帳號:guest(18.116.23.169)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林士軒
作者(外文):Lin, Shih-Hsuan
論文名稱(中文):時間晶體在各種噪聲下的頑健性
論文名稱(外文):The robustness of time crystal to various noises
指導教授(中文):黃一平
指導教授(外文):Huang, Yi-Ping
口試委員(中文):鍾佳民
林瑜琤
許琇娟
口試委員(外文):Chung, Chia-Min
Lin, Yu-Cheng
Hsu, Hsiu-Chuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:110022553
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:52
中文關鍵詞:無序系統弗洛凱理論時間晶體非平衡態多體局域化
外文關鍵詞:Disorder systemsFloquet theoryTime crystalNon-equilibriumMany-body localization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
本文探討了時間晶體的物理學,時間晶體是一種在周期性驅動下表現出離散時間平移對稱性破缺的物質相。特別是,基於多體局域化(MBL)物理的時間晶體可以抵抗熱化並長時間保持初始狀態。我們通過 Floquet 特徵譜的精確對角化來分析時間晶體的頑健性,並討論它們是如何被多體交互作用“融化”。本文研究了各種交互作用對時間晶體的影響,並提供了未來的研究方向。
This article explores the physics of time crystal, a phase of matter that exhibits discrete time translation symmetry breaking under periodic driving. In particular, time crystals based on many-body localization (MBL) physics can resist thermalization and maintain the initial state information for extended periods of time. We analyze the robustness of time crystals through exact diagonalization of the Floquet eigenspectrum and discuss how they can be "melted" by many-body interactions. This paper investigates the impact of various interactions on time crystals and provides future research directions.
Acknowledgements iii
摘要 iv
Abstract v
1 Preview 1
2 From equilibrium to non-equilibrium 5
2.1 Thermalization of classical system . . . . . . . . . . . . . . . . . . . . 5
2.2 Thermalization of quantum system . . . . . . . . . . . . . . . . . . . . 6
2.3 Anderson localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Many Body Localization(MBL) . . . . . . . . . . . . . . . . . . . . . 9
2.5 Localized protect quantum order . . . . . . . . . . . . . . . . . . . . . 14
3 Periodically driven systems 17
3.1 Rabi-oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Floquet theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Single particle Floquet system . . . . . . . . . . . . . . . . . . . . . . 20
4 Time crystal 25
4.1 From transverse field Ising model to time crystal . . . . . . . . . . . . 25
4.2 Floquet-MBL model . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Spontaneous symmetry breaking . . . . . . . . . . . . . . . . . . . . . 34
5 Stability of time crystal 39
5.1 Perturbation in Floquet TFIM . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Perturbation with Z2 symmetry . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Perturbation without Z2 symmetry . . . . . . . . . . . . . . . . . . . . 43
5.4 Breakdown of MBL by weak interaction . . . . . . . . . . . . . . . . . 47
6 Conclusion 49
References 51
[1] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, “Anomalous edge states and
the bulk-edge correspondence for periodically driven two-dimensional systems,”
Physical Review X, vol. 3, no. 3, p. 031005, 2013.
[2] H. Watanabe and M. Oshikawa, “Absence of quantum time crystals,” Physical
review letters, vol. 114, no. 25, p. 251603, 2015.
[3] R. Nandkishore and D. A. Huse, “Many-body localization and thermalization in
quantum statistical mechanics,” Annu. Rev. Condens. Matter Phys., vol. 6, no. 1,
pp. 15–38, 2015.
[4] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, “From quantum chaos and
eigenstate thermalization to statistical mechanics and thermodynamics,” Advances
in Physics, vol. 65, no. 3, pp. 239–362, 2016.
[5] V. Khemani, R. Moessner, and S. Sondhi, “A brief history of time crystals,” arXiv
preprint arXiv:1910.10745, 2019.
[6] D. V. Else, C. Monroe, C. Nayak, and N. Y. Yao, “Discrete time crystals,” Annual
Review of Condensed Matter Physics, vol. 11, pp. 467–499, 2020.
[7] D. A. Abanin and Z. Papić, “Recent progress in many-body localization,” Annalen
der Physik, vol. 529, no. 7, p. 1700169, 2017.
[8] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, “Metal–insulator transition in
a weakly interacting many-electron system with localized single-particle states,”
Annals of physics, vol. 321, no. 5, pp. 1126–1205, 2006.
[9] A. Pal and D. A. Huse, “Many-body localization phase transition,” Physical review
b, vol. 82, no. 17, p. 174411, 2010.
[10] M. Serbyn, Z. Papić, and D. A. Abanin, “Local conservation laws and the struc-
ture of the many-body localized states,” Physical review letters, vol. 111, no. 12,
p. 127201, 2013.
[11] M. Bukov, L. D’Alessio, and A. Polkovnikov, “Universal high-frequency behavior
of periodically driven systems: from dynamical stabilization to floquet engineer-
ing,” Advances in Physics, vol. 64, no. 2, pp. 139–226, 2015.
[12] N. H. Lindner, G. Refael, and V. Galitski, “Floquet topological insulator in semi-
conductor quantum wells,” Nature Physics, vol. 7, no. 6, pp. 490–495, 2011
[13] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and
T. Esslinger, “Experimental realization of the topological haldane model with ul-
tracold fermions,” Nature, vol. 515, no. 7526, pp. 237–240, 2014.
[14] Y. Hatsugai, “Bulk-edge correspondence in graphene with/without magnetic field:
Chiral symmetry, dirac fermions and edge states,” Solid state communications,
vol. 149, no. 27-28, pp. 1061–1067, 2009.
[15] N. Goldman and J. Dalibard, “Periodically driven quantum systems: effective
hamiltonians and engineered gauge fields,” Physical review X, vol. 4, no. 3,
p. 031027, 2014.
[16] D. S. Fisher, “Critical behavior of random transverse-field ising spin chains,”
Physical review b, vol. 51, no. 10, p. 6411, 1995.
[17] V. Khemani, A. Lazarides, R. Moessner, and S. L. Sondhi, “Phase structure of
driven quantum systems,” Physical review letters, vol. 116, no. 25, p. 250401,
2016.
[18] C. W. von Keyserlingk, V. Khemani, and S. L. Sondhi, “Absolute stability and
spatiotemporal long-range order in floquet systems,” Physical Review B, vol. 94,
no. 8, p. 085112, 2016.
[19] D. V. Else, B. Bauer, and C. Nayak, “Floquet time crystals,” Physical review let-
ters, vol. 117, no. 9, p. 090402, 2016.
[20] W. Berdanier, M. Kolodrubetz, S. Parameswaran, and R. Vasseur, “Floquet quan-
tum criticality,” Proceedings of the National Academy of Sciences, vol. 115,
no. 38, pp. 9491–9496, 2018.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *