帳號:guest(18.224.70.204)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高偉勛
作者(外文):Kao, Wei-Xun
論文名稱(中文):旋轉多層石墨烯之電子結構
論文名稱(外文):Twisted Multi-layer graphene: Electronic Properties
指導教授(中文):鄭弘泰
指導教授(外文):Jeng, Horng-Tay
口試委員(中文):鄭澄懋
林俊良
口試委員(外文):Cheng, Cheng-Maw
Lin, Chun-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:110022539
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:59
中文關鍵詞:扭轉石墨烯二維材料摩爾紋
外文關鍵詞:twistedgraphenetwo-dimensional materialMoire pattern
相關次數:
  • 推薦推薦:0
  • 點閱點閱:10
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
石墨烯是近十幾年來最重要的材料之一,它廣為人之的物理特性被許多人看好於不同領域的應用,但在2018年後,石墨烯被發現居然有超導的特性,人們從沒想過將兩層石墨烯堆疊並且旋轉到一些特定的角度,石墨烯居然會出現超導相變而變成超導體。這個超導機制雖然現在還不是完全明瞭,但卻讓我們對於超導的機制有了一些不同的啟發,此外也暗示了凝態物理之後發展的可能方向-旋轉電子學(twistronics)的理論與應用。
本篇論文主要從石墨烯慢慢開始,先討論單層再討論雙層,接著拓展到旋轉雙層甚至多層(三層以上)石墨烯,我觀察到旋轉雙層石墨烯在小於1.5°時將會出現平帶(flat band),而真正出現超導的角度則為1.16°, 1.12°, 1.08°, 以及1.05°,這些角度有個特殊的名稱-magic angle,而旋轉三層石墨烯或是類似的系統也有發現屬於它們自己的magic angle。
我 將 利 用 第 一 原 理(first principle)和 緊 束 縛 模 型(tight binding model)分析這些系統的能帶,其中一些結果是複現已經發表的論文,還有一些是我在我的模型中加上額外的效應,例如考慮垂直加壓和施加水平應力的情況,我觀察這會對能帶產生特殊的影響,並且將層數拓展也會出現很多有趣的現象,它們在小角度依然會有平帶的產生,也有拓樸,甚至在最近的實驗中也有發現磁性。總之,這樣的系統有許多有趣的物理,而本篇論文將著重在電子結構、能帶的計算。
Graphene is one of the most important materials in recent decades, known for its remarkable physical properties with widespread applications in various fields. However, after 2018, graphene was unexpectedly found to exhibit superconducting properties.
It was previously unimaginable that by stacking two layers of graphene and rotating them to specific angles, graphene would undergo a superconducting phase transition, turning into a superconductor. Although the exact mechanism behind this superconductivity is not yet fully understood, it has provided novel insights into the mechanisms of superconductivity. Moreover, it has hinted at potential directions for future developments in condensed matter physics, particularly in the field of twistronics, both in theory and applications.

This master’s thesis begins with a comprehensive exploration of graphene, first discussing single-layer graphene and then delving into bilayer graphene. It further extends to twisted bilayer graphene and even multilayer systems (tri-layers and above). Notably, I observed that twisted bilayer graphene exhibits a flat band when the twist angle is less than 1.5°. The actual angles leading to superconductivity are 1.16°, 1.12°, 1.08°, and 1.05°, which are referred to as ”magic angles”. Similar ”magic angles” have also been discovered in twisted tri-layer graphene and related systems.

To analyze the electronic band structures of these systems, I employ first-principles calculations and tight-binding models. Some of my results replicate from previously published papers, while others involve additional effects incorporated into my models. These effects include the vertical pressure and horizontal tensile strain, all of which have unique influences on the band structures. Moreover, as the number of layers increases, intriguing phenomena continue to emerge. Even at small twist angles, flat bands persist, and various topological features appear. Recent experiments have also revealed magnetic properties in these systems.

In summary, these systems exhibit a wealth of intriguing physics, with a particular focus on electronic structures and band calculations in this thesis.
Abstract (Chinese) I
Acknowledgements (Chinese) II
Abstract III
Contents V
List of Figures VII
1 Introduction 1
1.1 Two-dimensional (2D) materials . . . . . . . . . . . . . . . . . . . . 1
1.2 Twisted bilayer graphene . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Theory 5
2.1 Tight binding method . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . 7
3 Twisted Bilayer Graphene Structure 17
3.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Corrugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Lattice Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 DFT calculation for corrugation . . . . . . . . . . . . . . . . . . . . 25
4 Band Structure 28
4.1 Tight binding model for TBG . . . . . . . . . . . . . . . . . . . . . 28
4.2 TBG band structure . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Taking corrugation into account . . . . . . . . . . . . . . . . . . . . 31
4.4 Vertical pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Tensile strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 Twisted bilayer SiC . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.7 Twisted trilayer graphene . . . . . . . . . . . . . . . . . . . . . . . 35
5 Conclusion and future works 52
Bibliography 54
[1] Yanling Hu, Ying Huang, Chaoliang Tan, Xiao Zhang, Qipeng Lu, Melinda
Sindoro, Xiao Huang, Wei Huang, Lianhui Wang, and Hua Zhang. Twodimensional transition metal dichalcogenide nanomaterials for biosensing applications. Materials Chemistry Frontiers, 1(1):24–36, 2017.
[2] Nguyen NT Nam and Mikito Koshino. Lattice relaxation and energy band
modulation in twisted bilayer graphene. Physical Review B, 96(7):075311,
2017.
[3] Kostya S Novoselov, Andre K Geim, Sergei Vladimirovich Morozov, Dingde
Jiang, Michail I Katsnelson, Irina V Grigorieva, SVb Dubonos, Firsov, and
AA. Two-dimensional gas of massless dirac fermions in graphene. nature,
438(7065):197–200, 2005.
[4] Andre K Geim and Konstantin S Novoselov. The rise of graphene. Nature
materials, 6(3):183–191, 2007.
[5] Kenji Watanabe, Takashi Taniguchi, and Hisao Kanda. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single
crystal. Nature materials, 3(6):404–409, 2004.
[6] Cory R Dean, Andrea F Young, Inanc Meric, Chris Lee, Lei Wang, Sebastian Sorgenfrei, Kenji Watanabe, Takashi Taniguchi, Phillip Kim, Kenneth L
Shepard, et al. Boron nitride substrates for high-quality graphene electronics.
Nature nanotechnology, 5(10):722–726, 2010.
[7] Soo Min Kim, Allen Hsu, Min Ho Park, Sang Hoon Chae, Seok Joon Yun,
Joo Song Lee, Dae-Hyun Cho, Wenjing Fang, Changgu Lee, Tomás Palacios,
et al. Synthesis of large-area multilayer hexagonal boron nitride for high
material performance. Nature communications, 6(1):8662, 2015.
[8] Yuki Uchida, Sho Nakandakari, Kenji Kawahara, Shigeto Yamasaki,
Masatoshi Mitsuhara, and Hiroki Ago. Controlled growth of large-area uniform multilayer hexagonal boron nitride as an effective 2d substrate. ACS
nano, 12(6):6236–6244, 2018.
[9] Guillaume Cassabois, Pierre Valvin, and Bernard Gil. Hexagonal boron nitride is an indirect bandgap semiconductor. Nature photonics, 10(4):262–266,
2016.
[10] Christine Elias, Pierre Valvin, Thomas Pelini, A Summerfield, CJ Mellor,
TS Cheng, L Eaves, CT Foxon, PhH Beton, SV Novikov, et al. Direct bandgap crossover in epitaxial monolayer boron nitride. Nature communications,
10(1):2639, 2019.
[11] Darshana Wickramaratne, Leigh Weston, and Chris G Van de Walle. Monolayer to bulk properties of hexagonal boron nitride. The Journal of Physical
Chemistry C, 122(44):25524–25529, 2018.
[12] Kin Fai Mak, Changgu Lee, James Hone, Jie Shan, and Tony F Heinz. Atomically thin mos 2: a new direct-gap semiconductor. Physical review letters,
105(13):136805, 2010.
[13] Branimir Radisavljevic, Aleksandra Radenovic, Jacopo Brivio, Valentina Giacometti, and Andras Kis. Single-layer mos2 transistors. Nature nanotechnology, 6(3):147–150, 2011.
[14] Wenjuan Zhu, Tony Low, Han Wang, Peide Ye, and Xiangfeng Duan.
Nanoscale electronic devices based on transition metal dichalcogenides. 2D
Materials, 6(3):032004, 2019.
[15] Zongyou Yin, Hai Li, Hong Li, Lin Jiang, Yumeng Shi, Yinghui Sun, Gang
Lu, Qing Zhang, Xiaodong Chen, and Hua Zhang. Single-layer mos2 phototransistors. ACS nano, 6(1):74–80, 2012.
[16] Miika Mattinen, Markku Leskelä, and Mikko Ritala. Atomic layer deposition of 2d metal dichalcogenides for electronics, catalysis, energy storage, and
beyond. Advanced Materials Interfaces, 8(6):2001677, 2021.
[17] Xin Wang, Yuwei Zhang, Jing Wu, Zheng Zhang, Qingliang Liao, Zhuo
Kang, and Yue Zhang. Single-atom engineering to ignite 2d transition metal
dichalcogenide based catalysis: Fundamentals, progress, and beyond. Chemical Reviews, 122(1):1273–1348, 2021.
[18] Liangzhi Kou, Changfeng Chen, and Sean C Smith. Phosphorene: fabrication, properties, and applications. The journal of physical chemistry letters,
6(14):2794–2805, 2015.
[19] Han Liu, Adam T Neal, Zhen Zhu, David Tomanek, and Peide D Ye. Phosphorene: a new 2d material with high carrier mobility. arXiv preprint
arXiv:1401.4133, 2014.
[20] Ankit Jain and Alan JH McGaughey. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Scientific reports, 5(1):8501,
2015.
[21] Zhiming Shi, Zhuhua Zhang, Alex Kutana, and Boris I Yakobson. Predicting two-dimensional silicon carbide monolayers. ACS nano, 9(10):9802–9809,
2015.
[22] CM Polley, H Fedderwitz, T Balasubramanian, AA Zakharov, Rositsa Yakimova, O Bäcke, J Ekman, SP Dash, S Kubatkin, and S Lara-Avila. Bottom-up
growth of monolayer honeycomb sic. Physical Review Letters, 130(7):076203,
2023.
[23] JM Campanera, G Savini, Irene Suarez-Martinez, and MI Heggie. Density
functional calculations on the intricacies of moiré patterns on graphite. Physical review B, 75(23):235449, 2007.
[24] Rafi Bistritzer and Allan H MacDonald. Moiré bands in twisted doublelayer graphene. Proceedings of the National Academy of Sciences,
108(30):12233–12237, 2011.
[25] Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi,
Efthimios Kaxiras, and Pablo Jarillo-Herrero. Magic-angle graphene superlattices: a new platform for unconventional superconductivity. arXiv preprint
arXiv:1803.02342, 2018.
[26] Hyunjin Kim, Youngjoon Choi, Cyprian Lewandowski, Alex Thomson, Yiran
Zhang, Robert Polski, Kenji Watanabe, Takashi Taniguchi, Jason Alicea, and
Stevan Nadj-Perge. Evidence for unconventional superconductivity in twisted
trilayer graphene. Nature, 606(7914):494–500, 2022.
[27] G William Burg, Eslam Khalaf, Yimeng Wang, Kenji Watanabe, Takashi
Taniguchi, and Emanuel Tutuc. Emergence of correlations in alternating
twist quadrilayer graphene. Nature Materials, 21(8):884–889, 2022.
[28] Jeong Min Park, Yuan Cao, Li-Qiao Xia, Shuwen Sun, Kenji Watanabe,
Takashi Taniguchi, and Pablo Jarillo-Herrero. Robust superconductivity in
magic-angle multilayer graphene family. Nature Materials, 21(8):877–883,
2022.
[29] Kha Tran, Galan Moody, Fengcheng Wu, Xiaobo Lu, Junho Choi, Kyounghwan Kim, Amritesh Rai, Daniel A Sanchez, Jiamin Quan, Akshay Singh,
et al. Evidence for moiré excitons in van der waals heterostructures. Nature,
567(7746):71–75, 2019.
[30] Chenhao Jin, Emma C Regan, Aiming Yan, M Iqbal Bakti Utama, Danqing
Wang, Sihan Zhao, Ying Qin, Sijie Yang, Zhiren Zheng, Shenyang Shi, et al.
Observation of moiré excitons in wse2/ws2 heterostructure superlattices. Nature, 567(7746):76–80, 2019.
[31] Di Huang, Junho Choi, Chih-Kang Shih, and Xiaoqin Li. Excitons in semiconductor moiré superlattices. Nature Nanotechnology, 17(3):227–238, 2022.
[32] Yang Xu, Ariana Ray, Yu-Tsun Shao, Shengwei Jiang, Kihong Lee, Daniel
Weber, Joshua E Goldberger, Kenji Watanabe, Takashi Taniguchi, David A
Muller, et al. Coexisting ferromagnetic–antiferromagnetic state in twisted
bilayer cri3. Nature Nanotechnology, 17(2):143–147, 2022.
[33] Heonjoon Park, Jiaqi Cai, Eric Anderson, Yinong Zhang, Jiayi Zhu, Xiaoyu Liu, Chong Wang, William Holtzmann, Chaowei Hu, Zhaoyu Liu,
et al. Observation of fractionally quantized anomalous hall effect. Nature,
622(7981):74–79, 2023.
[34] Jiaqi Cai, Eric Anderson, Chong Wang, Xiaowei Zhang, Xiaoyu Liu, William
Holtzmann, Yinong Zhang, Fengren Fan, Takashi Taniguchi, Kenji Watanabe,
et al. Signatures of fractional quantum anomalous hall states in twisted mote2.
Nature, 622(7981):63–68, 2023.
[35] J. C. Slater and G. F. Koster. Simplified lcao method for the periodic potential
problem. Phys. Rev., 94:1498–1524, Jun 1954.
[36] Pilkyung Moon and Mikito Koshino. Energy spectrum and quantum hall
effect in twisted bilayer graphene. Physical Review B, 85(19):195458, 2012.
[37] JMB Lopes Dos Santos, NMR Peres, and AH Castro Neto. Continuum model
of the twisted graphene bilayer. Physical review B, 86(15):155449, 2012.
[38] Annalisa Fasolino, JH Los, and Mikhail I Katsnelson. Intrinsic ripples in
graphene. Nature materials, 6(11):858–861, 2007.
[39] Fabian L Thiemann, Patrick Rowe, Andrea Zen, Erich A Muller, and Angelos Michaelides. Defect-dependent corrugation in graphene. Nano Letters,
21(19):8143–8150, 2021.
[40] M Enachescu, D Schleef, DF Ogletree, and M Salmeron. Integration of pointcontact microscopy and atomic-force microscopy: Application to characterization of graphite/pt (111). Physical Review B, 60(24):16913, 1999.
[41] Naruo Sasaki, Katsuyoshi Kobayashi, and Masaru Tsukada. Atomic-scale
friction image of graphite in atomic-force microscopy. Physical Review B,
54(3):2138, 1996.
[42] Jiarui Zhao, Menghan Song, Yang Qi, Junchen Rong, and Zi Yang Meng.
Finite-temperature critical behaviors in 2d long-range quantum heisenberg
model. arXiv preprint arXiv:2306.01044, 2023.
[43] Mengxi Liu. Controlled Synthesis and Scanning Tunneling Microscopy Study
of Graphene and Graphene-Based Heterostructures. Springer, 2017.
[44] Shuyang Dai, Yang Xiang, and David J Srolovitz. Twisted bilayer graphene:
Moiré with a twist. Nano letters, 16(9):5923–5927, 2016.
[45] Tawfiqur Rakib, Pascal Pochet, Elif Ertekin, and Harley T Johnson. Corrugation-driven symmetry breaking in magic-angle twisted bilayer
graphene. Communications Physics, 5(1):242, 2022.
[46] Wei Yan, Wen-Yu He, Zhao-Dong Chu, Mengxi Liu, Lan Meng, Rui-Fen Dou,
Yanfeng Zhang, Zhongfan Liu, Jia-Cai Nie, and Lin He. Strain and curvature
induced evolution of electronic band structures in twisted graphene bilayer.
Nature communications, 4(1):2159, 2013.
[47] Loïc Huder, Alexandre Artaud, Toai Le Quang, Guy Trambly De Laissardière,
Aloysius GM Jansen, Gérard Lapertot, Claude Chapelier, and Vincent T
Renard. Electronic spectrum of twisted graphene layers under heterostrain.
Physical review letters, 120(15):156405, 2018.
[48] G Trambly de Laissardière, Didier Mayou, and Laurence Magaud. Localization of dirac electrons in rotated graphene bilayers. Nano letters,
10(3):804–808, 2010.
[49] E Suárez Morell, JD Correa, P Vargas, M Pacheco, and Z Barticevic. Flat
bands in slightly twisted bilayer graphene: Tight-binding calculations. Physical Review B, 82(12):121407, 2010.
[50] Eike Icking, Luca Banszerus, Frederike Wörtche, Frank Volmer, Philipp
Schmidt, Corinne Steiner, Stephan Engels, Jonas Hesselmann, Matthias Goldsche, Kenji Watanabe, et al. Transport spectroscopy of ultraclean tunablband gaps in bilayer graphene. Advanced Electronic Materials, 8(11):2200510,
2022.
[51] Amir Yacoby. Tri and tri again. Nature Physics, 7(12):925–926, 2011.
[52] Amol Nimbalkar and Hyunmin Kim. Opportunities and challenges in twisted
bilayer graphene: a review. Nano-Micro Letters, 12:1–20, 2020.
[53] Liangbing Ge, Kun Ni, Xiaojun Wu, Zhengping Fu, Yalin Lu, and Yanwu Zhu.
Emerging flat bands in large-angle twisted bi-layer graphene under pressure.
Nanoscale, 13(20):9264–9269, 2021.
[54] Felix Yndurain. Pressure-induced magnetism in rotated graphene bilayers.
Physical Review B, 99(4):045423, 2019.
[55] Abderrezak Torche, Francesco Mauri, Jean-Christophe Charlier, and Matteo
Calandra. First-principles determination of the raman fingerprint of rhombohedral graphite. Physical Review Materials, 1(4):041001, 2017.
[56] Maine Christos, Subir Sachdev, and Mathias S Scheurer. Correlated insulators, semimetals, and superconductivity in twisted trilayer graphene. Physical
Review X, 12(2):021018, 2022.
(此全文20260130後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *