帳號:guest(18.117.106.78)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李巧柔
作者(外文):Li, Chiau-Jou
論文名稱(中文):機器學習在果蠅腦神經形態學中的應用
論文名稱(外文):Applications of Machine Learning in Drosophila Neuron Morphology
指導教授(中文):王道維
指導教授(外文):Wang, Daw-Wei
口試委員(中文):施奇廷
羅中泉
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:110022518
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:44
中文關鍵詞:機器學習神經
外文關鍵詞:machine learningneuron morphology
相關次數:
  • 推薦推薦:0
  • 點閱點閱:59
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
眾所周知,神經元網絡內的資訊流是了解大腦如何工作的最重要特徵。大腦研究中研究最多的物種之一是果蠅(Drosophila),它有大約13萬5千條神經元。因此,為了了解信息如何流動以及大腦在特定條件下如何工作,識別神經元的極性無疑是必要且重要的。其中一項重大進展是基於節點的神經元極性標識符(NPIN)的開發,這是一種基於機器學習方法的算法,用於對神經元極性進行高精度預測(Chen-Zhi Su et al. [1])。

在這些中,我們描述了我們如何將神經元的 3D 光學圖像映射到 2D 級別的樹上,通過適當的修剪去除分支,最後將標準化的數據放入機器程序中進行分類和識別。我們還可以通過偏移或改變修剪層的數量來增加訓練數據,從而為機器學習的訓練過程(即數據增強)產生一個實際上相同但文字不同的神經元。我們的工作將NPIN的準確率從 95% 提高到了 96%。我們還開發了NPIN在社區中的應用網頁(Chen-Zhi Su et al. [1]),推動相關研究在腦科學中的應用。

此外,我們還開發了另一種機器學習模型,用於根據形態識別 FlyCircuit 和 FlyEM 中的神經元。為了確認這樣的數值計算結果,我們還製作了一個網頁,方便生物學家進行註釋,並直接進行比較,以增加ground truth數據。

最後,在研究果蠅大腦中神經元的形態時,我們計算了轉動慣量,用於比較不同的神經元。我們發現所有神經元的數據在轉動慣量的3D空間中都停留在同一個2D平面上,顯示出果蠅大腦中神經元的一個非常特殊的統計特徵。我們的工作顯示了應用機器學習和其他計算方法來研究神經元形態的可能性。
It is known that the information flow within the neuron network is the most important feature to understand how a brain is working. One of the most well-studied species in brain research is fruit fly ($Drosophila$), which has about 135K neurons. Therefore, it is certainly necessary and important to identify the axon-dendrite polarity of neurons in order to understand how the information flows and how a brain works under a certain condition. One of the major progress is the development of Node-based Polarity Identifier of Neurons (NPIN), which is an algorithm based on machine learning methods for a high precision prediction of neuron polarity(Chen-Zhi Su et al. [1]).

In this these, we describe how we map the 3D optical images of neurons onto 2D level trees, remove branches by appropriate pruning, and then finally put the standardized data into the machine program for classification and recognition. We could also increase the training data by offsetting or changing the number of pruning layers, leading to an effectively identical but literately different neurons for the training process of machine learning, i.e data augmentation. Our work improve the accuracy of NPIN from 95\% to 96\%. We also have developed a web page for the application of NPIN to the community (Chen-Zhi Su et al. [1]), promoting related research for its application in brain science.

Besides, we developed another machine learning model to identify neurons in FlyCircuit and FlyEM based on their morphology. In order to confirm such numerical calculation result, we also made a web page to facilitate the annotation for biologists and carried out such comparison directly for the increase of ground truth data.

Finally, when investigating the morphology of neurons in Drosophila brain, we calculated the moment of inertial for the comparison of different neurons. We find that data of all neurons stay in the same 2D plane in the 3D space of moment of inertial, showing a very special statistical feature of neurons in Drosophila brain. Our work shows the possibility to apply machine learning and other computational methods to investigate the morphology of neurons.
Contents
1 Introduction 1
1.1 Dataset:FlyCircuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Dataset:FlyEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Method 7
2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 NPIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Augmentation in Identification of FlyCircuit Polarity 14
3.1 Vibration for Augmentation . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Reduce tree for Augmentation . . . . . . . . . . . . . . . . . . . . . 17
4 Analysis of FlyEM 22
4.1 Reduce Tree for FlyEM data . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Identification of FlyEM Polarity . . . . . . . . . . . . . . . . . . . . 22
5 Mapping of FlyCircuit and FlyEM 25
5.1 FC-Like Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Website of Mapping Label Work . . . . . . . . . . . . . . . . . . . . 28
6 Moment of inertia of Neurons 34
7 Conclusions 41
[1] Chen-Zhi Su, Kuan-Ting Chou, Hsuan-Pei Huang, Chiau-Jou Li, Ching-Che Charng, Chung-Chuan Lo, and Daw-Wei Wang. Identification of neuronal polarity by node-based machine learning. Neuroinformatics, 19(4):669–684, 2021.
[2] Ann-Shyn Chiang, Chih-Yung Lin, Chao-Chun Chuang, Hsiu-Ming Chang, Chang-Huain Hsieh, Chang-Wei Yeh, Chi-Tin Shih, Jian-Jheng Wu, GuoTzau Wang, Yung-Chang Chen, et al. Three-dimensional reconstruction of brain-wide wiring networks in drosophila at single-cell resolution. Current biology, 21(1):1–11, 2011.
[3] Leonard Kuan, Yang Li, Chris Lau, David Feng, Amy Bernard, Susan M
Sunkin, Hongkui Zeng, Chinh Dang, Michael Hawrylycz, and Lydia Ng. Neuroinformatics of the allen mouse brain connectivity atlas. Methods, 73:4–17, 2015.
[4] Nestor Milyaev, David Osumi-Sutherland, Simon Reeve, Nicholas Burton, Richard A Baldock, and J Douglas Armstrong. The virtual fly brain browser and query interface. Bioinformatics, 28(3):411–415, 2012.
[5] Ruchi Parekh and Giorgio A Ascoli. Neuronal morphology goes digital: a research hub for cellular and system neuroscience. Neuron, 77(6):1017–1038, 2013.
[6] Hanchuan Peng, Michael Hawrylycz, Jane Roskams, Sean Hill, Nelson Spruston, Erik Meijering, and Giorgio A Ascoli. Bigneuron: large-scale 3d neuron reconstruction from optical microscopy images. Neuron, 87(2):252–256, 2015.
[7] Kazunori Shinomiya, Keiji Matsuda, Takao Oishi, Hideo Otsuna, and Kei Ito. Flybrain neuron database: a comprehensive database system of the drosophila brain neurons. Journal of Comparative Neurology, 519(5):807–833, 2011.
[8] Meng Xu, Travis A Jarrell, Yi Wang, Steven J Cook, David H Hall, and Scott W Emmons. Computer assisted assembly of connectomes from electron micrographs: application to caenorhabditis elegans. PLoS One, 8(1):e54050, 2013.
[9] C Shan Xu, Michal Januszewski, Zhiyuan Lu, Shin-ya Takemura, Kenneth J Hayworth, Gary Huang, Kazunori Shinomiya, Jeremy Maitin-Shepard, David Ackerman, Stuart Berg, et al. A connectome of the adult drosophila central brain. BioRxiv, 2020.
[10] Chung-Chuan Lo and Ann-Shyn Chiang. Toward whole-body connectomics. Journal of Neuroscience, 36(45):11375–11383, 2016.
[11] Ann Marie Craig and Gary Banker. Neuronal polarity. Annual review of neuroscience, 17(1):267–310, 1994.
[12] Andrew Matus, Robert Bernhardt, and Ta↵ Hugh-Jones. High molecular weight microtubule-associated proteins are preferentially associated with dendritic microtubules in brain. Proceedings of the National Academy of Sciences, 78(5):3010–3014, 1981.
[13] Jian Wang, Xiaojun Ma, Jacob S Yang, Xiaoyan Zheng, Christopher T Zugates, Ching-Hsien J Lee, and Tzumin Lee. Transmembrane/juxtamembrane domain-dependent dscam distribution and function during mushroom body neuronal morphogenesis. Neuron, 43(5):663–672, 2004.
[14] Hermann Cuntz, Friedrich Forstner, Juergen Haag, and Alexander Borst. The morphological identity of insect dendrites. PLoS Computational Biology, 4(12):e1000251, 2008.
[15] Yi-Hsuan Lee, Yen-Nan Lin, Chao-Chun Chuang, and Chung-Chuan Lo.
Spin: a method of skeleton-based polarity identification for neurons. Neuroinformatics, 12(3):487–507, 2014.
[16] Yann LeCun, L´eon Bottou, Yoshua Bengio, and Patrick Ha↵ner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
[17] Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E Hinton. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 2012.
[18] Yann LeCun, Yoshua Bengio, and Geo↵rey Hinton. Deep learning. nature, 521(7553):436–444, 2015.
[19] Hiba Asri, Hajar Mousannif, Hassan Al Moatassime, and Thomas Noel. Using machine learning algorithms for breast cancer risk prediction and diagnosis. Procedia Computer Science, 83:1064–1069, 2016.
[20] Tathiane M Malta, Artem Sokolov, Andrew J Gentles, Tomasz Burzykowski, Laila Poisson, John N Weinstein, Bo˙zena Kami´nska, Joerg Huelsken, Larsson Omberg, Olivier Gevaert, et al. Machine learning identifies stemness features associated with oncogenic dedi↵erentiation. Cell, 173(2):338–354, 2018.
[21] Heba Mohsen, El-Sayed A El-Dahshan, El-Sayed M El-Horbaty, and AbdelBadeeh M Salem. Classification using deep learning neural networks for brain tumors. Future Computing and Informatics Journal, 3(1):68–71, 2018.
[22] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
[23] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.
[24] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794, 2016.
[25] Dumitru Erhan, Aaron Courville, Yoshua Bengio, and Pascal Vincent. Why does unsupervised pre-training help deep learning? In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pages 201–208. JMLR Workshop and Conference Proceedings, 2010.
[26] Geo↵rey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks. science, 313(5786):504–507, 2006.
[27] Yu-Chi Huang, Cheng-Te Wang, Ta-Shun Su, Kuo-Wei Kao, Yen-Jen Lin, Chao-Chun Chuang, Ann-Shyn Chiang, and Chung-Chuan Lo. A single-cell level and connectome-derived computational model of the drosophila brain. Frontiers in Neuroinformatics, 12:99, 2019.
[28] Chih-Yung Lin, Chao-Chun Chuang, Tzu-En Hua, Chun-Chao Chen, Barry J Dickson, Ralph J Greenspan, and Ann-Shyn Chiang. A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the drosophila brain. Cell reports, 3(5):1739–1753, 2013.
[29] Chih-Yung Lin and Ann-Shyn Chiang. Imagingdrosophilabrain neurons
for “flycircuit” analysis. Behavioral Genetics of the Fly (Drosophila
Melanogaster), page 268, 2014.
[30] Agnieszka Miko lajczyk and Micha l Grochowski. Data augmentation for improving deep learning in image classification problem. In 2018 international interdisciplinary PhD workshop (IIPhDW), pages 117–122. IEEE, 2018.
[31] Luis Perez and Jason Wang. The e↵ectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621, 2017.
[32] Chi-Tin Shih, Olaf Sporns, Shou-Li Yuan, Ta-Shun Su, Yen-Jen Lin, ChaoChun Chuang, Ting-Yuan Wang, Chung-Chuang Lo, Ralph J Greenspan, and Ann-Shyn Chiang. Connectomics-based analysis of information flow in the drosophila brain. Current Biology, 25(10):1249–1258, 2015
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *