帳號:guest(18.227.72.15)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周恒毅
作者(外文):Chou, Heng-Yi
論文名稱(中文):通過對稱性破壞實現圓偏振態表面電漿極化子
論文名稱(外文):Realizing Circularly Polarized States of Surface Plasmon Polaritons on Surface Plasmonic Lattices by Symmetry Breaking
指導教授(中文):果尚志
指導教授(外文):Gwo, Shangjr
口試委員(中文):高英哲
徐瑋廷
口試委員(外文):Kao, Ying-Jer
Hsu, Wei-Ting
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:110022522
出版年(民國):112
畢業學年度:112
語文別:中文
論文頁數:51
中文關鍵詞:電漿子晶體表面電漿極化子連續譜束縛態偏振渦漩手性光子學
外文關鍵詞:Plasmonic crystalSurface plasmon polaritonsBound states in the continuumPolarization vortexChiral photonics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:20
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,透過破壞晶體結構的對稱性,操縱光束的頻率(Frequency)、波向量(Wave vector)、偏振(Polarization)以及相位(Phase)為目前奈米光子學主要的研究方向之一,這種方式為奈米光子學衍生出多樣化的領域分支以及應用,例如:連續譜束縛態(Bound states in the continuum)、偏振渦漩(Polarization vortex)、手性光子學(Chiral photonics)。本文我們將連結電漿子晶體中的結構對稱性與動量空間中的偏振渦漩,透過改變結構面內反置對稱(In-plane inversion symmetry)的方式,使材料對於左旋和右旋偏振光的吸收程度產生差異,以此討論輻射電場中圓二色性的行為(Circular dichroism, CD)。
首先,本文將從表面電漿子的工作原理出發,透過分析表面電漿極化子(Surface Plasmon Polaritons, SPPs)以及局域性表面電漿子(Localized Surface Plasmons, LSPs)的行為模式,以理解調控晶體的基礎機制。緊接著,我們將介紹本文所調控的晶體對稱性,並引入龐加萊球來幫助理解動量空間中偏振態的行為模式,並透過時間耦合模式理論(Temporal Coupled-Mode Theory, TCMT)所建構的理論模型,描述破壞結構面內反置對稱前與破壞後在動量空間中偏振態的分布行為。最後使用實驗室所搭建的動量空間成像光譜(Momentum-space imaging spectroscopy),分別針對不同對稱性的結構量測反射率能譜與等頻輪廓(iso-frequency contour), 將數據結果透過[(R_LCP-R_RCP)/(R_LCP+R_RCP)]的方式將數據轉換成圓二色性訊號,以便討論不同參數所設計的結構對於左旋和右旋偏振光吸收程度的差異,並與理論結果進行比對。
在結構的選擇上我們選用蜂巢晶格當作設計的基礎,並探討了兩種結構調控方式。第一種是基於孔徑直徑差的結構調控,藉由調控孔徑大小的方式,來破壞inversion symmetry,同時透過調控結構不對稱性的方式,以討論圓二色性強度差異。第二種方式是基於孔徑直徑的結構調控,將孔徑的直徑差固定為60 nm,以同時增加兩個孔徑的大小的方式,探討局域表面電漿子對偏振態的分布行為的影響。實驗結果表明,對於不對稱性為0.8的結構擁有最大的CD (63%),且隨結構參數的調控,動量空間中偏振態的演變行為與理論模型相符。因此我們得以驗證,結構對稱性決定偏振渦漩的生成,這奠定了往後奈米光子學應用的基礎。
In recent years, manipulating the frequency, wave vector, polarization, and phase of light beams by disrupting the symmetry of crystal structures has become a prominent research direction in the field of nanophotonics. This approach has given rise to a diverse range of subfields and applications, including bound states in the continuum, polarization vortices, and chiral photonics. In this paper, we establish a connection between the structural symmetry in plasmonic crystals and polarization vortices in momentum space. By altering the in-plane inversion symmetry of the material, we induce differential absorption of left-handed and right-handed polarized light, allowing us to explore the behavior of circular dichroism in the radiative field.
First, we will begin by elucidating the principles of surface plasmon resonance, analyzing the behaviors of surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs) to understand the fundamental mechanisms behind manipulating crystals. Next, we will introduce the modified crystal symmetry in our study and employ Poincaré spheres to aid in comprehending the behavior of polarization states in momentum space. Using a theoretical model constructed through Temporal Coupled-Mode Theory (TCMT), we will describe the distribution of polarization states in momentum space before and after breaking the in-plane inversion symmetry.
Finally, we will employ momentum-space imaging spectroscopy, an experimental technique developed in our laboratory, to measure reflectance spectra and iso-frequency contours for structures with different symmetries. We will transform the data into circular dichroism signals using [(R_LCP-R_RCP)/(R_LCP+R_RCP)] to discuss the differences in absorption of left-handed and right-handed polarized light for structures designed with different parameters, comparing the results with our theoretical predictions.
For our structural design, we have chosen a honeycomb lattice as the foundation and explored two methods of symmetry manipulation. The first method relies on varying the pore diameters to break inversion symmetry, generating differences in circular dichroism intensity through asymmetry control. The second method involves keeping the pore diameters fixed at 60 nm while simultaneously increasing the sizes of two pores to further investigate the impact of localized surface plasmons on the distribution of polarization states. Experimental results demonstrate that structures with an asymmetry factor of 0.8 exhibit the highest CD (63%), and the evolution of polarization states in momentum space aligns with the theoretical model. Therefore, we have verified that structural symmetry determines the generation of polarization vortices, laying the foundation for future applications in nanophotonics.
一、 摘要 i
二、 Abstract ii
三、 致謝 iv
四、 目錄 v
五、 圖目錄 vii
一、 基本原理介紹 1
1.1表面電漿子的歷史與背景 1
1.1.1局域性表面電漿子(Localized Surface Plasmons, LSPs) 3
1.1.2表面電漿極化子(Surface Plasmon Polaritons, SPPs) 5
1.1.3表面電漿子的品質因子(Quality factor, Q) 7
1.2電漿子晶體 (Plasmonic crystals) 9
1.2.1晶體中的對稱性 10
1.2.2動量空間中的偏振態 12
1.2.3時間耦合模式理論(Temporal Coupled-Mode Theory, TCMT) 19
二、 儀器及原理介紹 25
2.1 樣品製程方法 25
2.1.1熱蒸鍍(Thermal evaporator) 25
2.1.2雙聚焦離子束(Dual-Beam Focused ion beam, DB-FIB) 26
2.1.3原子層沉積(Atomic layer deposition, ALD) 27
2.2光學量測 29
2.2.1動量空間成像光譜(Momentum-space imaging spectroscopy) 29
2.2.2傅立葉光學(Fourier Optics) 30
2.2.3實驗設置 31
2.3模擬原理介紹 32
2.3.1時域有限差分法(Finite difference time domain method, FDTD) 32
三、 實驗流程 34
3.1樣品製備過程 34
3.2蜂巢晶格結構設計 35
四、 實驗與模擬結果分析 36
4.1蜂巢晶格(C6" symmetry)" 37
4.2蜂巢晶格(C3" symmetry)" 40
4.2.1基於孔徑直徑差的結構調控 40
4.2.2基於孔徑直徑的結構調控 44
五、 結論 44
六、參考資料 48
[1] Wood, R. W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. Phys. Soc. 1902, 18 (1), 269.
[2] Fano, U. The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves). J Opt Soc Am A 1941, 31 (3), 213-222.
[3] Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 1957, 106 (5), 874-881.
[4] Powell, C. J.; Swan, J. B. Origin of the characteristic electron energy losses in aluminum. Phys. Rev. 1959, 115 (4), 869-875.
[5] Stern, E. A.; Ferrell, R. A. Surface plasma oscillations of a degenerate electron gas. Phys. Rev. 1960, 120 (1), 130-136.
[6] Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391 (6668), 667-669.
[7] Fang, N.; Lee, H.; Sun, C.; Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 2005, 308 (5721), 534-537.
[8] Oulton, R. F.; Sorger, V. J.; Zentgraf, T.; Ma, R.-M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X. Plasmon lasers at deep subwavelength scale. Nature 2009, 461 (7264), 629-632.
[9] Lu, Y.-J.; Kim, J.; Chen, H.-Y.; Wu, C.; Dabidian, N.; Sanders, C. E.; Wang, C.-Y.; Lu, M.-Y.; Li, B.-H.; Qiu, X.; et al. Plasmonic nanolaser using epitaxially grown silver film. Science 2012, 337 (6093), 450-453.
[10] Lu, Y.-J.; Wang, C.-Y.; Kim, J.; Chen, H.-Y.; Lu, M.-Y.; Chen, Y.-C.; Chang, W.-H.; Chen, L.-J.; Stockman, M. I.; Shih, C.-K.; et al. All-color plasmonic nanolasers with ultralow thresholds: Autotuning mechanism for single-mode lasing. Nano Lett. 2014, 14 (8), 4381-4388.
[11] Ni, X.; Ishii, S.; Kildishev, A. V.; Shalaev, V. M. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci. Appl. 2013, 2 (4), e72.
[12] Khorasaninejad, M.; Capasso, F. Metalenses: Versatile multifunctional photonic components. Science 2017, 358 (6367), eaam8100.
[13] Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7 (6), 442-453.
[14] Mejía-Salazar, J. R.; Oliveira, O. N., Jr. Plasmonic biosensing. Chem. Rev. 2018, 118 (20), 10617-10625.
[15] Lal, S.; Clare, S. E.; Halas, N. J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc. Chem. Res. 2008, 41 (12), 1842-1851.
[16] Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41 (7), 2740-2779.
[17] Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985, 57 (3), 783-826.
[18] Zong, C.; Xu, M.; Xu, L.-J.; Wei, T.; Ma, X.; Zheng, X.-S.; Hu, R.; Ren, B. Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges. Chem. Rev. 2018, 118 (10), 4946-4980.
[19] Chen, H.-Y.; Lin, M.-H.; Wang, C.-Y.; Chang, Y.-M.; Gwo, S. Large-scale hot spot engineering for quantitative SERS at the single-molecule scale. J. Am. Chem. Soc. 2015, 137 (42), 13698-13705.
[20] Kauranen, M.; Zayats, A. V. Nonlinear plasmonics. Nat. Photonics 2012, 6 (11), 737-748.
[21] Wang, C.-Y.; Chen, H.-Y.; Sun, L.; Chen, W.-L.; Chang, Y.-M.; Ahn, H.; Li, X.; Gwo, S. Giant colloidal silver crystals for low-loss linear and nonlinear plasmonics. Nat. Commun. 2015, 6 (1), 7734.
[22] Stockman, M. I. Nanoplasmonics: The physics behind the applications. Phys. Today 2011, 64.
[23] Kravets, V. G.; Kabashin, A. V.; Barnes, W. L.; Grigorenko, A. N. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018, 118 (12), 5912-5951.
[24] Lindquist, N. C.; Nagpal, P.; McPeak, K. M.; Norris, D. J.; Oh, S.-H. Engineering metallic nanostructures for plasmonics and nanophotonics. Rep. Prog. Phys. 2012, 75 (3), 036501.
[25] Heeres, R. W.; Kouwenhoven, L. P.; Zwiller, V. Quantum interference in plasmonic circuits. Nat. Nanotechnol. 2013, 8 (10), 719-722.
[26] Fakonas, J. S.; Lee, H.; Kelaita, Y. A.; Atwater, H. A. Two-plasmon quantum interference. Nat. Photonics 2014, 8 (4), 317-320.
[27] Localized surface plasmon resonance as a biosensing platform for developing countries. Biosensors 4, 172-188.
[28] Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824-830.
[29] 邱國斌; 蔡定平. 金屬表面電漿簡介. 2006.
[30] Anatoly, V. Z.; Igor, I. S.; Alexei, A. M. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005, 408, 131-314.
[31] Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Berlin, Heidelberg 1988.
[32] Gao, H.; Zhou, W.; Odom, T. W. Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near-Infrared Wavelengths in a Plasmonic Library. Adv. Funct. Mater. 2010, 20 (4), 529-539.
[33] Wenzhe, L. B., W.; Yiwen, Z.; Jiajun, W.; Maoxiong, Z.; Fang, Guan.; Xiaohan, L.; Lei, S.; Jian, Zi. Circularly Polarized States Spawning from Bound States in the Continuum. Phys. Rev. 2019, 123, 116104.
[34] Ruchi; Senthilkumaran, P.; Pal, S. K. Phase Singularities to Polarization Singularities. Int. J. Opt 2020, 2020, 2812803.
[35] Kunnen, B.; Macdonald, C.; Doronin, A.; Jacques, S.; Eccles, M.; Meglinski, I. Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media. J Biophotonics 2015, 8 (4), 317-323.
[36] Zhen, B.; Hsu, C. W.; Lu, L.; Stone, A. D.; Soljačić, M. Topological Nature of Optical Bound States in the Continuum. Phys. Rev. Lett. 2014, 113 (25), 257401.
[37] Zhang, Y.; Chen, A.; Liu, W.; Hsu, C. W.; Wang, B.; Guan, F.; Liu, X.; Shi, L.; Lu, L.; Zi, J. Observation of Polarization Vortices in Momentum Space. Phys. Rev. Lett. 2018, 120 (18), 186103.
[38] Hsu, C. W.; Zhen, B.; Stone, A. D.; Joannopoulos, J.; Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 2016, 1, 16048.
[39] Wang, J.; Li, H.; Ma, Y.; Zhao, M.; Liu, W.; Wang, B.; Wu, S.; Liu, X.; Shi, L.; Jiang, T.; et al. Routing valley exciton emission of a WS2 monolayer via delocalized Bloch modes of in-plane inversion-symmetry-broken photonic crystal slabs. Light Sci. Appl. 2020, 9 (1), 148.
[40] Yoda, T.; Notomi, M. Generation and Annihilation of Topologically Protected Bound States in the Continuum and Circularly Polarized States by Symmetry Breaking. Phys. Rev. Lett. 2020, 125 (5), 053902.
[41] Wang, X.; Wang, J.; Zhao, X.; Shi, L.; Zi, J. Realizing Tunable Evolution of Bound States in the Continuum and Circularly Polarized Points by Symmetry Breaking. ACS Photonics 2023, 10 (7), 2316-2322.
[42] Wang, K. X. Time-reversal symmetry in temporal coupled-mode theory and nonreciprocal device applications. Opt. Lett. 2018, 43 (22), 5623-5626.
[43] Stone, C. W. H. a. B. Z. a. M. S. a. A. D. Polarization state of radiation from a photonic crystal slab. arXiv 2017, 1708.02197.
[44] Bashir, A.; Awan, T. I.; Tehseen, A.; Tahir, M. B.; Ijaz, M. Chemistry of Nanomaterials: Fundamentals and Applications. In Chemistry of Nanomaterials, Awan, T. I., Bashir, A., Tehseen, A. Eds.; Elsevier, 2020, 51-87.
[45] Parsons, G. N.; George, S. M.; Knez, M. Progress and future directions for atomic layer deposition and ALD-based chemistry. MRS Bull. 2011, 36 (11), 865-871.
[46] Doeleman, H. M.; Monticone, F.; den Hollander, W.; Alù, A.; Koenderink, A. F. Experimental observation of a polarization vortex at an optical bound state in the continuum. Nat. Photonics 2018, 12, 397-401.
[47] Shi, L.; Yuan, X.; Zhang, Y.; Hakala, T.; Yin, S.; Han, D.; Zhu, X.; Zhang, B.; Liu, X.; Törmä, P. Coherent fluorescence emission by using hybrid photonic–plasmonic crystals. Laser Photonics Rev. 2014, 8 (5), 717-725.
[48] Shi, L.; Hakala, T.; Rekola, H.; Martikainen, J.-P.; Moerland, R.; Törmä, P. Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes. Phys. Rev. Lett. 2014, 112 (15), 153002.
[49] Zhang, Y.; Zhao, M.; Wang, J.; Liu, W.; Wang, B.; Hu, S.; Lu, G.; Chen, A.; Cui, J.; Zhang, W.; et al. Momentum-space imaging spectroscopy for the study of nanophotonic materials. Sci. Bull. 2021, 66 (8), 824-838.
[50] Goodman, J. W. Introduction to Fourier optics; Roberts and Company publishers, 2005.
[51] Born, M.; Wolf, E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light; Elsevier, 2013.
[52] Small, A. Spherical aberration, coma, and the Abbe sine condition for physicists who don't design lenses. Am. J. Phys. 2018, 86 (7), 487-494.
[53] Kane, Y. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14 (3), 302-307.
[54] Choroszucho, A. Analysis of the influence of the complex structure of clay hollow bricks on the values of electric field intensity by using the FDTD method. Arch. Electr. Eng. 2016, 65.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *