|
[1] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, “Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems,” Physical Review X, vol. 3, no. 3, p. 031005, 2013. [2] H. Watanabe and M. Oshikawa, “Absence of quantum time crystals,” Physical review letters, vol. 114, no. 25, p. 251603, 2015. [3] R. Nandkishore and D. A. Huse, “Many-body localization and thermalization in quantum statistical mechanics,” Annu. Rev. Condens. Matter Phys., vol. 6, no. 1, pp. 15–38, 2015. [4] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, “From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics,” Advances in Physics, vol. 65, no. 3, pp. 239–362, 2016. [5] V. Khemani, R. Moessner, and S. Sondhi, “A brief history of time crystals,” arXiv preprint arXiv:1910.10745, 2019. [6] D. V. Else, C. Monroe, C. Nayak, and N. Y. Yao, “Discrete time crystals,” Annual Review of Condensed Matter Physics, vol. 11, pp. 467–499, 2020. [7] D. A. Abanin and Z. Papić, “Recent progress in many-body localization,” Annalen der Physik, vol. 529, no. 7, p. 1700169, 2017. [8] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, “Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states,” Annals of physics, vol. 321, no. 5, pp. 1126–1205, 2006. [9] A. Pal and D. A. Huse, “Many-body localization phase transition,” Physical review b, vol. 82, no. 17, p. 174411, 2010. [10] M. Serbyn, Z. Papić, and D. A. Abanin, “Local conservation laws and the struc- ture of the many-body localized states,” Physical review letters, vol. 111, no. 12, p. 127201, 2013. [11] M. Bukov, L. D’Alessio, and A. Polkovnikov, “Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to floquet engineer- ing,” Advances in Physics, vol. 64, no. 2, pp. 139–226, 2015. [12] N. H. Lindner, G. Refael, and V. Galitski, “Floquet topological insulator in semi- conductor quantum wells,” Nature Physics, vol. 7, no. 6, pp. 490–495, 2011 [13] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological haldane model with ul- tracold fermions,” Nature, vol. 515, no. 7526, pp. 237–240, 2014. [14] Y. Hatsugai, “Bulk-edge correspondence in graphene with/without magnetic field: Chiral symmetry, dirac fermions and edge states,” Solid state communications, vol. 149, no. 27-28, pp. 1061–1067, 2009. [15] N. Goldman and J. Dalibard, “Periodically driven quantum systems: effective hamiltonians and engineered gauge fields,” Physical review X, vol. 4, no. 3, p. 031027, 2014. [16] D. S. Fisher, “Critical behavior of random transverse-field ising spin chains,” Physical review b, vol. 51, no. 10, p. 6411, 1995. [17] V. Khemani, A. Lazarides, R. Moessner, and S. L. Sondhi, “Phase structure of driven quantum systems,” Physical review letters, vol. 116, no. 25, p. 250401, 2016. [18] C. W. von Keyserlingk, V. Khemani, and S. L. Sondhi, “Absolute stability and spatiotemporal long-range order in floquet systems,” Physical Review B, vol. 94, no. 8, p. 085112, 2016. [19] D. V. Else, B. Bauer, and C. Nayak, “Floquet time crystals,” Physical review let- ters, vol. 117, no. 9, p. 090402, 2016. [20] W. Berdanier, M. Kolodrubetz, S. Parameswaran, and R. Vasseur, “Floquet quan- tum criticality,” Proceedings of the National Academy of Sciences, vol. 115, no. 38, pp. 9491–9496, 2018. |