帳號:guest(18.218.6.132)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊元喆
作者(外文):Yang, Yuan-Je
論文名稱(中文):915MHz 固態波源與未來應用
論文名稱(外文):915 MHz Solid-State Source and future application
指導教授(中文):張存續
指導教授(外文):Chang, Tsun-Hsu
口試委員(中文):楊正任
寇崇善
王兆恩
口試委員(外文):Yang, Jeng-Rern
Kou, Chwung-Shan
Wang, Chaoen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:110022527
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:38
中文關鍵詞:固態波源放大器(Solid-state power amplifier)平面巴倫熱模擬功率融合及分配器加熱實驗
外文關鍵詞:Solid state power amplifier (SSPA)Planer BalunHeat stimulationPower combiner and dividerHeating experiment
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
這篇文章將延續我們實驗室中915MHz固態功率放大器(SSPA)的工作。首先,我試圖根據我學長的設計重新製作一次固態功率放大器,但發現我的固態功率放大器存在震盪問題。這導致其從感測器上量到相位、功率和溫度不穩定,使的我們之後預測變得困難,因此我們試圖開始去解決這個問題。同時由於功率和效率都未達到晶片數據表中所述的最大750W的功率、以及甲乙類放大器的78.5%的理論效率,因此我們針對其提供一些增加其效率及功率的優化方案。
接下來,由於我們將來可能會設計一個新的平面巴倫和匹配電路,但在設計的過程中可能會造成微帶線溫度過高進而造成危險的情況。因此,學習如何使用熱模擬可以幫助我們檢查系統中是否存在溫度過高的情況,並在進行實驗之前針對其進行修改,減少材料損壞和時間成本。在熱模擬方面我們嘗試使用HFSS Icepak系統對巴倫進行熱模擬,並將結果與我們的915MHz巴倫和國家同步輻射中心的500MHz巴倫進行比較。
在進行完固態波源的優化及巴倫的熱模擬之後。我們希望將固態波源的功率在提升,以便能夠進行更多量或更高溫度的加熱實驗,但由於固態波源是由半導體製成所以無法承受很高的溫度,因此其常常在輸入功率達到750W時達到其溫度極限,但雖說單個固態波源無法達到高功率輸出,但由於其具有相位穩定性的特性。這使得我們能夠使用多個固態波源進行功率合併,因此我們試圖設計一個6路功率分配器,以確保所有固態波源都可以接收到具有相同相位的輸入波,並利用6路功率分配器讓其具有更高功率。為此,我們參考了國家同步輻射中心的功率融合器和分配器設計,設計出了屬於我們自己的功率融合器和分配器。最後,我們提出使用功率融合器和分配器生產出3.6kW和7.2kW的高功率波源的方法。以及其他固態波源的進一步應用,例如多點饋入共振腔和相位控制,作為未來工作的方向。
This article will continue the 915MHz solid-state power amplifier (SSPA) model in our lab. First, I tried to redo the SSPA based on the design from my senior and discovered oscillation in my SSPA. This caused instability in the phase, power, and temperature, making it difficult to predict. Therefore, we tried to solve this issue. Additionally, the power and efficiency did not reach the maximum 750W and 78.5% as stated in the chip datasheet and the theoretical efficiency of class AB. We attempted to provide methods to optimize it.
Next, because someday we will design a new planar Balun and matching circuit, we need to be cautious about the temperature in the microstrip to prevent any danger. Therefore, learning how to use thermal simulation can help us check if we have an over-temperature condition in our system and modify it before conducting the experiment, reducing material breakage and time costs. We attempted to use the HFSS Icepak system to perform thermal simulations on the Balun and compare the results with our 915MHz Balun and the NSRRC 500MHz Balun.
After finishing optimize on the SSPA and thermal simulation on Balun, We aim to solve the problems in our single SSPA. We try to obtain more power from our SSPA to enable us to conduct a higher quantity or higher temperature heating experiments. However, since the SSPA is made of semiconductors, it cannot withstand high temperatures, reaching its temperature limit when the input power reaches 750W. Furthermore, although it cannot achieve high power output for a single SSPA, it has the property of phase stability. This makes it easier for us to perform power combining using multiple SSPAs. Therefore, we attempted to design a 6-way power divider to ensure all SSPAs receive input power with the same phase and utilize the 6-way power divider to achieve higher power. For this, we referred to the power combiner and divider design at NSRRC in Hsinchu, Taiwan to design our own power combiner and divider. Finally, we promote the method of creating 3.6kW and 7.2kW sources using a power combiner and divider, as well as further applications such as cavity combining and phase control for future work.
考試委員審定書 #
誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
Chapter 1 915MH固態波源簡介與其理論 1
1.1 915MHz固態波源放大器的源起 1
1.2 915MHz 放大器技術及特色 3
1.2.1 915MHz 放大器的基本結構介紹 3
1.2.2 推挽式放大器 4
1.2.3 平面巴倫 5
1.2.4 阻抗匹配 6
1.3 固態波源的組裝及測試平台介紹 7
Chapter 2 915MHz 波源模組與其改進 9
2.1 固態波源的起震問題及解決 9
2.2 其他固態波源的優化設計 11
Chapter 3巴倫熱模擬與其實驗結果 14
Chapter 4 915MHz 功率融合及分配器模擬 17
4.1 回顧國家同步輻射中心500MHz SSPA發展 17
4.2 功率分配器(Power divider)設計與模擬結果 18
4.3 功率融合器(Power Combiner)設計與模擬結果 21
Chapter 5未來應用 27
5.1 915MHz 3.2k及7.2k波源 27
5.2 915MHz 多點饋入共振腔及相位控制 29
Chapter 6 結論 30
參考文獻 31
附錄一 監控模組及輸出模組介紹 34
A. 1 監控模組介紹 34
A. 1.1 方向耦合器 34
A. 1.2 電流、電壓及溫度監控整合模組 35
A. 2 輸出模組介紹 37

[1] T. Yu et al., "A novel planar balun structure for continuous wave 1kW, 500 MHz solid-state amplifier design," Balance, vol. 2, p. 3, 2012.
[2] Y. R. Chen, H. W. Chao, H. C. Hsu, C. H. Chan, W. H. Lin, C. W. Tsai, and T. H. Chang, “A Two-Step Microwave Annealing Process for PAN Pre-Oxidation through a TM-Mode Cavity,” Polymers, vol. 13, no. 9, p. 1476, 2021.
[3] A. Sozza, E. Zanoni, and N. Labat, "Reliability of AlGaN/GaN HEMTs for RF and microwave applications," University of Padova, 2005.
[4] 劉禹賢, “用微波與鐵加速生質柴油中酯化反應” 國立清華大學物理研究所物理組碩士論文, 2022.
[5] 黃仁君, “以微波噴霧腔體加速生質柴油之酯化反應研究” 國立清華大學物理研究所應用物理組碩士論文, 2022
[6] 黃文昌, “微波加速碳纖維氧化反應之研究”, 國立清華大學物理研究所應用物理組碩士論文, 2022
[7] 一張表看懂2022半導體產業產值 「IC製造」成長幅度20%最大!財訊雜誌網,20220329 18:28, 取自:
https://www.wealth.com.tw/articles/0e7334a6-4609-42a6-8314-a0f087e1c2d2
[8] 詹承軒, “用於高功率材料處理之915 MHz固態波源開發” 國立清華大學物理研究所光電組碩士論文, 2021
[9] NXP Semiconductors, “MRF13750H; MRF13750HS Power LDMOS transistor,” MRF13750 datasheet, Rev.01, 2018.
[10] A. Harjoko and T. W. Supardi, "Acka 500 Watt Power amplifier for a 144 MHz channel based on a VHF Push-pull Power MOS transistor," J. Comput. Sci., vol. 9, no. 10, pp. 1323-1328, 2013.
[11] Y. Wang and J. C. Lee, “A miniaturized Marchand balun model with short-end and capacitive feeding,” IEEE Access, vol. 6, pp. 26653-26659, 2018.
[12] RAMARAO, B. V., et al, “Development of 3 kW at 325 MHz solid-state RF power amplifier using four power amplifier modules,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 735, pp. 283-290, 2014.
[13] W. M. Fathelbab and M. B. Steer, “New classes of miniaturized planar Marchand baluns,” IEEE Transactions on microwave theory and techniques, vol. 53, no. 4, pp. 1211-1220, 2005.
[14] R. Tong, O. Bengtsson, A. Bäcklund, and D. Dancila, “Compact and highly efficient kilowatt lumped push–pull power amplifier for cyclotron in radioisotopes production,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 723-731, 2020
[15] Dominic FitzPatrick, “Modelling of a Printed VHF Balun Using E-M Simulation Techniques,” presented at the ARMMS conference, Oxfordshire, United Kingdom, April. 2013.
[16] D. M. Pozar, Microwave engineering. John wiley & sons, 2011.
[17] G. Gonzalez, Microwave transistor amplifiers: analysis and design. Prentice hall New Jersey, 1997.
[18] M. L. Edwards and J. H. Sinsky, "A new criterion for linear 2-port stability using a single geometrically derived parameter," IEEE Transactions on Microwave theory and Techniques, vol. 40, no. 12, pp. 2303-2311, 1992.
[19] ANSYS Electronics 19.2, ANSYS Icepak Help, 2018
[20] F. Fan, W. Wang, and Z. Yan, "A novel 1∶ 19 microstrip radial power divider design for the application in antenna array," in 2013 International Workshop on Microwave and Millimeter Wave Circuits and System Technology, 2013: IEEE, pp. 17-19.
[21] M. Abdolahi, M. M. Sabahi, Z. Pourgholamhossein, and H. M. Sadeghi, "Broadband eight-way coaxial waveguide high power combiner/divider," in 2017 Progress In Electromagnetics Research Symposium-Spring (PIERS), 2017: IEEE, pp. 1842-1847.
[22] G. Zhai and B. Shi, "Compact low loss millimeter wave 8-way radial waveguide power combiner," in TENCON 2017-2017 IEEE Region 10 Conference, 2017: IEEE, pp. 1598-1601.
[23] S. B. Erekson, W. J. D. Johnson, and D. Peroulis, "Design of an airline coax radial power combiner with enhanced isolation," in 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017: IEEE, pp. 455-458.
[24] A. K. Nobandegani and S. E. Hosseini, "Gysel power divider realized by ridge gap waveguide technology," IEEE Access, vol. 9, pp. 72103-72110, 2021.
[25] T. Yu et al., "The commission of the home-made 500MHz, 80kW solid-state amplifier in NSRRC," in Journal of Physics: Conference Series, 2019, vol. 1350, no. 1: IOP Publishing, p. 012170.
[26] M. Gaspar and T. Garvey, “A compact 500 MHz 65 kW solid-state power amplifier for accelerator applications,” IEEE Transactions on Nuclear Science, vol. 63, no. 2, pp. 699-706, 2015
[27] L. Chang, Z. Liu, C. Tsai, and N. Fu-Yu Chang, "DEVELOPMENT OF A 500-MHZ SOLID-STATE RF AMPLIFIER AS A COMBINATION OF TEN MODULES," way, vol. 1, p. x10, 2016.
[28] K.-W. Park and W.-J. Cho, "Thermal Damage-Free Microwave Annealing with Efficient Energy Conversion for Fabricating of High-Performance a-IGZO Thin-Film Transistors on Flexible Substrates," Materials, vol. 14, no. 10, p. 2630, 2021.
[29] W. Shin, O. Inac, Y.-C. Ou, B. Ku, and G. M. Rebeiz, "A 108–112 GHz 4× 4 wafer-scale phased array transmitter with high-efficiency on-chip antennas," in 2012 IEEE Radio Frequency Integrated Circuits Symposium, 2012: IEEE, pp. 199-202.
[30] 范中興, 相控陣列變頻微波技術,工業技術與資訊月刊 ,20210715, 取自:
https://www.itri.org.tw/ListStyle.aspx?DisplayStyle=18_content&SiteID=1&MmmID=1036452026061075714&MGID=1126711710461143364
[31] J. R. Bows, M. L. Patrick, R. Janes, and D. C. Dibben, "Microwave phase control heating," International journal of food science & technology, vol. 34, no. 4, pp. 295-304, 1999.
[32] C.-H. Chan, T.-C. Yu, and T.-H. Chang, "High-directivity and compact microstrip coupler for RF power applications," Review of Scientific Instruments, vol. 94, no. 6, 2023.
(此全文20260629後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *