子及其銥錯合物之光化學
6. 分子衍生物在溶液中單體與聚集體之光譜研究
7. 氣相飛秒瞬時吸收光譜之建立與應用
8. 1.反應S(3P)+OCS、S(3P)+O2、及O(3P)+SO2之高溫化學動力學研究。2.敏化InN/TiO2太陽能電池材料之研究
9. 利用簡併四波混頻光譜法在超音波射束中研究HS自由基之高預解離電子態A2Σ+
10. Coumarin 481在環糊精水溶液中的超快動態學研究
11. Hexa-Peri-Hexabenzocoronene (HBC)分子衍生物之單體、聚集體與奈米顆粒的研究
12. 胞嘧啶及其水合團簇之氣相超快激發態動態學研究
13. 以超快時間解析克爾光閘螢光光譜研究四氰基乙烯-甲基苯電子給體-受體錯合物之電子轉移動態學
14. 液體 / 空氣界面二倍頻現象的超快時間解析光譜研究
15. 胞嘧啶之氣相超快激發態動態學研究:激發態衰減時間與激發能量的依存性
 
* *