|
[1] Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424 (6950), 824-830. [2] Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 1957, 106 (5), 874-881. [3] Powell, C. J.; Swan, J. B. Origin of the characteristic electron energy losses in aluminum. Phys. Rev. 1959, 115 (4), 869-875. [4] Kretschmann, E.; Raether, H. Radiative decay of non radiative surface plasmons excited by light. 1968, 23 (12), 2135-2136. [5] Raether, H. Surface plasmons on smooth and rough surfaces and on gratings; Springer Tracts Mod. Phys., 1988. [6] Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391 (6668), 667-669. [7] Mayer, K. M.; Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111 (6), 3828-3857. [8] Zhang, J.; Zhang, L.; Xu, W. Surface plasmon polaritons: physics and applications. J. Phys. D: Appl. Phys. 2012, 45 (11), 113001. [9] Gao, H.; Zhou, W.; Odom, T. W. Plasmonic crystals: A platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library. Adv. Funct. Mater. 2010, 20 (4), 529-539. [10] Zayats, A. V.; Smolyaninov, I. I.; Maradudin, A. A. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005, 408 (3), 131-314. [11] Craig F. Bohren, D. R. H. Absorption and scattering by a sphere; 1998. [12] Johnson, P. B.; Christy, R. W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6 (12), 4370-4379. [13] Wang, F.; Shen, Y. R. General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 2006, 97 (20), 206806. [14] Cheng, C.-W.; Gwo, S. Chapter 1 - Fundamentals of plasmonic materials. In Plasmonic Materials and Metastructures, Gwo, S., Alù, A., Li, X., Shih, C.-K. Eds.; Elsevier, 2024; pp 3-33. [15] Joannopoulos, J. D.; Johnson, S. G.; Winn, J. N.; Meade, R. D. Photonic Crystals: Molding the Flow of Light; Princeton University Press, 2008. [16] Pockrand, I. Reflection of light from periodically corrugated silver films near the plasma frequency. Phys. Lett. A 1974, 49 (3), 259-260. [17] Hsu, C. W.; Zhen, B.; Stone, A. D.; Joannopoulos, J. D.; Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 2016, 1 (9), 16048. [18] Lu, L.; Le-Van, Q.; Ferrier, L.; Drouard, E.; Seassal, C.; Nguyen, H. S. Engineering a light-matter strong coupling regime in perovskite-based plasmonic metasurface: quasi-bound state in the continuum and exceptional points. Photonics Res. 2020, 8 (12), A91-A100. [19] Özdemir, Ş. K.; Rotter, S.; Nori, F.; Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater 2019, 18 (8), 783-798. [20] van Exter, M. P.; Tenner, V. T.; van Beijnum, F.; de Dood, M. J. A.; van Veldhoven, P. J.; Geluk, E. J.; ’t Hooft, G. W. Surface plasmon dispersion in metal hole array lasers. Opt. Express 2013, 21 (22), 27422-27437. [21] Bender, C. M.; Boettcher, S. Real Spectra in Non-Hermitian Hamiltonians Having $\mathsc{P}\mathsc{T}$ Symmetry. Phys. Rev. Lett. 1998, 80 (24), 5243-5246. [22] Ozawa, T.; Price, H. M.; Amo, A.; Goldman, N.; Hafezi, M.; Lu, L.; Rechtsman, M. C.; Schuster, D.; Simon, J.; Zilberberg, O.; et al. Topological photonics. RMP 2019, 91 (1), 015006. [23] Sang, Y.; Wang, C.-Y.; Raja, S. S.; Cheng, C.-W.; Huang, C.-T.; Chen, C.-A.; Zhang, X.-Q.; Ahn, H.; Shih, C.-K.; Lee, Y.-H.; et al. Tuning of Two-Dimensional Plasmon–Exciton Coupling in Full Parameter Space: A Polaritonic Non-Hermitian System. Nano Lett. 2021, 21 (6), 2596-2602. [24] Wiersig, J. Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection. Phys. Rev. Lett. 2014, 112 (20), 203901. [25] Feng, L.; Wong, Z. J.; Ma, R.-M.; Wang, Y.; Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 2014, 346 (6212), 972-975. [26] Doppler, J.; Mailybaev, A. A.; Böhm, J.; Kuhl, U.; Girschik, A.; Libisch, F.; Milburn, T. J.; Rabl, P.; Moiseyev, N.; Rotter, S. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 2016, 537 (7618), 76-79. [27] Lee, S.-G.; Magnusson, R. Band flips and bound-state transitions in leaky-mode photonic lattices. Phys. Rev. B 2019, 99 (4), 045304. [28] Kazarinov, R.; Henry, C. Second-order distributed feedback lasers with mode selection provided by first-order radiation losses. IEEE J. Quantum Electron. 1985, 21 (2), 144-150. [29] Zhang, Y.; Zhao, M.; Wang, J.; Liu, W.; Wang, B.; Hu, S.; Lu, G.; Chen, A.; Cui, J.; Zhang, W.; et al. Momentum-space imaging spectroscopy for the study of nanophotonic materials. Sci. Bull. 2021, 66 (8), 824-838. [30] Sun, S.; Ding, Y.; Li, H.; Hu, P.; Cheng, C.-W.; Sang, Y.; Cao, F.; Hu, Y.; Alù, A.; Liu, D.; et al. Tunable plasmonic bound states in the continuum in the visible range. Phys. Rev. B 2021, 103 (4), 045416. [31] Zhang, Y.; Chen, A.; Liu, W.; Hsu, C. W.; Wang, B.; Guan, F.; Liu, X.; Shi, L.; Lu, L.; Zi, J. Observation of Polarization Vortices in Momentum Space. Phys. Rev. Lett. 2018, 120 (18), 186103. [32] Hsu, C. W.; Zhen, B.; Lee, J.; Chua, S.-L.; Johnson, S. G.; Joannopoulos, J. D.; Soljačić, M. Observation of trapped light within the radiation continuum. Nature 2013, 499 (7457), 188-191. [33] Zhen, B.; Hsu, C. W.; Lu, L.; Stone, A. D.; Soljačić, M. Topological Nature of Optical Bound States in the Continuum. Phys. Rev. Lett. 2014, 113 (25), 257401. [34] Zhen, B.; Hsu, C. W.; Igarashi, Y.; Lu, L.; Kaminer, I.; Pick, A.; Chua, S.-L.; Joannopoulos, J. D.; Soljačić, M. Spawning rings of exceptional points out of Dirac cones. Nature 2015, 525 (7569), 354-358. [35] Lee, K. Y.; Yoon, S.; Song, S. H.; Yoon, J. W. Topological beaming of light. Sci. Adv. 8 (49), eadd8349. [36] Su, W. P.; Schrieffer, J. R.; Heeger, A. J. Solitons in Polyacetylene. Phys. Rev. Lett. 1979, 42 (25), 1698-1701. [37] Lee, K. Y.; Yoo, K. W.; Choi, Y.; Kim, G.; Cheon, S.; Yoon, J. W.; Song, S. H. Topological guided-mode resonances at non-Hermitian nanophotonic interfaces. 2021, 10 (7), 1853-1860. [38] Hirose, K.; Liang, Y.; Kurosaka, Y.; Watanabe, A.; Sugiyama, T.; Noda, S. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photonics 2014, 8 (5), 406-411.
|