|
1. Higby, G. J. Gold in medicine. Gold Bull. 1982, 15 (4), 130-140. 2. Murphy, C. J.; Gole, A. M.; Stone, J. W.; Sisco, P. N.; Alkilany, A. M.; Goldsmith, E. C.; Baxter, S. C. Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging. Acc. Chem. Res. 2008, 41 (12), 1721-1730. 3. Jauffred, L.; Samadi, A.; Klingberg, H.; Bendix, P. M.; Oddershede, L. B. Plasmonic Heating of Nanostructures. Chem. Rev. 2019, 119 (13), 8087-8130. 4. Yeh, Y.-C.; Creran, B.; Rotello, V. M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 2012, 4 (6), 1871-1880. 5. Shafiqa, A. R.; Abdul Aziz, A.; Mehrdel, B. Nanoparticle Optical Properties: Size Dependence of a Single Gold Spherical Nanoparticle. J. Phys. Conf. Ser. 2018, 1083 (1), 012040. 6. https://www.sigmaaldrich.com/TW/en/technical-documents/technical-article/materials-science-and-engineering/biosensors-and-imaging/gold-nanoparticles. 7. Gharatape, A.; Davaran, S.; Salehi, R.; Hamishehkar, H. Engineered gold nanoparticles for photothermal cancer therapy and bacteria killing. RSC Adv. 2016, 6 (112), 111482-111516. 8. Jiang, K.; Smith, D. A.; Pinchuk, A. Size-Dependent Photothermal Conversion Efficiencies of Plasmonically Heated Gold Nanoparticles. J. Phys. Chem. C 2013, 117 (51), 27073-27080. 9. Guesmi, H.; Luque, N. B.; Santos, E.; Tielens, F. Does the S−H Bond Always Break after Adsorption of an Alkylthiol on Au(111)? Eur. J. Chem. 2017, 23 (6), 1402-1408. 10. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. J. Chem. Soc., Chem. Commun. 1994, (7), 801-802. 11. Jans, H.; Huo, Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chem. Soc. Rev. 2012, 41 (7), 2849-2866. 12. Bai, X.; Wang, Y.; Song, Z.; Feng, Y.; Chen, Y.; Zhang, D.; Feng, L. The Basic Properties of Gold Nanoparticles and their Applications in Tumor Diagnosis and Treatment. In Int. J. Mol. Sci., 2020, 21 (7), 2480. 13. Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33 (9), 941-951. 14. Tangeysh, B.; Moore Tibbetts, K.; Odhner, J. H.; Wayland, B. B.; Levis, R. J. Gold Nanoparticle Synthesis Using Spatially and Temporally Shaped Femtosecond Laser Pulses: Post-Irradiation Auto-Reduction of Aqueous [AuCl4]−. J. Phys. Chem. C 2013, 117 (36), 18719-18727. 15. Birtcher, R. C.; Kirk, M. A.; Furuya, K.; Lumpkin, G. R.; Ruault, M. O. In situ transmission electron microscopy investigation of radiation effects. J. Mater. Res. 2005, 20 (7), 1654-1683. 16. Mahato, K.; Nagpal, S.; Shah, M. A.; Srivastava, A.; Maurya, P. K.; Roy, S.; Jaiswal, A.; Singh, R.; Chandra, P. Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech 2019, 9 (2), 57. 17. Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday. Soc. 1951, 11 (0), 55-75. 18. Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241 (105), 20-22. 19. Peng, S.; Lee, Y.; Wang, C.; Yin, H.; Dai, S.; Sun, S. A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Res. 2008, 1 (3), 229-234. 20. ten Hove, J. B.; Schijven, L. M. I.; Wang, J.; Velders, A. H. Size-controlled and water-soluble gold nanoparticles using UV-induced ligand exchange and phase transfer. Chem. Comm. 2018, 54 (95), 13355-13358. 21. Kim, S.; Jang, Y.; Yoon, K. Y.; Park, J. Surface engineered gold nanoparticles through highly stable metal–surfactant complexes. J. Colloid. Interface Sci. 2016, 464, 110-116. 22. Lin, C.; Tao, K.; Hua, D.; Ma, Z.; Zhou, S. Size Effect of Gold Nanoparticles in Catalytic Reduction of p-Nitrophenol with NaBH4. Molecules 2013, 18, 12609-12620. 23. Sperling, R. A.; García-Fernández, L.; Ojea-Jiménez, I.; Piella, J.; Bastús, N. G.; Puntes, V. One-Pot Synthesis of Cationic Gold Nanoparticles by Differential Reduction. 2017, 231 (1), 7-18. 24. Fan, J.; Cheng, Y.; Sun, M. Functionalized Gold Nanoparticles: Synthesis, Properties and Biomedical Applications. Chem. Rec. 2020, 20 (12), 1474-1504. 25. Szunerits, S.; Spadavecchia, J.; Boukherroub, R. Surface plasmon resonance: signal amplification using colloidal gold nanoparticles for enhanced sensitivity. 2014, 33 (3), 153-164. 26. Muthuvel, A.; Adavallan, K.; Balamurugan, K.; Krishnakumar, N. Biosynthesis of gold nanoparticles using Solanum nigrum leaf extract and screening their free radical scavenging and antibacterial properties. Biomed. Prev. Nutr. 2014, 4 (2), 325-332. 27. Bindhu, M. R.; Umadevi, M. Silver and gold nanoparticles for sensor and antibacterial applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 128, 37-45. 28. He, S.; Guo, Z.; Zhang, Y.; Zhang, S.; Wang, J.; Gu, N. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater. Lett. 2007, 61 (18), 3984-3987. 29. Thakkar, K. N.; Mhatre, S. S.; Parikh, R. Y. Biological synthesis of metallic nanoparticles. Nanomed.: Nanotechnol. Biol. Med. 2010, 6 (2), 257-262. 30. Tomás, A. L.; de Almeida, M. P.; Cardoso, F.; Pinto, M.; Pereira, E.; Franco, R.; Matos, O. Development of a Gold Nanoparticle-Based Lateral-Flow Immunoassay for Pneumocystis Pneumonia Serological Diagnosis at Point-of-Care. Front. Microbiol. 2019, 10. 31. Khlebtsov, B. N.; Tumskiy, R. S.; Burov, A. M.; Pylaev, T. E.; Khlebtsov, N. G. Quantifying the Numbers of Gold Nanoparticles in the Test Zone of Lateral Flow Immunoassay Strips. ACS Appl. Nano Mater. 2019, 2 (8), 5020-5028. 32. Nam, J.; Won, N.; Jin, H.; Chung, H.; Kim, S. pH-Induced Aggregation of Gold Nanoparticles for Photothermal Cancer Therapy. J. Am. Chem. Soc. 2009, 131 (38), 13639-13645. 33. Jung, S.; Nam, J.; Hwang, S.; Park, J.; Hur, J.; Im, K.; Park, N.; Kim, S. Theragnostic pH-Sensitive Gold Nanoparticles for the Selective Surface Enhanced Raman Scattering and Photothermal Cancer Therapy. Anal. Chem. 2013, 85 (16), 7674-7681. 34. Kolovskaya, O. S.; Zamay, T. N.; Belyanina, I. V.; Karlova, E.; Garanzha, I.; Aleksandrovsky, A. S.; Kirichenko, A.; Dubynina, A. V.; Sokolov, A. E.; Zamay, G. S.; et al. Aptamer-Targeted Plasmonic Photothermal Therapy of Cancer. Mol. Ther. Nucleic Acids 2017, 9, 12-21. 35. Schmid, G.; Corain, B. Nanoparticulated Gold: Syntheses, Structures, Electronics, and Reactivities. Eur. J. Inorg. Chem. 2003, 2003 (17), 3081-3098. 36. Murdoch, M.; Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; Llorca, J.; Idriss, H. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 2011, 3 (6), 489-492. 37. Davies, D. R.; Chacko, S. Antibody structure. Acc. Chem. Res. 1993, 26 (8), 421-427. 38. Chiu, M. L.; Goulet, D. R.; Teplyakov, A.; Gilliland, G. L. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies, 2019, 8 (4), 55. 39. Wang, Q.; Chen, Y.; Park, J.; Liu, X.; Hu, Y.; Wang, T.; McFarland, K.; Betenbaugh, M. J. Design and Production of Bispecific Antibodies. In Antibodies, 2019; Vol. 8. 40. Weiner, L. M.; Surana, R.; Wang, S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat. Rev. Immunol. 2010, 10 (5), 317-327. 41. Kronimus, Y.; Dodel, R.; Galuska, S. P.; Neumann, S. IgG Fc N-glycosylation: Alterations in neurologic diseases and potential therapeutic target? J. Autoimmun. 2019, 96, 14-23. 42. Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2 (12), 751-760. 43. Engvall, E.; Perlmann, P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 1971, 8 (9), 871-874. 44. https://www.technologynetworks.com/analysis/articles/an-introduction-to-the-enzyme-linked-immunosorbent-assay-elisa-test-350024. 45. Jesionowski, T.; Zdarta, J.; Krajewska, B. Enzyme immobilization by adsorption: a review. Adsorption 2014, 20 (5), 801-821. 46. Meissner, J.; Prause, A.; Bharti, B.; Findenegg, G. H. Characterization of protein adsorption onto silica nanoparticles: influence of pH and ionic strength. Colloid Polym. Sci. 2015, 293 (11), 3381-3391. 47. Tripathi, K.; Driskell, J. D. Quantifying Bound and Active Antibodies Conjugated to Gold Nanoparticles: A Comprehensive and Robust Approach To Evaluate Immobilization Chemistry. ACS Omega 2018, 3 (7), 8253-8259. 48. Mohamad, N. R.; Marzuki, N. H. C.; Buang, N. A.; Huyop, F.; Wahab, R. A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015, 29 (2), 205-220. 49. Huang, L.; Cheng, Z.-M. Immobilization of lipase on chemically modified bimodal ceramic foams for olive oil hydrolysis. J. Chem. Eng. 2008, 144 (1), 103-109. 50. Zhao, X.; Li, G.; Liang, S. Several Affinity Tags Commonly Used in Chromatographic Purification. J. Anal. Methods Chem. 2013, 2013, 581093. 51. Weber, P. C.; Ohlendorf, D. H.; Wendoloski, J. J.; Salemme, F. R. Structural Origins of High-Affinity Biotin Binding to Streptavidin. Science 1989, 243 (4887), 85-88. 52. Zhang, D. W.; Xiang, Y.; Zhang, J. Z. H. New Advance in Computational Chemistry: Full Quantum Mechanical ab Initio Computation of Streptavidin−Biotin Interaction Energy. J. Phys. Chem. B 2003, 107 (44), 12039-12041. 53. Liu, X.; Li, X.; Bai, Y.; Zhou, X.; Chen, L.; Qiu, C.; Lu, C.; Jin, Z.; Long, J.; Xie, Z. Enhanced Stability of β-Agarase Immobilized on Streptavidin-Coated Fe3O4 Nanoparticles: Effect of Biotin Linker Length. Ind. Eng. Chem. Res. 2022, 61 (51), 18646-18662. 54. Chikh, G. G.; Li, W. M.; Schutze-Redelmeier, M.-P.; Meunier, J.-C.; Bally, M. B. Attaching histidine-tagged peptides and proteins to lipid-based carriers through use of metal-ion-chelating lipids. Biochim. Biophys. Acta Biomembr. 2002, 1567, 204-212. 55. Lukáč, R.; Kauerová, Z.; Mašek, J.; Bartheldyová, E.; Kulich, P.; Koudelka, Š.; Korvasová, Z.; Plocková, J.; Papoušek, F.; Kolář, F.; et al. Preparation of Metallochelating Microbubbles and Study on Their Site-Specific Interaction with rGFP-HisTag as a Model Protein. Langmuir 2011, 27 (8), 4829-4837. 56. Ericsson, E. M.; Enander, K.; Bui, L.; Lundström, I.; Konradsson, P.; Liedberg, B. Site-Specific and Covalent Attachment of His-Tagged Proteins by Chelation Assisted Photoimmobilization: A Strategy for Microarraying of Protein Ligands. Langmuir 2013, 29 (37), 11687-11694. 57. Sauer-Eriksson, A. E.; Kleywegt, G. J.; Uhlén, M.; Jones, T. A. Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure 1995, 3 (3), 265-278. 58. Jung, Y.; Lee, J. M.; Jung, H.; Chung, B. H. Self-Directed and Self-Oriented Immobilization of Antibody by Protein G−DNA Conjugate. Anal. Chem. 2007, 79 (17), 6534-6541. 59. Fowler, J. M.; Stuart, M. C.; Wong, D. K. Y. Self-Assembled Layer of Thiolated Protein G as an Immunosensor Scaffold. Anal. Chem. 2007, 79 (1), 350-354. 60. Seo, J.-s.; Lee, S.; Poulter, C. D. Regioselective Covalent Immobilization of Recombinant Antibody-Binding Proteins A, G, and L for Construction of Antibody Arrays. J. Am. Chem. Soc. 2013, 135 (24), 8973-8980. 61. Behrens, C. R.; Ha, E. H.; Chinn, L. L.; Bowers, S.; Probst, G.; Fitch-Bruhns, M.; Monteon, J.; Valdiosera, A.; Bermudez, A.; Liao-Chan, S.; et al. Antibody–Drug Conjugates (ADCs) Derived from Interchain Cysteine Cross-Linking Demonstrate Improved Homogeneity and Other Pharmacological Properties over Conventional Heterogeneous ADCs. Mol. Pharm. 2015, 12 (11), 3986-3998. 62. Junutula, J. R.; Raab, H.; Clark, S.; Bhakta, S.; Leipold, D. D.; Weir, S.; Chen, Y.; Simpson, M.; Tsai, S. P.; Dennis, M. S.; et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 2008, 26 (8), 925-932. 63. Nguyen, H. H.; Park, J.; Kang, S.; Kim, M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors 2015, 15, 10481-10510. 64. Palmieri, G.; Tatè, R.; Gogliettino, M.; Balestrieri, M.; Rea, I.; Terracciano, M.; Proroga, Y. T.; Capuano, F.; Anastasio, A.; De Stefano, L. Small Synthetic Peptides Bioconjugated to Hybrid Gold Nanoparticles Destroy Potentially Deadly Bacteria at Submicromolar Concentrations. Bioconjug. Chem. 2018, 29 (11), 3877-3885. 65. Maus, L.; Spatz, J. P.; Fiammengo, R. Quantification and Reactivity of Functional Groups in the Ligand Shell of PEGylated Gold Nanoparticles via a Fluorescence-Based Assay. Langmuir 2009, 25 (14), 7910-7917. 66. Welch, N. G.; Scoble, J. A.; Muir, B. W.; Pigram, P. J. Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases 2017, 12 (2), 02D301. 67. Avseenko, N. V.; Morozova, T. Y.; Ataullakhanov, F. I.; Morozov, V. N. Immobilization of Proteins in Immunochemical Microarrays Fabricated by Electrospray Deposition. Anal. Chem. 2001, 73 (24), 6047-6052. 68. Wheatley, J. B.; Schmidt Jr, D. E. Salt-induced immobilization of affinity ligands onto epoxide-activated supports. J. Chromatogr. A 1999, 849 (1), 1-12. 69. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem., Int. Ed. 2001, 40 (11), 2004-2021. 70. Ben El Ayouchia, H.; Bahsis, L.; Anane, H.; Domingo, L. R.; Stiriba, S.-E. Understanding the mechanism and regioselectivity of the copper(i) catalyzed [3 + 2] cycloaddition reaction between azide and alkyne: a systematic DFT study. RSC Adv. 2018, 8 (14), 7670-7678. 71. Zhu, L.; Brassard, C. J.; Zhang, X.; Guha, P. M.; Clark, R. J. On the Mechanism of Copper(I)-Catalyzed Azide–Alkyne Cycloaddition. Chem. Rec. 2016, 16 (3), 1501-1517. 72. Gomez Perez, M.; Fourcade, L.; Mateescu, M. A.; Paquin, J. Neutral Red versus MTT assay of cell viability in the presence of copper compounds. Anal. Biochem. 2017, 535, 43-46. 73. Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Polytriazoles as Copper(I)-Stabilizing Ligands in Catalysis. Org. Lett. 2004, 6 (17), 2853-2855. 74. Wilder, L. M.; Fies, W. A.; Rabin, C.; Webb, L. J.; Crooks, R. M. Conjugation of an α-Helical Peptide to the Surface of Gold Nanoparticles. Langmuir 2019, 35 (9), 3363-3371. 75. Brennan, J. L.; Hatzakis, N. S.; Tshikhudo, T. R.; Razumas, V.; Patkar, S.; Vind, J.; Svendsen, A.; Nolte, R. J. M.; Rowan, A. E.; Brust, M. Bionanoconjugation via Click Chemistry: The Creation of Functional Hybrids of Lipases and Gold Nanoparticles. Bioconjug. Chem. 2006, 17 (6), 1373-1375. 76. Anwar, M. T.; Kawade, S. K.; Huo, Y.-R.; Adak, A. K.; Sridharan, D.; Kuo, Y.-T.; Fan, C.-Y.; Wu, H.-R.; Lee, Y.-S.; Angata, T.; et al. Sugar nucleotide regeneration system for the synthesis of Bi- and triantennary N-glycans and exploring their activities against siglecs. Eur. J. Med. Chem. 2022, 232, 114146. 77. Van Duin, M.; Peters, J. A.; Kieboom, A. P. G.; Van Bekkum, H. Studies on borate esters 1: The ph dependence of the stability of esters of boric acid and borate in aqueous medium as studied by 11B NMR. Tetrahedron 1984, 40 (15), 2901-2911. 78. Springsteen, G.; Wang, B. A detailed examination of boronic acid–diol complexation. Tetrahedron 2002, 58 (26), 5291-5300. 79. Adak, A. K.; Li, B.-Y.; Huang, L.-D.; Lin, T.-W.; Chang, T.-C.; Hwang, K. C.; Lin, C.-C. Fabrication of Antibody Microarrays by Light-Induced Covalent and Oriented Immobilization. ACS Appl. Mater. Interfaces 2014, 6 (13), 10452-10460. 80. Lin, P.-C.; Chen, S.-H.; Wang, K.-Y.; Chen, M.-L.; Adak, A. K.; Hwu, J.-R. R.; Chen, Y.-J.; Lin, C.-C. Fabrication of Oriented Antibody-Conjugated Magnetic Nanoprobes and Their Immunoaffinity Application. Anal. Chem. 2009, 81 (21), 8774-8782. 81. Mirica, A.-C.; Stan, D.; Chelcea, I.-C.; Mihailescu, C. M.; Ofiteru, A.; Bocancia-Mateescu, L.-A. Latest Trends in Lateral Flow Immunoassay (LFIA) Detection Labels and Conjugation Process. Front. Bioeng. Biotechnol. 2022, 10. 82. Di Nardo, F.; Chiarello, M.; Cavalera, S.; Baggiani, C.; Anfossi, L. Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives. Sensors 2021, 21 (15), 5185. 83. Bahadır, E. B.; Sezgintürk, M. K. Lateral flow assays: Principles, designs and labels. TrAC, Trends Anal. Chem. 2016, 82, 286-306. 84. Singh, J.; Sharma, S.; Nara, S. Evaluation of gold nanoparticle based lateral flow assays for diagnosis of enterobacteriaceae members in food and water. Food Chem. 2015, 170, 470-483. 85. Momeni, A.; Rostami-Nejad, M.; Salarian, R.; Rabiee, M.; Aghamohammadi, E.; Zali, M. R.; Rabiee, N.; Tay, F. R.; Makvandi, P. Gold-based nanoplatform for a rapid lateral flow immunochromatographic test assay for gluten detection. BMC Biomed. Eng. 2022, 4 (1), 5. 86. Posthuma-Trumpie, G. A.; Korf, J.; van Amerongen, A. Development of a competitive lateral flow immunoassay for progesterone: influence of coating conjugates and buffer components. Anal. Bioanal. Chem. 2008, 392 (6), 1215-1223. 87. Qian, S.; Bau, H. H. Analysis of lateral flow biodetectors: competitive format. Anal. Biochem. 2004, 326 (2), 211-224. 88. Xu, X.; Wang, Z.; Guo, L.; Xu, X.; Wu, A.; Kuang, H.; Sun, L.; Song, S.; Xu, C. Sensitive Lateral Flow Immunoassay for the Residues of Imidocarb in Milk and Beef Samples. ACS Omega 2021, 6 (4), 2559-2569. 89. Hsu, Y.-H. Immunogold for detection of antigen on nitrocellulose paper. Anal. Biochem. 1984, 142 (1), 221-225. 90. Wang, J.; Zhou, J.; Chen, Y.; Zhang, X.; Jin, Y.; Cui, X.; He, D.; Lai, W.; He, L. Rapid one-step enzyme immunoassay and lateral flow immunochromatographic assay for colistin in animal feed and food. J. Anim. Sci. Biotechnol. 2019, 10 (1), 82. 91. Ge, L.; Wang, D.; Lian, F.; Zhao, J.; Wang, Y.; Zhao, Y.; Zhang, L.; Wang, J.; Song, X.; Li, J.; et al. Lateral Flow Immunoassay for Visible Detection of Human Brucellosis Based on Blue Silica Nanoparticles. Front. Vet. Sci. 2021, 8. 92. Tang, J.; Wu, L.; Lin, J.; Zhang, E.; Luo, Y. Development of quantum dot-based fluorescence lateral flow immunoassay strip for rapid and quantitative detection of serum interleukin-6. J. Clin. Lab. Anal. 2021, 35 (5), e23752. 93. Wang, C.; Hou, F.; Ma, Y. Simultaneous quantitative detection of multiple tumor markers with a rapid and sensitive multicolor quantum dots based immunochromatographic test strip. Biosens. Bioelectron. 2015, 68, 156-162. 94. Savin, M.; Mihailescu, C.-M.; Matei, I.; Stan, D.; Moldovan, C. A.; Ion, M.; Baciu, I. A quantum dot-based lateral flow immunoassay for the sensitive detection of human heart fatty acid binding protein (hFABP) in human serum. Talanta 2018, 178, 910-915. 95. Wu, R.; Zhou, S.; Chen, T.; Li, J.; Shen, H.; Chai, Y.; Li, L. S. Quantitative and rapid detection of C-reactive protein using quantum dot-based lateral flow test strip. Anal. Chim. Acta 2018, 1008, 1-7. 96. Xu, J.; Zhou, J.; Bu, T.; Dou, L.; Liu, K.; Wang, S.; Liu, S.; Yin, X.; Du, T.; Zhang, D.; et al. Self-Assembling Antibody Network Simplified Competitive Multiplex Lateral Flow Immunoassay for Point-of-Care Tests. Anal. Chem. 2022, 94 (3), 1585-1593. 97. Rahaus, M.; Desloges, N.; Probst, S.; Loebbert, B.; Lantermann, W.; Wolff, M. H. Detection of beak and feather disease virus DNA in embryonated eggs of psittacine birds. Vet. Med. 2008, 53 (1), 53-58. 98. Pass, D. A.; Perry, R. A. The pathology of psittacine beak and feather disease. Aust. Vet. J. 1984, 61 (3), 69-74. 99. Martens, J. M.; Stokes, H. S.; Berg, M. L.; Walder, K.; Bennett, A. T. D. Seasonal fluctuation of beak and feather disease virus (BFDV) infection in wild Crimson Rosellas (Platycercus elegans). Sci. Rep. 2020, 10 (1), 7894. 100. Nath, B. K.; Das, S.; Roby, J. A.; Sarker, S.; Luque, D.; Raidal, S. R.; Forwood, J. K. Structural Perspectives of Beak and Feather Disease Virus and Porcine Circovirus Proteins. Viral Immunol. 2020, 34 (1), 49-59. 101. https://www.wikidata.org/wiki/Q99541269#/media/File:BFDVparrotPathology.jpg 102. Cole, L. A. New discoveries on the biology and detection of human chorionic gonadotropin. Reprod. Biol. Endocrinol. 2009, 7 (1), 8. 103. Cole, L. A. Biological functions of hCG and hCG-related molecules. Reprod. Biol. Endocrinol. 2010, 8 (1), 102. DOI: 10.1186/1477-7827-8-102. 104. Alfthan, H.; Björses, U.-M.; Tiitinen, A.; Stenman, U.-H. Specificity and Detection Limit of Ten Pregnancy Tests. Scand. J. Clin. Lab. Invest. 1993, 53 (sup216), 105-113. 105. Munoz, E.; Bosch, E.; Fernandez, I.; Portela, S.; Ortiz, G.; Remohi, J.; Pellicer, A. The Role of LH in Ovarian Stimulation. Curr. Pharm. Biotechnol. 2012, 13 (3), 409-416. 106. Jia, Y.; Yan, X.; Guo, X.; Zhou, G.; Liu, P.; Li, Z. One Step Preparation of Peptide-Coated Gold Nanoparticles with Tunable Size. Materials 2019, 12 (13), 2107. 107. 黃立德. 建構功能化奈米粒子應用於生物分子分離偵測與複合材料的合成. 國立清華大學, 新竹市, 2013. 108. Goswami, L. N.; Houston, Z. H.; Sarma, S. J.; Jalisatgi, S. S.; Hawthorne, M. F. Efficient synthesis of diverse heterobifunctionalized clickable oligo(ethylene glycol) linkers: potential applications in bioconjugation and targeted drug delivery. Org. Biomol. Chem. 2013, 11 (7), 1116-1126. 109. 薩, 欽. 自發點擊抗生物附著表面用於微陣列及炔基修飾氧化亞銅奈米粒子製備與生物應用. 國立清華大學, 新竹市, 2022. 110. Katayama, H.; Hojo, H.; Ohira, T.; Nakahara, Y. An efficient peptide ligation using azido-protected peptides via the thioester method. Tetrahedron Lett. 2008, 49 (38), 5492-5494. 111. Gobbo, P.; Workentin, M. S. Improved Methodology for the Preparation of Water-Soluble Maleimide-Functionalized Small Gold Nanoparticles. Langmuir 2012, 28 (33), 12357-12363. 112. Kulabhusan, P. K.; Rajwade, J. M.; Sugumar, V.; Taju, G.; Sahul Hameed, A. S.; Paknikar, K. M. Field-Usable Lateral Flow Immunoassay for the Rapid Detection of White Spot Syndrome Virus (WSSV). PLoS ONE 2017, 12 (1), e0169012.
|