帳號:guest(3.138.102.202)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林于瑋
作者(外文):Lin, Yu-Wei
論文名稱(中文):詹姆斯·韋伯太空望遠鏡發現的遙遠多環芳香烴明亮星系
論文名稱(外文):Polycyclic aromatic hydrocarbon (PAH) luminous galaxies at redshift ~ 1 in JWST ERO data
指導教授(中文):後藤友嗣
指導教授(外文):Goto, Tomotsugu
口試委員(中文):大山楊一
張雨宴
口試委員(外文):Oyama, Youichi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:110022566
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:46
中文關鍵詞:星系詹姆斯·韋伯太空望遠鏡
外文關鍵詞:JWSTPAH galaxy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:9
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
遙遠的太空中有多少星系被塵埃擋住,一直是一個未解之謎,即有多少塵埃
星系在最先進的觀測調查中未被檢測到。詹姆斯·韋伯太空望遠鏡使我們能夠探
測到在中紅外波段具有顯著多環芳香烴(PAH)特徵的微弱紅外星系。多環芳
香烴在中紅外波長範圍內是恆星形成和塵埃特性的寶貴追蹤者。詹姆斯·韋伯太
空望遠鏡宇宙演化早期發布科學(CEERS)領域透過中紅外儀器(MIRI)的六
個光度帶提供了從7.7 到21 微米的波長覆蓋。我們已經確定了由多環芳香烴中紅
外輻射主導的星系,稱為PAH 星系。從我們的多波段光度目錄中,我們選擇了
十個顯示出log(S15/S10) > 0.8 高流量比的多環芳香烴星系。光譜能量分佈擬合
分析表明,這些星系是在z ∼ 1 時總紅外光度為1010 ∼ 1011.5 L⊙ 的恆星形成星
系。多環芳香烴星系的形態在MIRI 分辨率內並未顯示出明顯的主要融合或相互
作用的跡象。它們中的大多數位於z ∼ 1 時的星系主序列上。我們的結果表明,
詹姆斯·韋伯太空望遠鏡可以在紅外線檢測到普通的星形成星系中的多環芳香烴
輻射,而不僅僅是超亮紅外線星系。
I
It has been an unanswered question how many dusty galaxies have been unde-
tected from the state-of-the-art observational surveys. JWST enables us to detect
faint IR galaxies that have prominent polycyclic aromatic hydrocarbon (PAH)
features in the mid-IR wavelengths. PAH is a valuable tracer of star formation
and dust properties in the mid-infrared wavelength. The JWST Cosmic Evolution
Early Release Science (CEERS) fields provide us with wavelength coverage from
7.7 to 21 μm using six photometric bands of the mid-infrared instrument (MIRI).
We have identified galaxies dominated by mid-IR emission from PAHs, termed
PAH galaxies. From our multi-band photometry catalogue, we selected ten PAH
galaxies displaying high flux ratios of log(S15/S10) > 0.8. The SED fitting analysis
indicates that these galaxies are star-forming galaxies with total IR luminosities
of 1010 ∼ 1011.5 L⊙ at z ∼ 1. The morphology of PAH galaxies does not show
any clear signatures of major merging or interaction within the MIRI resolution.
The majority of them are on the star-formation main sequence at z ∼ 1. Our re-
sult demonstrates that JWST can detect PAH emissions from normal star-forming
galaxies at z ∼ 1, in addition to LIRGs/ULIRGs.
II
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Observational Challenges and Opportunities . . . . . . . . . . . . . 2
1.3 Objectives and Structure of the Thesis . . . . . . . . . . . . . . . . 2
2 Data and Methods 4
2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 JWST Observations . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Cross-Matching with CANDELS-EGS . . . . . . . . . . . . 4
2.2 Sample Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 CIGALE SED Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . 5
IV
3 Results 11
4 Discussion 17
4.1 Colour Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Obscured AGN or Compact obscured nuclei . . . . . . . . . . . . . 19
4.3 The Emission Lines Contribution for Excess of PAH 7.7 μm . . . . 19
4.4 Star Formation Main Sequence . . . . . . . . . . . . . . . . . . . . 21
4.5 PAH luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 Conclusion 27
6 Appendix 29
6.1 SED result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Bibliography 42
V
Armus L., Charmandaris V., Soifer B. T., 2020, Nature Astronomy, 4, 467
Ashby M. L. N., et al., 2015, The Astrophysical Journal Supplement Series, 218,
33
Bielby, R. et al., 2012, A&A, 545, A23
Boquien M., Burgarella D., Roehlly Y., Buat V., Ciesla L., Corre D., Inoue A. K.,
Salas H., 2019, A&A, 622, A103
Brammer G. B., et al., 2012, The Astrophysical Journal Supplement Series, 200,
13
Bruzual G., Charlot S., 2003, Monthly Notices of the Royal Astronomical Society,
344, 1000
Bua
t V., Boquien M., Ma lek K., Corre D., Salas H., Roehlly Y., Shirley R., Efstathiou
A., 2018, A&A, 619, A135
Candian A., Zhen J., Tielens A. G. G. M., 2018, Physics Today, 71, 38
Charlot S., Fall S. M., 2000, The Astrophysical Journal, 539, 718
Chastenet J., et al., 2023a, The Astrophysical Journal Letters, 944, L11
Chastenet J., et al., 2023b, The Astrophysical Journal Letters, 944, L12
Desai V., et al., 2007, The Astrophysical Journal, 669, 810
Draine B. T., et al., 2014, The Astrophysical Journal, 780, 172
Elbaz D., Le Floc’h E., Dole H., Marcillac D., 2005, A&A, 434, L1
Elbaz D., et al., 2007, A&A, 468, 33
Elbaz D., et al., 2011, A&A, 533, A119
Falstad N., et al., 2021, A&A, 649, A105
Finkelstein S. L., et al., 2017, The Cosmic Evolution Early Release Science
(CEERS) Survey, JWST Proposal ID 1345. Cycle 0 Early Release Science
Fritz J., Franceschini A., Hatziminaoglou E., 2006, Monthly Notices of the Royal
Astronomical Society, 366, 767
Garc ́ıa-Bernete I., Rigopoulou D., Alonso-Herrero A., Pereira-Santaella M., Roche
P. F., Kerkeni B., 2022a, Monthly Notices of the Royal Astronomical Society,
509, 4256
Garc ́ıa-Bernete I., Rigopoulou D., Aalto S., Spoon H. W. W., Hern ́an-Caballero
A., Efstathiou A., Roche P. F., K ̈onig S., 2022b, A&A, 663, A46
Garc ́ıa-Bernete I., et al., 2022c, A&A, 666, L5
Gardner J. P., et al., 2006, Space Science Reviews, 123, 485
Gardner J. P., et al., 2023, Publications of the Astronomical Society of the Pacific,
135, 068001
Gordon K. D., Clayton G. C., Decleir M., Fitzpatrick E. L., Massa D., Misselt
K. A., Tollerud E. J., 2023, The Astrophysical Journal, 950, 86
Goto T., et al., 2011, Monthly Notices of the Royal Astronomical Society, 410, 573
Gwyn S. D. J., 2012, The Astronomical Journal, 143, 38
43
Houck J. R., Weedman D. W., Floc’h E. L., Hao L., 2007, The Astrophysical
Journal, 671, 323
Huang J. S., et al., 2023, The Astrophysical Journal, 949, 83
Hummer D. G., Storey P. J., 1987, Monthly Notices of the Royal Astronomical
Society, 224, 801
Kalirai J., 2018, Contemporary Physics, 59, 251
Kennicutt Robert C. J., 1998, Annual Rev. Astron. Astrophys., 36, 189
Kim S. J., et al., 2019, Publications of the Astronomical Society of Japan, 71, 11
Kirkpatrick A., Pope A., Sajina A., Roebuck E., Yan L., Armus L., D ́ıaz-Santos
T., Stierwalt S., 2015, The Astrophysical Journal, 814, 9
Kirkpatrick A., et al., 2017, The Astrophysical Journal, 849, 111
Koekemoer A. M., et al., 2011, The Astrophysical Journal Supplement Series, 197,
36
Kov ́acs T. O., Burgarella D., Kaneda H., Moln ́ar D. C., Oyabu S., Pinter S., Toth
L. V., 2019, Publications of the Astronomical Society of Japan, 71, 27
Kwok S., 2022, Astrophysics and Space Science, 367, 16
Li A., 2020, Nature Astronomy, 4, 339
Lo Faro B., Buat V., Roehlly Y., Alvarez-Marquez J., Burgarella D., Silva L.,
Efstathiou A., 2017, Monthly Notices of the Royal Astronomical Society, 472,
1372
Malek, K. et al., 2018, A&A, 620, A50
44
McElwain M. W., et al., 2023, Publications of the Astronomical Society of the
Pacific, 135, 058001
Pearson, W. J. et al., 2018, A&A, 615, A146
Peeters E., Tielens A. G. G. M., Allamandola L. J., Bauschlicher C. W., Boogert
A. C. A., Hayward T. L., Hudgins D. M., Sandford S. A., 2003, in Witt A. N.,
ed., Astrophysics of Dust. p. 42
Peeters E., Mattioda A. L., Kemper F., Hudgins D. M., Allamandola L. J., 2006,
in Armus L., Reach W. T., eds, Astronomical Society of the Pacific Conference
Series Vol. 357, The Spitzer Space Telescope: New Views of the Cosmos. p. 95
(arXiv:astro-ph/0507008), doi:10.48550/arXiv.astro-ph/0507008
Polletta M., et al., 2007, The Astrophysical Journal, 663, 81
Pope A., et al., 2008, The Astrophysical Journal, 675, 1171
Popesso P., et al., 2022, Monthly Notices of the Royal Astronomical Society,
Rich J., et al., 2023, The Astrophysical Journal Letters, 944, L50
Riechers D. A., et al., 2014, The Astrophysical Journal, 786, 31
Rieke G. H., et al., 2015, Publications of the Astronomical Society of the Pacific,
127, 584
Rigopoulou D., Spoon H. W. W., Genzel R., Lutz D., Moorwood A. F. M., Tran
Q. D., 1999, The Astronomical Journal, 118, 2625
Salpeter E. E., 1955, The Astrophysical Journal, 121, 161
Santos D. J. D., et al., 2021, Monthly Notices of the Royal Astronomical Society,
507, 3070
45
Shipley H. V., Papovich C., Rieke G. H., Brown M. J. I., Moustakas J., 2016, The
Astrophysical Journal, 818, 60
Skelton R. E., et al., 2014, The Astrophysical Journal Supplement Series, 214, 24
Spilker J. S., et al., 2023, Nature, 618, 708
Stefanon M., et al., 2017, The Astrophysical Journal Supplement Series, 229, 32
Takagi T., et al., 2010, A&A, 514, A5
Takagi T., Matsuhara H., Wada T., Ohyama Y., 2011, Proceedings of the Inter-
national Astronomical Union, 7, 456–459
Tielens A. G. G. M., 2008, Annual Rev. Astron. Astrophys., 46, 289
Wang T.-W., et al., 2020, Monthly Notices of the Royal Astronomical Society,
499, 4068
Weedman D. W., Houck J. R., 2008, The Astrophysical Journal, 686, 127
Whitaker K. E., van Dokkum P. G., Brammer G., Franx M., 2012, The Astro-
physical Journal Letters, 754, L29
Wright G. S., et al., 2023, Publications of the Astronomical Society of the Pacific,
135, 048003
Wu C. K. W., et al., 2023, Monthly Notices of the Royal Astronomical Society,
523, 5187
46




 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *