帳號:guest(3.15.144.132)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳 歆
作者(外文):Chen, Hsin
論文名稱(中文):開發檢測鸚鵡喙羽症病毒以及人絨毛膜促性腺激素之側流免疫層析檢測系統
論文名稱(外文):Development of Lateral Flow Immunoassay for Detection of BFDV and hCG
指導教授(中文):林俊成
周佳駿
指導教授(外文):Lin, Chun-Cheng
Chou, Chia-Chun
口試委員(中文):陳貴通
賴千蕙
口試委員(外文):Tan, Kui-Thong
Lai, Chian-Hui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:110023507
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:133
中文關鍵詞:側流免疫層析系統鸚鵡喙羽症病毒人絨毛促性腺激素金奈米粒子抗體固化
外文關鍵詞:Lateral flow immunoassayBeak and feather disease virushuman chorionic gonadotropingold nanoparticles(AuNP)antibody immobilization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:233
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
側流免疫層析檢測(Lateral Flow Immunoassay,LFIA)是一種低成本、快速的診斷方法,且同時具有高特異性和敏感性。在COVID-19疫情爆發後,由於其便利性,使LFIA的應用更加普及。除此之外,利用金奈米粒子(AuNPs)做為載體的LFIA可以在無需專業實驗室設備或醫療專業人員的情況下進行。憑藉以上優勢,LFIA已被應用於病毒診斷、食品安全等領域。在本論文中,我們開發用於檢測喙和羽毛病毒(BFDV)和人類絨毛膜促性腺激素(hCG)蛋白的LFIA平台。通過物理吸附或隨機醯胺鍵形成的方式,將能夠識別病毒上抗原的抗體包覆在金奈米粒子上。在存在病毒或目標蛋白的情況下,抗體金奈米粒子、病毒、測試線上抗體會於測試線上形成「三明治」複合物結構,並產生兩條線之陽性訊號。為了確保測試線和控制線上的訊號品質,最終使用兩種不同的抗體AuNPs。未來可嘗試將本論文中所開發之LFIA系統應用至其他目標物的檢測當中。
Lateral flow immunoassay (LFIA) is a low-cost and rapid diagnosis, with high specificity and sensitivity. After the outbreak of COVID-19, LFIA became more widespread for its convenience. Additionally, AuNPs-based LFIA can be performed without specialized lab equipment or healthcare professionals. With these advantages, LFIA has been applied to virus diagnosis, food safety, etc. In this thesis, LFIA-based platforms were developed for the detection of beak and feather disease virus (BFDV) and human chorionic gonadotropin (hCG) protein. The antibodies which recognize the antigen on the virus were coated on AuNPs by either physical absorption or random amide bond formation. In the presence of virus or target protein, “sandwich” complex forms at the test line, indicating positive signal. Two different AuNPs were used for control line and test line, respectively, to ensure the bright signals on both lines. The LFIA system herein developed opens the application in various biological diagnosis.
摘要﹍﹍﹍II
Abstract﹍﹍﹍III
謝誌﹍﹍﹍IV
目錄﹍﹍﹍VII
圖目錄﹍﹍﹍XIV
表目錄﹍﹍﹍XX
流程圖目錄﹍﹍﹍XXI
縮寫對照表﹍﹍﹍XXIII
第一章、緒論﹍﹍﹍1
1.1金奈米粒子﹍﹍﹍1
1.1.1金奈米粒子之性質﹍﹍﹍1
1.1.1.1 物理性質﹍﹍﹍1
1.1.1.2 化學性質﹍﹍﹍3
1.1.2金奈米粒子之合成方法﹍﹍﹍6
1.1.3金奈米粒子於生化領域之應用﹍﹍﹍10
1.2抗體﹍﹍﹍12
1.2.1抗體的結構與分類﹍﹍﹍12
1.2.2抗體於生化領域之應用﹍﹍﹍14
1.3生物分子固化方式﹍﹍﹍15
1.3.1非共價鍵固化法﹍﹍﹍16
1.3.1.1 物理吸附法﹍﹍﹍16
1.3.1.2 親和標籤作用﹍﹍﹍17
1.3.2共價鍵固化法﹍﹍﹍20
1.3.2.1 胺基酸耦合法﹍﹍﹍20
1.3.1.2 點擊化學固化法﹍﹍﹍22
1.3.1.3硼酯鍵﹍﹍﹍24
1.4側流免疫層析檢測系統(LFIA)﹍﹍﹍25
1.4.1側流免疫層析檢測方式﹍﹍﹍27
1.4.1.1三明治型LFIA﹍﹍﹍27
1.4.1.2競爭型LFIA﹍﹍﹍28
1.4.2檢測所使用之載體﹍﹍﹍29
1.5鸚鵡喙羽症病毒(BFDV)﹍﹍﹍33
1.6人絨毛膜促性腺激素(Human chorionic gonadotropin, hCG)﹍﹍﹍34
1.7研究動機﹍﹍﹍35
第二章、結果與討論﹍﹍﹍37
2.1檸檬酸鈉包覆之金奈米粒子合成﹍﹍﹍37
2.2側流免疫層析試紙之組成及設計﹍﹍﹍39
2.3開發檢測鸚鵡喙羽症病毒之LFIA系統﹍﹍﹍40
2.3.1競爭型LFIA系統﹍﹍﹍40
2.3.1.1流程設計原理﹍﹍﹍40
2.3.1.2控制線辨認之Goat IgG@AuNP之合成﹍﹍﹍41
2.3.1.3抗原胜肽之合成﹍﹍﹍42
2.3.1.4連接子與兩性離子之合成﹍﹍﹍47
2.3.1.5 Peptide@AuNP之合成與定量﹍﹍﹍48
2.3.1.5.1醯胺鍵固化方法﹍﹍﹍48
2.3.1.5.2點擊反應固化方法﹍﹍﹍49
2.3.1.6 Peptide@AuNP之專一性及穩定度測試﹍﹍﹍51
2.3.1.7利用胜肽抗原競爭結果﹍﹍﹍54
2.3.1.8實際鳥隻樣品檢測結果﹍﹍﹍55
2.3.2三明治型LFIA系統﹍﹍﹍56
2.3.2.1流程設計原理﹍﹍﹍56
2.3.2.2測試線辨認之anti-BFDV Ab@AuNP合成﹍﹍﹍57
2.3.2.3實際鳥隻樣品檢測結果﹍﹍﹍58
2.3.2.4胜肽抗原與抗體之結合力測試﹍﹍﹍61
2.3.2.4.1微陣列晶片檢測﹍﹍﹍61
2.3.3斑點印跡法(Dot blot assay)﹍﹍﹍62
2.3.3.1競爭型BFDV﹍﹍﹍63
2.3.3.2三明治型BFDV﹍﹍﹍64
2.4開發檢測人絨毛膜促性腺激素之LFIA系統﹍﹍﹍67
2.4.1流程設計原理﹍﹍﹍67
2.4.2物理吸附型固化方法﹍﹍﹍68
2.4.2.1測試線辨認之Anti-hCG alpha Ab@AuNP合成﹍﹍﹍68
2.4.2.2優化合成Anti-hCG alpha Ab@AuNP的抗體使用量﹍﹍﹍69
2.4.2.3測試線辨認之Anti-hCG alpha Ab@AuNP之穩定度測試﹍﹍﹍70
2.4.2.4試紙條件優化﹍﹍﹍72
2.4.2.5 hCG檢測結果﹍﹍﹍75
2.4.2.6 探討使用兩種抗體奈米金之必要性﹍﹍﹍78
2.4.3隨機共價鍵固化方法﹍﹍﹍80
2.4.3.1測試線辨認之Anti-hCG alpha Ab@AuNP合成﹍﹍﹍80
2.4.3.2 hCG檢測結果﹍﹍﹍84
2.4.4位向性共價鍵固化方法﹍﹍﹍87
2.4.4.1測試線辨認之Ab@AuNP合成﹍﹍﹍87
2.4.4.2 hCG檢測結果﹍﹍﹍89
2.4.5實際尿液樣品檢測結果﹍﹍﹍90
第三章、結論與未來展望﹍﹍﹍93
第四章、實驗步驟﹍﹍﹍94
4.1 Materials and methods﹍﹍﹍94
4.2 Linkers synthesis﹍﹍﹍95
4.3 Citrate-AuNP synthesis﹍﹍﹍101
4.3.1 Synthesis of 13 nm AuNP﹍﹍﹍101
4.3.2 Synthesis of 30 nm AuNP﹍﹍﹍101
4.4 High-performance liquid chromatography (HPLC)﹍﹍﹍101
4.4.1 Analytical HPLC﹍﹍﹍101
4.4.2 Semi-preparative HPLC﹍﹍﹍102
4.5 Solid Phase Peptide Synthesis﹍﹍﹍102
4.5.1 General procedure for manual peptide synthesis﹍﹍﹍102
4.5.2 Final cleavage from resin﹍﹍﹍103
4.5.3 Peptide precipitation﹍﹍﹍103
4.5.4 Peptide purification and analysis﹍﹍﹍103
4.6 Protein analysis procedure﹍﹍﹍103
4.7 AuNP stability test﹍﹍﹍104
4.8 AuNP protein quantification via micro BCA assay﹍﹍﹍104
4.9 Transmission electron microscopy of citrate AuNP﹍﹍﹍104
4.10 Fabrication of Goat IgG coated AuNP (IgG@AuNP)﹍﹍﹍104
4.11 BFDV LFIA strip﹍﹍﹍105
4.11.1 Fabrication of BFDV peptide antigen@AuNP﹍﹍﹍105
4.11.1.1 Conjugation by random covalent formation﹍﹍﹍105
4.11.1.2 Conjugation by CuAAc﹍﹍﹍105
4.11.2 Evaluating the capability of BFDV peptide antigen@AuNP for Ab capture﹍﹍﹍106
4.11.3 BFDV Strip assembly﹍﹍﹍106
4.11.4 Non-specific test of BFDV strip﹍﹍﹍106
4.11.5 Competitive test of BFDV strip (Competitive LFIA)﹍﹍﹍107
4.11.6 Actual sample test of BFDV strip (Competitive LFIA)﹍﹍﹍107
4.11.7 Fabrication of Anti-BFDV Ab@AuNP﹍﹍﹍107
4.11.8 Actual sample test of BFDV strip (Sandwich LFIA)﹍﹍﹍108
4.12 hCG LFIA strip﹍﹍﹍108
4.12.1 Anti-hCG Ab@AuNP synthesis﹍﹍﹍108
4.12.1.1 Fabrication of anti-hCG Ab@AuNP by physical absorption﹍﹍﹍108
4.12.1.2 Fabrication of anti-hCG Ab@AuNP by random covalent bond﹍﹍﹍108
4.12.1.3 Fabrication of anti-hCG Ab@AuNP by oriented covalent bond﹍﹍﹍109
4.12.2 hCG Strip assembly﹍﹍﹍110
4.12.3 Non-specific test of hCG strip﹍﹍﹍110
4.12.4 Actual sample test of hCG strip﹍﹍﹍110
4.12.5 Optimization of hCG strip test condition﹍﹍﹍111
4.12.5.1 Running buffer﹍﹍﹍111
4.12.5.2 Surfactant effect﹍﹍﹍111
4.12.5.3 Membrane effect﹍﹍﹍112
4.12.5.4 Time effect on strip drying﹍﹍﹍112
4.12.5.5 Effect of using only anti-hCG Ab@AuNP﹍﹍﹍113
4.12.6 Detection of hCG in real urine sample﹍﹍﹍113
4.13 Dot blot assay﹍﹍﹍113
4.13.1 Using dot blot test to ensure competitive BFDV LFIA﹍﹍﹍113
4.13.2 Using dot blot test to ensure sandwich BFDV LFIA﹍﹍﹍114
第五章、參考文獻﹍﹍﹍115
附錄﹍﹍﹍124


1. Higby, G. J. Gold in medicine. Gold Bull. 1982, 15 (4), 130-140.
2. Murphy, C. J.; Gole, A. M.; Stone, J. W.; Sisco, P. N.; Alkilany, A. M.; Goldsmith, E. C.; Baxter, S. C. Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging. Acc. Chem. Res. 2008, 41 (12), 1721-1730.
3. Jauffred, L.; Samadi, A.; Klingberg, H.; Bendix, P. M.; Oddershede, L. B. Plasmonic Heating of Nanostructures. Chem. Rev. 2019, 119 (13), 8087-8130.
4. Yeh, Y.-C.; Creran, B.; Rotello, V. M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 2012, 4 (6), 1871-1880.
5. Shafiqa, A. R.; Abdul Aziz, A.; Mehrdel, B. Nanoparticle Optical Properties: Size Dependence of a Single Gold Spherical Nanoparticle. J. Phys. Conf. Ser. 2018, 1083 (1), 012040.
6. https://www.sigmaaldrich.com/TW/en/technical-documents/technical-article/materials-science-and-engineering/biosensors-and-imaging/gold-nanoparticles.
7. Gharatape, A.; Davaran, S.; Salehi, R.; Hamishehkar, H. Engineered gold nanoparticles for photothermal cancer therapy and bacteria killing. RSC Adv. 2016, 6 (112), 111482-111516.
8. Jiang, K.; Smith, D. A.; Pinchuk, A. Size-Dependent Photothermal Conversion Efficiencies of Plasmonically Heated Gold Nanoparticles. J. Phys. Chem. C 2013, 117 (51), 27073-27080.
9. Guesmi, H.; Luque, N. B.; Santos, E.; Tielens, F. Does the S−H Bond Always Break after Adsorption of an Alkylthiol on Au(111)? Eur. J. Chem. 2017, 23 (6), 1402-1408.
10. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. J. Chem. Soc., Chem. Commun. 1994, (7), 801-802.
11. Jans, H.; Huo, Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chem. Soc. Rev. 2012, 41 (7), 2849-2866.
12. Bai, X.; Wang, Y.; Song, Z.; Feng, Y.; Chen, Y.; Zhang, D.; Feng, L. The Basic Properties of Gold Nanoparticles and their Applications in Tumor Diagnosis and Treatment. In Int. J. Mol. Sci., 2020, 21 (7), 2480.
13. Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33 (9), 941-951.
14. Tangeysh, B.; Moore Tibbetts, K.; Odhner, J. H.; Wayland, B. B.; Levis, R. J. Gold Nanoparticle Synthesis Using Spatially and Temporally Shaped Femtosecond Laser Pulses: Post-Irradiation Auto-Reduction of Aqueous [AuCl4]−. J. Phys. Chem. C 2013, 117 (36), 18719-18727.
15. Birtcher, R. C.; Kirk, M. A.; Furuya, K.; Lumpkin, G. R.; Ruault, M. O. In situ transmission electron microscopy investigation of radiation effects. J. Mater. Res. 2005, 20 (7), 1654-1683.
16. Mahato, K.; Nagpal, S.; Shah, M. A.; Srivastava, A.; Maurya, P. K.; Roy, S.; Jaiswal, A.; Singh, R.; Chandra, P. Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech 2019, 9 (2), 57.
17. Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday. Soc. 1951, 11 (0), 55-75.
18. Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241 (105), 20-22.
19. Peng, S.; Lee, Y.; Wang, C.; Yin, H.; Dai, S.; Sun, S. A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Res. 2008, 1 (3), 229-234.
20. ten Hove, J. B.; Schijven, L. M. I.; Wang, J.; Velders, A. H. Size-controlled and water-soluble gold nanoparticles using UV-induced ligand exchange and phase transfer. Chem. Comm. 2018, 54 (95), 13355-13358.
21. Kim, S.; Jang, Y.; Yoon, K. Y.; Park, J. Surface engineered gold nanoparticles through highly stable metal–surfactant complexes. J. Colloid. Interface Sci. 2016, 464, 110-116.
22. Lin, C.; Tao, K.; Hua, D.; Ma, Z.; Zhou, S. Size Effect of Gold Nanoparticles in Catalytic Reduction of p-Nitrophenol with NaBH4. Molecules 2013, 18, 12609-12620.
23. Sperling, R. A.; García-Fernández, L.; Ojea-Jiménez, I.; Piella, J.; Bastús, N. G.; Puntes, V. One-Pot Synthesis of Cationic Gold Nanoparticles by Differential Reduction. 2017, 231 (1), 7-18.
24. Fan, J.; Cheng, Y.; Sun, M. Functionalized Gold Nanoparticles: Synthesis, Properties and Biomedical Applications. Chem. Rec. 2020, 20 (12), 1474-1504.
25. Szunerits, S.; Spadavecchia, J.; Boukherroub, R. Surface plasmon resonance: signal amplification using colloidal gold nanoparticles for enhanced sensitivity. 2014, 33 (3), 153-164.
26. Muthuvel, A.; Adavallan, K.; Balamurugan, K.; Krishnakumar, N. Biosynthesis of gold nanoparticles using Solanum nigrum leaf extract and screening their free radical scavenging and antibacterial properties. Biomed. Prev. Nutr. 2014, 4 (2), 325-332.
27. Bindhu, M. R.; Umadevi, M. Silver and gold nanoparticles for sensor and antibacterial applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 128, 37-45.
28. He, S.; Guo, Z.; Zhang, Y.; Zhang, S.; Wang, J.; Gu, N. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater. Lett. 2007, 61 (18), 3984-3987.
29. Thakkar, K. N.; Mhatre, S. S.; Parikh, R. Y. Biological synthesis of metallic nanoparticles. Nanomed.: Nanotechnol. Biol. Med. 2010, 6 (2), 257-262.
30. Tomás, A. L.; de Almeida, M. P.; Cardoso, F.; Pinto, M.; Pereira, E.; Franco, R.; Matos, O. Development of a Gold Nanoparticle-Based Lateral-Flow Immunoassay for Pneumocystis Pneumonia Serological Diagnosis at Point-of-Care. Front. Microbiol. 2019, 10.
31. Khlebtsov, B. N.; Tumskiy, R. S.; Burov, A. M.; Pylaev, T. E.; Khlebtsov, N. G. Quantifying the Numbers of Gold Nanoparticles in the Test Zone of Lateral Flow Immunoassay Strips. ACS Appl. Nano Mater. 2019, 2 (8), 5020-5028.
32. Nam, J.; Won, N.; Jin, H.; Chung, H.; Kim, S. pH-Induced Aggregation of Gold Nanoparticles for Photothermal Cancer Therapy. J. Am. Chem. Soc. 2009, 131 (38), 13639-13645.
33. Jung, S.; Nam, J.; Hwang, S.; Park, J.; Hur, J.; Im, K.; Park, N.; Kim, S. Theragnostic pH-Sensitive Gold Nanoparticles for the Selective Surface Enhanced Raman Scattering and Photothermal Cancer Therapy. Anal. Chem. 2013, 85 (16), 7674-7681.
34. Kolovskaya, O. S.; Zamay, T. N.; Belyanina, I. V.; Karlova, E.; Garanzha, I.; Aleksandrovsky, A. S.; Kirichenko, A.; Dubynina, A. V.; Sokolov, A. E.; Zamay, G. S.; et al. Aptamer-Targeted Plasmonic Photothermal Therapy of Cancer. Mol. Ther. Nucleic Acids 2017, 9, 12-21.
35. Schmid, G.; Corain, B. Nanoparticulated Gold: Syntheses, Structures, Electronics, and Reactivities. Eur. J. Inorg. Chem. 2003, 2003 (17), 3081-3098.
36. Murdoch, M.; Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; Llorca, J.; Idriss, H. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 2011, 3 (6), 489-492.
37. Davies, D. R.; Chacko, S. Antibody structure. Acc. Chem. Res. 1993, 26 (8), 421-427.
38. Chiu, M. L.; Goulet, D. R.; Teplyakov, A.; Gilliland, G. L. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies, 2019, 8 (4), 55.
39. Wang, Q.; Chen, Y.; Park, J.; Liu, X.; Hu, Y.; Wang, T.; McFarland, K.; Betenbaugh, M. J. Design and Production of Bispecific Antibodies. In Antibodies, 2019; Vol. 8.
40. Weiner, L. M.; Surana, R.; Wang, S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat. Rev. Immunol. 2010, 10 (5), 317-327.
41. Kronimus, Y.; Dodel, R.; Galuska, S. P.; Neumann, S. IgG Fc N-glycosylation: Alterations in neurologic diseases and potential therapeutic target? J. Autoimmun. 2019, 96, 14-23.
42. Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2 (12), 751-760.
43. Engvall, E.; Perlmann, P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 1971, 8 (9), 871-874.
44. https://www.technologynetworks.com/analysis/articles/an-introduction-to-the-enzyme-linked-immunosorbent-assay-elisa-test-350024.
45. Jesionowski, T.; Zdarta, J.; Krajewska, B. Enzyme immobilization by adsorption: a review. Adsorption 2014, 20 (5), 801-821.
46. Meissner, J.; Prause, A.; Bharti, B.; Findenegg, G. H. Characterization of protein adsorption onto silica nanoparticles: influence of pH and ionic strength. Colloid Polym. Sci. 2015, 293 (11), 3381-3391.
47. Tripathi, K.; Driskell, J. D. Quantifying Bound and Active Antibodies Conjugated to Gold Nanoparticles: A Comprehensive and Robust Approach To Evaluate Immobilization Chemistry. ACS Omega 2018, 3 (7), 8253-8259.
48. Mohamad, N. R.; Marzuki, N. H. C.; Buang, N. A.; Huyop, F.; Wahab, R. A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015, 29 (2), 205-220.
49. Huang, L.; Cheng, Z.-M. Immobilization of lipase on chemically modified bimodal ceramic foams for olive oil hydrolysis. J. Chem. Eng. 2008, 144 (1), 103-109.
50. Zhao, X.; Li, G.; Liang, S. Several Affinity Tags Commonly Used in Chromatographic Purification. J. Anal. Methods Chem. 2013, 2013, 581093.
51. Weber, P. C.; Ohlendorf, D. H.; Wendoloski, J. J.; Salemme, F. R. Structural Origins of High-Affinity Biotin Binding to Streptavidin. Science 1989, 243 (4887), 85-88.
52. Zhang, D. W.; Xiang, Y.; Zhang, J. Z. H. New Advance in Computational Chemistry:  Full Quantum Mechanical ab Initio Computation of Streptavidin−Biotin Interaction Energy. J. Phys. Chem. B 2003, 107 (44), 12039-12041.
53. Liu, X.; Li, X.; Bai, Y.; Zhou, X.; Chen, L.; Qiu, C.; Lu, C.; Jin, Z.; Long, J.; Xie, Z. Enhanced Stability of β-Agarase Immobilized on Streptavidin-Coated Fe3O4 Nanoparticles: Effect of Biotin Linker Length. Ind. Eng. Chem. Res. 2022, 61 (51), 18646-18662.
54. Chikh, G. G.; Li, W. M.; Schutze-Redelmeier, M.-P.; Meunier, J.-C.; Bally, M. B. Attaching histidine-tagged peptides and proteins to lipid-based carriers through use of metal-ion-chelating lipids. Biochim. Biophys. Acta Biomembr. 2002, 1567, 204-212.
55. Lukáč, R.; Kauerová, Z.; Mašek, J.; Bartheldyová, E.; Kulich, P.; Koudelka, Š.; Korvasová, Z.; Plocková, J.; Papoušek, F.; Kolář, F.; et al. Preparation of Metallochelating Microbubbles and Study on Their Site-Specific Interaction with rGFP-HisTag as a Model Protein. Langmuir 2011, 27 (8), 4829-4837.
56. Ericsson, E. M.; Enander, K.; Bui, L.; Lundström, I.; Konradsson, P.; Liedberg, B. Site-Specific and Covalent Attachment of His-Tagged Proteins by Chelation Assisted Photoimmobilization: A Strategy for Microarraying of Protein Ligands. Langmuir 2013, 29 (37), 11687-11694.
57. Sauer-Eriksson, A. E.; Kleywegt, G. J.; Uhlén, M.; Jones, T. A. Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure 1995, 3 (3), 265-278.
58. Jung, Y.; Lee, J. M.; Jung, H.; Chung, B. H. Self-Directed and Self-Oriented Immobilization of Antibody by Protein G−DNA Conjugate. Anal. Chem. 2007, 79 (17), 6534-6541.
59. Fowler, J. M.; Stuart, M. C.; Wong, D. K. Y. Self-Assembled Layer of Thiolated Protein G as an Immunosensor Scaffold. Anal. Chem. 2007, 79 (1), 350-354.
60. Seo, J.-s.; Lee, S.; Poulter, C. D. Regioselective Covalent Immobilization of Recombinant Antibody-Binding Proteins A, G, and L for Construction of Antibody Arrays. J. Am. Chem. Soc. 2013, 135 (24), 8973-8980.
61. Behrens, C. R.; Ha, E. H.; Chinn, L. L.; Bowers, S.; Probst, G.; Fitch-Bruhns, M.; Monteon, J.; Valdiosera, A.; Bermudez, A.; Liao-Chan, S.; et al. Antibody–Drug Conjugates (ADCs) Derived from Interchain Cysteine Cross-Linking Demonstrate Improved Homogeneity and Other Pharmacological Properties over Conventional Heterogeneous ADCs. Mol. Pharm. 2015, 12 (11), 3986-3998.
62. Junutula, J. R.; Raab, H.; Clark, S.; Bhakta, S.; Leipold, D. D.; Weir, S.; Chen, Y.; Simpson, M.; Tsai, S. P.; Dennis, M. S.; et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 2008, 26 (8), 925-932.
63. Nguyen, H. H.; Park, J.; Kang, S.; Kim, M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors 2015, 15, 10481-10510.
64. Palmieri, G.; Tatè, R.; Gogliettino, M.; Balestrieri, M.; Rea, I.; Terracciano, M.; Proroga, Y. T.; Capuano, F.; Anastasio, A.; De Stefano, L. Small Synthetic Peptides Bioconjugated to Hybrid Gold Nanoparticles Destroy Potentially Deadly Bacteria at Submicromolar Concentrations. Bioconjug. Chem. 2018, 29 (11), 3877-3885.
65. Maus, L.; Spatz, J. P.; Fiammengo, R. Quantification and Reactivity of Functional Groups in the Ligand Shell of PEGylated Gold Nanoparticles via a Fluorescence-Based Assay. Langmuir 2009, 25 (14), 7910-7917.
66. Welch, N. G.; Scoble, J. A.; Muir, B. W.; Pigram, P. J. Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases 2017, 12 (2), 02D301.
67. Avseenko, N. V.; Morozova, T. Y.; Ataullakhanov, F. I.; Morozov, V. N. Immobilization of Proteins in Immunochemical Microarrays Fabricated by Electrospray Deposition. Anal. Chem. 2001, 73 (24), 6047-6052.
68. Wheatley, J. B.; Schmidt Jr, D. E. Salt-induced immobilization of affinity ligands onto epoxide-activated supports. J. Chromatogr. A 1999, 849 (1), 1-12.
69. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem., Int. Ed. 2001, 40 (11), 2004-2021.
70. Ben El Ayouchia, H.; Bahsis, L.; Anane, H.; Domingo, L. R.; Stiriba, S.-E. Understanding the mechanism and regioselectivity of the copper(i) catalyzed [3 + 2] cycloaddition reaction between azide and alkyne: a systematic DFT study. RSC Adv. 2018, 8 (14), 7670-7678.
71. Zhu, L.; Brassard, C. J.; Zhang, X.; Guha, P. M.; Clark, R. J. On the Mechanism of Copper(I)-Catalyzed Azide–Alkyne Cycloaddition. Chem. Rec. 2016, 16 (3), 1501-1517.
72. Gomez Perez, M.; Fourcade, L.; Mateescu, M. A.; Paquin, J. Neutral Red versus MTT assay of cell viability in the presence of copper compounds. Anal. Biochem. 2017, 535, 43-46.
73. Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Polytriazoles as Copper(I)-Stabilizing Ligands in Catalysis. Org. Lett. 2004, 6 (17), 2853-2855.
74. Wilder, L. M.; Fies, W. A.; Rabin, C.; Webb, L. J.; Crooks, R. M. Conjugation of an α-Helical Peptide to the Surface of Gold Nanoparticles. Langmuir 2019, 35 (9), 3363-3371.
75. Brennan, J. L.; Hatzakis, N. S.; Tshikhudo, T. R.; Razumas, V.; Patkar, S.; Vind, J.; Svendsen, A.; Nolte, R. J. M.; Rowan, A. E.; Brust, M. Bionanoconjugation via Click Chemistry:  The Creation of Functional Hybrids of Lipases and Gold Nanoparticles. Bioconjug. Chem. 2006, 17 (6), 1373-1375.
76. Anwar, M. T.; Kawade, S. K.; Huo, Y.-R.; Adak, A. K.; Sridharan, D.; Kuo, Y.-T.; Fan, C.-Y.; Wu, H.-R.; Lee, Y.-S.; Angata, T.; et al. Sugar nucleotide regeneration system for the synthesis of Bi- and triantennary N-glycans and exploring their activities against siglecs. Eur. J. Med. Chem. 2022, 232, 114146.
77. Van Duin, M.; Peters, J. A.; Kieboom, A. P. G.; Van Bekkum, H. Studies on borate esters 1: The ph dependence of the stability of esters of boric acid and borate in aqueous medium as studied by 11B NMR. Tetrahedron 1984, 40 (15), 2901-2911.
78. Springsteen, G.; Wang, B. A detailed examination of boronic acid–diol complexation. Tetrahedron 2002, 58 (26), 5291-5300.
79. Adak, A. K.; Li, B.-Y.; Huang, L.-D.; Lin, T.-W.; Chang, T.-C.; Hwang, K. C.; Lin, C.-C. Fabrication of Antibody Microarrays by Light-Induced Covalent and Oriented Immobilization. ACS Appl. Mater. Interfaces 2014, 6 (13), 10452-10460.
80. Lin, P.-C.; Chen, S.-H.; Wang, K.-Y.; Chen, M.-L.; Adak, A. K.; Hwu, J.-R. R.; Chen, Y.-J.; Lin, C.-C. Fabrication of Oriented Antibody-Conjugated Magnetic Nanoprobes and Their Immunoaffinity Application. Anal. Chem. 2009, 81 (21), 8774-8782.
81. Mirica, A.-C.; Stan, D.; Chelcea, I.-C.; Mihailescu, C. M.; Ofiteru, A.; Bocancia-Mateescu, L.-A. Latest Trends in Lateral Flow Immunoassay (LFIA) Detection Labels and Conjugation Process. Front. Bioeng. Biotechnol. 2022, 10.
82. Di Nardo, F.; Chiarello, M.; Cavalera, S.; Baggiani, C.; Anfossi, L. Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives. Sensors 2021, 21 (15), 5185.
83. Bahadır, E. B.; Sezgintürk, M. K. Lateral flow assays: Principles, designs and labels. TrAC, Trends Anal. Chem. 2016, 82, 286-306.
84. Singh, J.; Sharma, S.; Nara, S. Evaluation of gold nanoparticle based lateral flow assays for diagnosis of enterobacteriaceae members in food and water. Food Chem. 2015, 170, 470-483.
85. Momeni, A.; Rostami-Nejad, M.; Salarian, R.; Rabiee, M.; Aghamohammadi, E.; Zali, M. R.; Rabiee, N.; Tay, F. R.; Makvandi, P. Gold-based nanoplatform for a rapid lateral flow immunochromatographic test assay for gluten detection. BMC Biomed. Eng. 2022, 4 (1), 5.
86. Posthuma-Trumpie, G. A.; Korf, J.; van Amerongen, A. Development of a competitive lateral flow immunoassay for progesterone: influence of coating conjugates and buffer components. Anal. Bioanal. Chem. 2008, 392 (6), 1215-1223.
87. Qian, S.; Bau, H. H. Analysis of lateral flow biodetectors: competitive format. Anal. Biochem. 2004, 326 (2), 211-224.
88. Xu, X.; Wang, Z.; Guo, L.; Xu, X.; Wu, A.; Kuang, H.; Sun, L.; Song, S.; Xu, C. Sensitive Lateral Flow Immunoassay for the Residues of Imidocarb in Milk and Beef Samples. ACS Omega 2021, 6 (4), 2559-2569.
89. Hsu, Y.-H. Immunogold for detection of antigen on nitrocellulose paper. Anal. Biochem. 1984, 142 (1), 221-225.
90. Wang, J.; Zhou, J.; Chen, Y.; Zhang, X.; Jin, Y.; Cui, X.; He, D.; Lai, W.; He, L. Rapid one-step enzyme immunoassay and lateral flow immunochromatographic assay for colistin in animal feed and food. J. Anim. Sci. Biotechnol. 2019, 10 (1), 82.
91. Ge, L.; Wang, D.; Lian, F.; Zhao, J.; Wang, Y.; Zhao, Y.; Zhang, L.; Wang, J.; Song, X.; Li, J.; et al. Lateral Flow Immunoassay for Visible Detection of Human Brucellosis Based on Blue Silica Nanoparticles. Front. Vet. Sci. 2021, 8.
92. Tang, J.; Wu, L.; Lin, J.; Zhang, E.; Luo, Y. Development of quantum dot-based fluorescence lateral flow immunoassay strip for rapid and quantitative detection of serum interleukin-6. J. Clin. Lab. Anal. 2021, 35 (5), e23752.
93. Wang, C.; Hou, F.; Ma, Y. Simultaneous quantitative detection of multiple tumor markers with a rapid and sensitive multicolor quantum dots based immunochromatographic test strip. Biosens. Bioelectron. 2015, 68, 156-162.
94. Savin, M.; Mihailescu, C.-M.; Matei, I.; Stan, D.; Moldovan, C. A.; Ion, M.; Baciu, I. A quantum dot-based lateral flow immunoassay for the sensitive detection of human heart fatty acid binding protein (hFABP) in human serum. Talanta 2018, 178, 910-915.
95. Wu, R.; Zhou, S.; Chen, T.; Li, J.; Shen, H.; Chai, Y.; Li, L. S. Quantitative and rapid detection of C-reactive protein using quantum dot-based lateral flow test strip. Anal. Chim. Acta 2018, 1008, 1-7.
96. Xu, J.; Zhou, J.; Bu, T.; Dou, L.; Liu, K.; Wang, S.; Liu, S.; Yin, X.; Du, T.; Zhang, D.; et al. Self-Assembling Antibody Network Simplified Competitive Multiplex Lateral Flow Immunoassay for Point-of-Care Tests. Anal. Chem. 2022, 94 (3), 1585-1593.
97. Rahaus, M.; Desloges, N.; Probst, S.; Loebbert, B.; Lantermann, W.; Wolff, M. H. Detection of beak and feather disease virus DNA in embryonated eggs of psittacine birds. Vet. Med. 2008, 53 (1), 53-58.
98. Pass, D. A.; Perry, R. A. The pathology of psittacine beak and feather disease. Aust. Vet. J. 1984, 61 (3), 69-74.
99. Martens, J. M.; Stokes, H. S.; Berg, M. L.; Walder, K.; Bennett, A. T. D. Seasonal fluctuation of beak and feather disease virus (BFDV) infection in wild Crimson Rosellas (Platycercus elegans). Sci. Rep. 2020, 10 (1), 7894.
100. Nath, B. K.; Das, S.; Roby, J. A.; Sarker, S.; Luque, D.; Raidal, S. R.; Forwood, J. K. Structural Perspectives of Beak and Feather Disease Virus and Porcine Circovirus Proteins. Viral Immunol. 2020, 34 (1), 49-59.
101. https://www.wikidata.org/wiki/Q99541269#/media/File:BFDVparrotPathology.jpg
102. Cole, L. A. New discoveries on the biology and detection of human chorionic gonadotropin. Reprod. Biol. Endocrinol. 2009, 7 (1), 8.
103. Cole, L. A. Biological functions of hCG and hCG-related molecules. Reprod. Biol. Endocrinol. 2010, 8 (1), 102. DOI: 10.1186/1477-7827-8-102.
104. Alfthan, H.; Björses, U.-M.; Tiitinen, A.; Stenman, U.-H. Specificity and Detection Limit of Ten Pregnancy Tests. Scand. J. Clin. Lab. Invest. 1993, 53 (sup216), 105-113.
105. Munoz, E.; Bosch, E.; Fernandez, I.; Portela, S.; Ortiz, G.; Remohi, J.; Pellicer, A. The Role of LH in Ovarian Stimulation. Curr. Pharm. Biotechnol. 2012, 13 (3), 409-416.
106. Jia, Y.; Yan, X.; Guo, X.; Zhou, G.; Liu, P.; Li, Z. One Step Preparation of Peptide-Coated Gold Nanoparticles with Tunable Size. Materials 2019, 12 (13), 2107.
107. 黃立德. 建構功能化奈米粒子應用於生物分子分離偵測與複合材料的合成. 國立清華大學, 新竹市, 2013.
108. Goswami, L. N.; Houston, Z. H.; Sarma, S. J.; Jalisatgi, S. S.; Hawthorne, M. F. Efficient synthesis of diverse heterobifunctionalized clickable oligo(ethylene glycol) linkers: potential applications in bioconjugation and targeted drug delivery. Org. Biomol. Chem. 2013, 11 (7), 1116-1126.
109. 薩, 欽. 自發點擊抗生物附著表面用於微陣列及炔基修飾氧化亞銅奈米粒子製備與生物應用. 國立清華大學, 新竹市, 2022.
110. Katayama, H.; Hojo, H.; Ohira, T.; Nakahara, Y. An efficient peptide ligation using azido-protected peptides via the thioester method. Tetrahedron Lett. 2008, 49 (38), 5492-5494.
111. Gobbo, P.; Workentin, M. S. Improved Methodology for the Preparation of Water-Soluble Maleimide-Functionalized Small Gold Nanoparticles. Langmuir 2012, 28 (33), 12357-12363.
112. Kulabhusan, P. K.; Rajwade, J. M.; Sugumar, V.; Taju, G.; Sahul Hameed, A. S.; Paknikar, K. M. Field-Usable Lateral Flow Immunoassay for the Rapid Detection of White Spot Syndrome Virus (WSSV). PLoS ONE 2017, 12 (1), e0169012.

(此全文20280730後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *