帳號:guest(18.191.200.108)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鍾敏祺
作者(外文):Chung, Min-Chi
論文名稱(中文):可控親和力側向流動層析法於小分子藥物之信號開啟檢測
論文名稱(外文):Affinity-Switchable Lateral Flow Assay for Signal-On Detection of Small Molecule Drugs
指導教授(中文):陳貴通
指導教授(外文):Tan, Kui-Thong
口試委員(中文):林俊成
詹揚翔
口試委員(外文):Lin, Chun-Cheng
Chan, Yang-Hsiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:110023537
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:71
中文關鍵詞:小分子檢測親和力調控側向流動層析法信號開啟檢測生物素
外文關鍵詞:small molecule detectionaffinity-switchablelateral flow assaysignal-on detectionbiotin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:70
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  側向流動層析法 (Lateral flow assay, LFA) 是一項能夠進行即時檢測的試紙分析技術。由於此分析裝置具備操作簡易、成本低廉以及訊號易於判讀等特性,目前已被廣泛應用於許多快速臨床診斷,如驗孕試紙、傳染病快篩試紙等。隨著側向流動層析法的應用性拓展,已不再受限於大分子的檢測,亦能透過競爭法的機制來針對不具反應活性之小分子進行偵測。然而,由於競爭法的訊號呈現方式為信號關閉 (signal-off),與常規認知的判讀方式相反外,於低濃度的分析樣品中也容易造成偽陰性的錯誤判讀,致使其僅有較小的定量範圍。因此,於本研究中,我們以磺胺類藥物作為小分子模板,發展出新型可控親和力側向流動層析法 (Affinity-switchable lateral flow assay, ASLFA),並於不同生物樣品中進行目標物監測,加以證實ASLFA之可行性。此策略不僅能夠選擇性地針對目標物進行偵測,更是能以信號開啟 (signal-on) 的方式呈現高靈敏度的檢測結果。因此,我們期許這項新型檢測機制可被廣泛地應用於醫學及生物研究領域中,作為體外的即時診斷及快速篩檢。
  Lateral flow assay (LFA) has been a rapid diagnostic technique in many analytical fields where on-site detection is required. Due to its simple operation, low cost and easy interpretation, this type of assay has been widely applied for some clinical diagnoses, such as pregnancy test and infectious disease screening. Nowadays, with the expansion of the applications, LFA approach is no longer limited to the detection of macromolecules. Currently, competitive LFA is generally used for small molecules detection since they have fewer binding sites. However, competitive assay typically produces signal-off readout, which is different from conventional sandwich assay for macromolecules. In addition, false negative misinterpretation occurs easily in low-concentration analysis samples, resulting in a narrower dynamic range. In this thesis, we develop a new and general affinity-switchable LFA (ASLFA) that can respond selectively and sensitively with signal-on feature for the detection of sulfonamide drugs in various biological samples. Therefore, we expect this novel ASLFA to be a useful approach for the in vitro rapid detection of small molecules in basic biological research and medical diagnosis.
目錄
摘要 i
Abstract ii
謝誌 iii
目錄 v
著作列表 ix
第一章 緒論 1
1-1小分子介紹 1
1-1.1 農業用藥 (Agricultural medicine) 2
1-1.2 畜牧業用藥 (Animal husbandry drugs) 3
1-1.3 人類用藥 (Human medicine) 4
1-1.4 磺胺類藥物 (Sulfonamides) 5
1-2小分子的偵測方法 6
1-2.1 液相層析質譜分析法 (LC-MS) 6
1-2.2 酵素結合免疫吸附分析法 (ELISA) 8
1-2.3 快速篩檢法 (Rapid screening) 10
1-2.3.1 微型電化學傳感器 (Miniaturized electrochemical sensor) 10
1-2.3.2 試紙檢測技術 11
第二章 文獻回顧 12
2-1側向流動層析法 (LFA) 13
2-1.1 三明治法與競爭法 (Sandwich and competitive assay) 14
2-1.2 競爭型側向流動層析法之應用 16
2-1.3 螢光淬滅側向流動層析法 (Fluorescent quenching LFA) 20
2-1.4 非競爭性顯色側向流動層析法 (Noncompetitive chromogenic LFA) 22
2-1.5 基於適體之側向流動層析法 (Aptamer-based LFA) 24
2-1.6 親和力調控之側向流動層析法 (ASLFA) 26
2-1.6.1 籠閉性生物素探針 26
2-2蛋白質開關 (Protein switches) 29
2-2.1 變構蛋白 (Allosteric protein) 29
2-2.2 半合成蛋白 (Semi-synthetic protein) 31
第三章 探針的構思與設計 35
3-1可控親和力側向流動層析法的檢測機制 35
3-2可控親和力生物素探針 (ASB-SFM) 之探針架構 37
3-2.1 生物素端 (Biotin site) 38
3-2.2 反應端 (Reaction site) 41
3-2.3 配體端 (Ligand site) 42
第四章 實驗結果與討論 43
4-1探針AuNPs-ASB-SFM於LFA檢測磺胺類藥物之探討 43
4-1.1 定性測試 (Qualitative test) 45
4-1.2 選擇性測試 (Selectivity test) 47
4-1.3 動力學測試 (Kinetic test) 50
4-1.4 再現性測試 (Reproducibility test) 51
4-1.5 靈敏度測試 (Sensitivity test) 52
4-1.6 穩定性測試 (Stability test) 54
第五章 結論 56
第六章 實驗部分 57
6-1實驗藥品與器材 57
6-2蛋白質表現及純化 58
6-2.1 蛋白質表現 58
6-2.2 蛋白質純化 59
6-2.3 SDS-PAGE膠體電泳 60
6-2.3.1 膠片配方 60
6-2.3.2 SDS-PAGE膠體電泳操作流程 60
6-3側向流動層析實驗藥品配製方法及試紙製備 61
6-3.1 奈米金粒子 (AuNPs) 製備 61
6-3.2 探針ASB-SFM結合奈米金粒子製備 61
6-3.3 抗體結合奈米金粒子製備 62
6-3.4 探針AuNPs-ASB-SFM測試條件 62
6-3.4.1 側向流動層析試紙前處理 62
6-3.4.2 測試磺胺類藥物之實驗條件 63
6-3.4.3 側向流動層析試紙之訊號量化步驟 63
參考文獻 64
附錄 71


1. Kamali, A.; Ziadlou, R.; Lang, G.; Pfannkuche, J.; Cui, S.; Li, Z.; Richards, R. G.; Alini, M.; Grad, S. Small molecule-based treatment approaches for intervertebral disc degeneration: Current options and future directions. Theranostics 2021, 11, 27-47.
2. Arkin, M. R.; Wells, J. A. Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nat. Rev. Drug Discov. 2004, 3, 301-317.
3. Berg, H. v. d. Global Status of DDT and Its Alternatives for Use in Vector Control to Prevent Disease. Environ. Health Perspect. 2009, 117, 1656-1663.
4. Turusov, V.; Rakitsky, V.; Tomatis, L. Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risks. Environ. Health Perspect. 2002, 110, 125-128.
5. Eskenazi, B.; Chevrier, J.; Rosas, L. G.; Anderson, H. A.; Bornman, M. S.; Bouwman, H.; Chen, A.; Cohn, B. A.; Jager, C. d.; Henshel, D. S.; Leipzig, F.; Leipzig, J. S.; Lorenz, E. C.; Snedeker, S. M.; Stapleton, D. The Pine River Statement: Human Health Consequences of DDT Use. Environ. Health Perspect. 2009, 117, 1359-1367.
6. Flessel, P.; Quintana, P. J. E.; Hooper, K. Genetic toxicity of malathion: A review. Environ. Mol. Mutagen. 1993, 22, 7-17.
7. Newhart, K. Environmental fate of malathion. California Environmental Protection Agency 2006, 11, 1-20.
8. Eyer, F.; Meischner, V.; Kiderlen, D.; Thiermann, H.; Worek, F.; Haberkorn, M.; Felgenhauer, N.; Zilker, T.; Eyer, P. Human Parathion Poisoning. Crit. Rev. Toxicol. 2003, 22, 143-163.
9. Xuehong, L.; David, K. G.; Aaron, J. Ractopamine, a Livestock Feed Additive, Is a Full Agonist at Trace Amine–Associated Receptor 1. J. Pharmacol. Exp. Ther. 2014, 350, 124.
10. Marchant-Forde, J. N.; Lay, D. C., Jr.; Pajor, E. A.; Richert, B. T.; Schinckel, A. P. The effects of ractopamine on the behavior and physiology of finishing pigs12. J. Anim. Sci. 2003, 81, 416-422.
11. Panisson, J. C.; Maiorka, A.; Oliveira, S. G.; Saraiva, A.; Duarte, M. S.; Silva, K. F.; Santos, E. V.; Tolentino, R. L. S.; Lopes, I. M. G.; Guedes, L. L. M.; Silva, B. A. N. Effect of ractopamine and conjugated linoleic acid on performance of late finishing pigs. Animals 2020, 14, 277-284.
12. Mahoney, B. A.; Smith, W. A. D.; Lo, D.; Tsoi, K.; Tonelli, M.; Clase, C. Emergency interventions for hyperkalaemia. Cochrane Database Syst. Rev. 2005,
13. Prezelj, A.; Obreza, A.; Pecar, S. Abuse of Clenbuterol and its Detection. Curr. Med. Chem. 2003, 10, 281-290.
14. Barbosa, J.; Cruz, C.; Martins, J.; Manuel Silva, J.; Neves, C.; Alves, C.; Ramos, F.; Noronha Da Silveira, M. I. Food poisoning by clenbuterol in Portugal. Food Addit. Contam. 2005, 22, 563-566.
15. Quinlivan, E. P.; McPartlin, J.; Weir, D. G.; Scott, J. Mechanism of the antimicrobial drug trimethoprim revisited. FASEB J. 2000, 14, 2519-2524.
16. Rafailidis, P. I.; Ioannidou, E. N.; Falagas, M. E. Ampicillin/Sulbactam. Drugs 2007, 67, 1829-1849.
17. Zhang, H.; Wang, S. Review on enzyme-linked immunosorbent assays for sulfonamide residues in edible animal products. J. Immunol. Methods 2009, 350, 1-13.
18. Kassamali, R.; Sica, D. A. Acetazolamide: A Forgotten Diuretic Agent. Cardiol. Rev. 2011, 19, 276-278.
19. Modak, J. K.; Tikhomirova, A.; Gorrell, R. J.; Rahman, M. M.; Kotsanas, D.; Korman, T. M.; Garcia-Bustos, J.; Kwok, T.; Ferrero, R. L.; Supuran, C. T.; Roujeinikova, A. Anti-Helicobacter pylori activity of ethoxzolamide. J. Enzyme Inhib. Med. Chem. 2019, 34, 1660-1667.
20. García-Galán, M. J.; Díaz-Cruz, M. S.; Barceló, D. Determination of 19 sulfonamides in environmental water samples by automated on-line solid-phase extraction-liquid chromatography–tandem mass spectrometry (SPE-LC–MS/MS). Talanta 2010, 81, 355-366.
21. Nebot, C.; Regal, P.; Miranda, J. M.; Fente, C.; Cepeda, A. Rapid method for quantification of nine sulfonamides in bovine milk using HPLC/MS/MS and without using SPE. Food Chem. 2013, 141, 2294-2299.
22. Shishani, E.; Chai, S. C.; Jamokha, S.; Aznar, G.; Hoffman, M. K. Determination of ractopamine in animal tissues by liquid chromatography-fluorescence and liquid chromatography/tandem mass spectrometry. Anal. Chim. Acta 2003, 483, 137-145.
23. Díaz-Cruz, M. S.; García-Galán, M. J.; Barceló, D. Highly sensitive simultaneous determination of sulfonamide antibiotics and one metabolite in environmental waters by liquid chromatography–quadrupole linear ion trap–mass spectrometry. J. Chromatogr. A 2008, 1193, 50-59.
24. Yuan, S.-f.; Liu, Z.-h.; Yin, H.; Dang, Z.; Wu, P.-x.; Zhu, N.-w.; Lin, Z. Trace determination of sulfonamide antibiotics and their acetylated metabolites via SPE-LC-MS/MS in wastewater and insights from their occurrence in a municipal wastewater treatment plant. Sci. Total Environ. 2019, 653, 815-821.
25. Gao, Y.; Zhou, Y.; Chandrawati, R. Metal and Metal Oxide Nanoparticles to Enhance the Performance of Enzyme-Linked Immunosorbent Assay (ELISA). ACS Appl. Nano Mater. 2020, 3, 1-21.
26. Ma, L.-n.; Zhang, J.; Chen, H.-t.; Zhou, J.-h.; Ding, Y.-z.; Liu, Y.-s. An overview on ELISA techniques for FMD. J. Virol. 2011, 8, 419.
27. Cheng, C.-M.; Martinez, A. W.; Gong, J.; Mace, C. R.; Phillips, S. T.; Carrilho, E.; Mirica, K. A.; Whitesides, G. M. Paper-Based ELISA. Angew. Chem. Int. Ed. 2010, 49, 4771-4774.
28. Wu, L.; Li, G.; Xu, X.; Zhu, L.; Huang, R.; Chen, X. Application of nano-ELISA in food analysis: Recent advances and challenges. Trends Anal. Chem. 2019, 113, 140-156.
29. Li, D.; Ying, Y.; Wu, J.; Niessner, R.; Knopp, D. Comparison of monomeric and polymeric horseradish peroxidase as labels in competitive ELISA for small molecule detection. Microchim Acta 2013, 180, 711-717.
30. Watanabe, E.; Miyake, S.; Yogo, Y. Review of Enzyme-Linked Immunosorbent Assays (ELISAs) for Analyses of Neonicotinoid Insecticides in Agro-environments. J. Agric. Food Chem. 2013, 61, 12459-12472.
31. Clark Jr., L. C.; Lyons, C. ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY. Ann. N. Y. Acad. Sci. 1962, 102, 29-45.
32. Zhang, W.; Wang, R.; Luo, F.; Wang, P.; Lin, Z. Miniaturized electrochemical sensors and their point-of-care applications. Chin. Chem. Lett. 2020, 31, 589-600.
33. Qian, L.; Durairaj, S.; Prins, S.; Chen, A. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens. Bioelectron. 2021, 175, 112836.
34. Mohamad Nor, N.; Ridhuan, N. S.; Abdul Razak, K. Progress of Enzymatic and Non-Enzymatic Electrochemical Glucose Biosensor Based on Nanomaterial-Modified Electrode. Biosensors 2022, 12, 1136.
35. Harper, A.; Anderson, M. R. Electrochemical glucose sensors--developments using electrostatic assembly and carbon nanotubes for biosensor construction. Sensors 2010, 10, 8248-74.
36. Kim, K.-Y.; Chang, H.; Lee, W.-D.; Cai, Y.-F.; Chen, Y.-J. The Influence of Blood Glucose Meter Resistance Variation on the Performance of a Biosensor with a Gold-Coated Circuit Board. J. Sensors 2019, 2019, 5948182.
37. Kumar, P.; Sarkar, N.; Singh, A.; Kaushik, M. Nanopaper Biosensors at Point of Care. Bioconjug. Chem. 2022, 33, 1114-1130.
38. Rubio-Monterde, A.; Quesada-González, D.; Merkoçi, A. Toward Integrated Molecular Lateral Flow Diagnostic Tests Using Advanced Micro- and Nanotechnology. Anal. Chem. 2023, 95, 468-489.
39. Brangel, P.; Sobarzo, A.; Parolo, C.; Miller, B. S.; Howes, P. D.; Gelkop, S.; Lutwama, J. J.; Dye, J. M.; McKendry, R. A.; Lobel, L.; Stevens, M. M. A Serological Point-of-Care Test for the Detection of IgG Antibodies against Ebola Virus in Human Survivors. ACS Nano 2018, 12, 63-73.
40. Koczula, K. M.; Gallotta, A. Lateral flow assays. Essays Biochem. 2016, 60, 111-120.
41. Mancuso, C. P.; Lu, Z.-X.; Qian, J.; Boswell, S. A.; Springer, M. A Semi-Quantitative Isothermal Diagnostic Assay Utilizing Competitive Amplification. Anal. Chem. 2021, 93, 9541-9548.
42. Yang, M.; Tang, Y.; Qi, L.; Zhang, S.; Liu, Y.; Lu, B.; Yu, J.; Zhu, K.; Li, B.; Du, Y. SARS-CoV-2 Point-of-Care (POC) Diagnosis Based on Commercial Pregnancy Test Strips and a Palm-Size Microfluidic Device. Anal. Chem. 2021, 93, 11956-11964.
43. Song, S.; Liu, N.; Zhao, Z.; Njumbe Ediage, E.; Wu, S.; Sun, C.; De Saeger, S.; Wu, A. Multiplex Lateral Flow Immunoassay for Mycotoxin Determination. Anal. Chem. 2014, 86, 4995-5001.
44. Guler, E.; Yilmaz Sengel, T.; Gumus, Z. P.; Arslan, M.; Coskunol, H.; Timur, S.; Yagci, Y. Mobile Phone Sensing of Cocaine in a Lateral Flow Assay Combined with a Biomimetic Material. Anal. Chem. 2017, 89, 9629-9632.
45. Parolo, C.; Sena-Torralba, A.; Bergua, J. F.; Calucho, E.; Fuentes-Chust, C.; Hu, L.; Rivas, L.; Álvarez-Diduk, R.; Nguyen, E. P.; Cinti, S.; Quesada-González, D.; Merkoçi, A. Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat. Protoc. 2020, 15, 3788-3816.
46. Zhang, Y.; Liu, X.; Wang, L.; Yang, H.; Zhang, X.; Zhu, C.; Wang, W.; Yan, L.; Li, B. Improvement in Detection Limit for Lateral Flow Assay of Biomacromolecules by Test-Zone Pre-enrichment. Sci. Rep. 2020, 10, 9604.
47. Nuntawong, P.; Putalun, W.; Tanaka, H.; Morimoto, S.; Sakamoto, S. Lateral flow immunoassay for small-molecules detection in phytoproducts: a review. J. Nat. Med. 2022, 76, 521-545.
48. Chen, Y.; Liu, L.; Xu, L.; Song, S.; Kuang, H.; Cui, G.; Xu, C. Gold immunochromatographic sensor for the rapid detection of twenty-six sulfonamides in foods. Nano Res. 2017, 10, 2833-2844.
49. Chen, Y.; Guo, L.; Liu, L.; Song, S.; Kuang, H.; Xu, C. Ultrasensitive Immunochromatographic Strip for Fast Screening of 27 Sulfonamides in Honey and Pork Liver Samples Based on a Monoclonal Antibody. J. Agric. Food Chem. 2017, 65, 8248-8255.
50. Wang, Z.; Beier, R. C.; Sheng, Y.; Zhang, S.; Jiang, W.; Wang, Z.; Wang, J.; Shen, J. Monoclonal antibodies with group specificity toward sulfonamides: selection of hapten and antibody selectivity. Anal. Bioanal. Chem. 2013, 405, 4027-4037.
51. Pratt, G. W.; Fan, A.; Melakeberhan, B.; Klapperich, C. M. A competitive lateral flow assay for the detection of tenofovir. Anal. Chim. Acta 2018, 1017, 34-40.
52. Cohen, P. A. The FDA and Adulterated Supplements—Dereliction of Duty. JAMA NETW OPEN 2018, 1, e183329-e183329.
53. Li, Y.; Xie, H.; Wang, J.; Li, X.; Xiao, Z.; Xu, Z.; Lei, H.; Shen, X. Lateral Flow Immunochromatography Assay for Detection of Furosemide in Slimming Health Foods. Foods 2021, 10, 2041.
54. Fu, Q.; Liang, J.; Lan, C.; Zhou, K.; Shi, C.; Tang, Y. Development of a novel dual-functional lateral-flow sensor for on-site detection of small molecule analytes. Sens. Actuators B Chem. 2014, 203, 683-689.
55. Chen, Y.; Fu, Q.; Xie, J.; Wang, H.; Tang, Y. Development of a high sensitivity quantum dot-based fluorescent quenching lateral flow assay for the detection of zearalenone. Anal. Bioanal. Chem. 2019, 411, 2169-2175.
56. Akter, S.; Vehniäinen, M.; Spoof, L.; Nybom, S.; Meriluoto, J.; Lamminmäki, U. Broad-Spectrum Noncompetitive Immunocomplex Immunoassay for Cyanobacterial Peptide Hepatotoxins (Microcystins and Nodularins). Anal. Chem. 2016, 88, 10080-10087.
57. Akter, S.; Vehniäinen, M.; Meriluoto, J.; Spoof, L.; Lamminmäki, U. Non-competitive ELISA with broad specificity for microcystins and nodularins. Adv. Oceanogr. Limnol. 2017, 8.
58. Akter, S.; Kustila, T.; Leivo, J.; Muralitharan, G.; Vehniäinen, M.; Lamminmäki, U. Noncompetitive Chromogenic Lateral-Flow Immunoassay for Simultaneous Detection of Microcystins and Nodularin. Biosensors 2019, 9, 79.
59. Wang, T.; Chen, L.; Chikkanna, A.; Chen, S.; Brusius, I.; Sbuh, N.; Veedu, R. N. Development of nucleic acid aptamer-based lateral flow assays: A robust platform for cost-effective point-of-care diagnosis. Theranostics 2021, 11, 5174-5196.
60. Jaisankar, A.; Krishnan, S.; Rangasamy, L. Recent developments of aptamer-based lateral flow assays for point-of-care (POC) diagnostics. Anal. Biochem. 2022, 655, 114874.
61. Majdinasab, M.; Badea, M.; Marty, J. L. Aptamer-Based Lateral Flow Assays: Current Trends in Clinical Diagnostic Rapid Tests. Pharmaceuticals 2022, 15, 90.
62. Dalirirad, S.; Steckl, A. J. Lateral flow assay using aptamer-based sensing for on-site detection of dopamine in urine. Anal. Biochem. 2020, 596, 113637.
63. Dalirirad, S.; Han, D.; Steckl, A. J. Aptamer-Based Lateral Flow Biosensor for Rapid Detection of Salivary Cortisol. ACS Omega 2020, 5, 32890-32898.
64. Chen, Y.-H.; Gupta, N. K.; Huang, H.-J.; Lam, C. H.; Huang, C.-L.; Tan, K.-T. Affinity-Switchable Lateral Flow Assay. Anal. Chem. 2021, 93, 5556-5561.
65. Huang, H.-J.; Lin, Y.-T.; Chung, M.-C.; Chen, Y.-H.; Tan, K.-T. Glucose and Ethanol Detection with an Affinity-Switchable Lateral Flow Assay. Anal. Chem. 2022, 94, 5084-5090.
66. Terai, T.; Maki, E.; Sugiyama, S.; Takahashi, Y.; Matsumura, H.; Mori, Y.; Nagano, T. Rational Development of Caged-Biotin Protein-Labeling Agents and Some Applications in Live Cells. Chem. Biol. 2011, 18, 1261-1272.
67. Wu, Y.-P.; Chew, C. Y.; Li, T.-N.; Chung, T.-H.; Chang, E.-H.; Lam, C. H.; Tan, K.-T. Target-activated streptavidin–biotin controlled binding probe. Chem. Sci. 2018, 9, 770-776.
68. Alberstein, R. G.; Guo, A. B.; Kortemme, T. Design principles of protein switches. Curr. Opin. Struct. Biol. 2022, 72, 71-78.
69. Vavers, E.; Zvejniece, L.; Maurice, T.; Dambrova, M. Allosteric Modulators of Sigma-1 Receptor: A Review. Front. Pharmacol. 2019, 10, 223.
70. Cheng, X.; Jiang, H. Allostery in Drug Development. In Protein Allostery in Drug Discovery, Zhang, J.; Nussinov, R. Eds.; Vol. 1163; Springer Singapore, 2019, pp 1-23.
71. Greenwald, E. C.; Mehta, S.; Zhang, J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem. Rev. 2018, 118, 11707-11794.
72. Sadoine, M.; Reger, M.; Wong, K. M.; Frommer, W. B. Affinity Series of Genetically Encoded Förster Resonance Energy-Transfer Sensors for Sucrose. ACS Sens. 2021, 6, 1779-1784.
73. Wu, C.-C.; Huang, S.-J.; Fu, T.-Y.; Lin, F.-L.; Wang, X.-Y.; Tan, K.-T. Small-Molecule Modulated Affinity-Tunable Semisynthetic Protein Switches. ACS Sens. 2022, 7, 2691-2700.
74. Brun, M. A.; Griss, R.; Reymond, L.; Tan, K.-T.; Piguet, J.; Peters, R. J. R. W.; Vogel, H.; Johnsson, K. Semisynthesis of Fluorescent Metabolite Sensors on Cell Surfaces. J. Am. Chem. Soc. 2011, 133, 16235-16242.
75. Brun, M. A.; Tan, K.-T.; Griss, R.; Kielkowska, A.; Reymond, L.; Johnsson, K. A Semisynthetic Fluorescent Sensor Protein for Glutamate. J. Am. Chem. Soc. 2012, 134, 7676-7678.
76. Masharina, A.; Reymond, L.; Maurel, D.; Umezawa, K.; Johnsson, K. A Fluorescent Sensor for GABA and Synthetic GABAB Receptor Ligands. J. Am. Chem. Soc. 2012, 134, 19026-19034.
77. Chivers, C. E.; Koner, A. L.; Lowe, E. D.; Howarth, M. How the biotin-streptavidin interaction was made even stronger: investigation via crystallography and a chimaeric tetramer. Biochem. J. 2011, 435, 55-63.
78. Dundas, C. M.; Demonte, D.; Park, S. Streptavidin–biotin technology: improvements and innovations in chemical and biological applications. Appl. Microbiol. Biotechnol. 2013, 97, 9343-9353.
79. Zhang, C.; Zheng, T.; Wang, H.; Chen, W.; Huang, X.; Liang, J.; Qiu, L.; Han, D.; Tan, W. Rapid One-Pot Detection of SARS-CoV-2 Based on a Lateral Flow Assay in Clinical Samples. Anal. Chem. 2021, 93, 3325-3330.
80. Ding, Z.; Fong, R. B.; Long, C. J.; Stayton, P. S.; Hoffman, A. S. Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 2001, 411, 59-62.
81. Cherkasov, V. R.; Mochalova, E. N.; Babenyshev, A. V.; Vasilyeva, A. V.; Nikitin, P. I.; Nikitin, M. P. Nanoparticle Beacons: Supersensitive Smart Materials with On/Off-Switchable Affinity to Biomedical Targets. ACS Nano 2020, 14, 1792-1803.
82. Taninaka, A.; Takeuchi, O.; Shigekawa, H. Hidden variety of biotin–streptavidin/avidin local interactions revealed by site-selective dynamic force spectroscopy. Phys. Chem. Chem. Phys. 2010, 12, 12578-12583.
83. Keppler, A.; Gendreizig, S.; Gronemeyer, T.; Pick, H.; Vogel, H.; Johnsson, K. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 2003, 21, 86-89.
84. Hinner, M. J.; Johnsson, K. How to obtain labeled proteins and what to do with them. Curr. Opin. Biotechnol. 2010, 21, 766-776.
85. Bonardi, A.; Nocentini, A.; Bua, S.; Combs, J.; Lomelino, C.; Andring, J.; Lucarini, L.; Sgambellone, S.; Masini, E.; McKenna, R.; Gratteri, P.; Supuran, C. T. Sulfonamide Inhibitors of Human Carbonic Anhydrases Designed through a Three-Tails Approach: Improving Ligand/Isoform Matching and Selectivity of Action. J. Med. Chem. 2020, 63, 7422-7444.
86. Lindskog, S. Structure and mechanism of carbonic anhydrase. Pharmacol. Ther. 1997, 74, 1-20.
87. McKenna, R.; Frost, S. C. Overview of the Carbonic Anhydrase Family. In Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications, Frost, S. C.; McKenna, R. Eds.; Springer Netherlands, 2014, pp 3-5.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *