|
[1] D. M. Pozar, Microwave engineering. John wiley & sons, 2011. [2] C. R. H. McRae, H. Wang, J. Gao, M. R. Vissers, T. Brecht, A. Dunsworth, D. P. Pap- pas, and J. Mutus, “Materials loss measurements using superconducting microwave res- onators,” Review of Scientific Instruments, vol. 91, no. 9, 2020. [3] V. V. Schmidt and P. Müller, The physics of superconductors: Introduction to fundamentals and applications. Springer Science & Business Media, 1997. [4] R. Feynman, “Simulating physics with computers, 1982, reprinted in: Feynman and com- putation,” 1999. [5] M. A. Nielsen and I. Chuang, “Quantum computation and quantum information,” 2002. [6] J. M. Martinis, M. H. Devoret, and J. Clarke, “Energy-level quantization in the zero- voltage state of a current-biased josephson junction,” Physical review letters, vol. 55, no. 15, p. 1543, 1985. [7] Y. Nakamura, Y. A. Pashkin, and J. Tsai, “Coherent control of macroscopic quantum states in a single-cooper-pair box,” nature, vol. 398, no. 6730, pp. 786–788, 1999. [8] E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proceedings of the IEEE, vol. 51, no. 1, pp. 89–109, 1963. [9] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, “Cavity quan- tum electrodynamics for superconducting electrical circuits: An architecture for quantum computation,” Physical Review A, vol. 69, no. 6, p. 062320, 2004. [10] M. Boissonneault, J. M. Gambetta, and A. Blais, “Dispersive regime of circuit qed: Photon-dependent qubit dephasing and relaxation rates,” Physical Review A, vol. 79, no. 1, p. 013819, 2009. [11] C. Müller, J. H. Cole, and J. Lisenfeld, “Towards understanding two-level-systems in amorphous solids: insights from quantum circuits,” Reports on Progress in Physics, vol. 82, no. 12, p. 124501, 2019. [12] J. Gao, The physics of superconducting microwave resonators. California Institute of Technology, 2008. [13] C. E. Murray, “Material matters in superconducting qubits,” Materials Science and Engi- neering: R: Reports, vol. 146, p. 100646, 2021. [14] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Microscopic theory of superconductivity,” Physical Review, vol. 106, no. 1, p. 162, 1957. [15] J. Zmuidzinas, “Superconducting microresonators: Physics and applications,” Annu. Rev. Condens. Matter Phys., vol. 3, no. 1, pp. 169–214, 2012. [16] R. Barends, J. Wenner, M. Lenander, Y. Chen, R. C. Bialczak, J. Kelly, E. Lucero, P. O' Malley, M. Mariantoni, D. Sank, et al., “Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits,” Applied Physics Letters, vol. 99, no. 11, 2011. [17] J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. Leduc, “Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators,” Applied Physics Letters, vol. 92, no. 15, 2008. [18] P. J. Petersan and S. M. Anlage, “Measurement of resonant frequency and quality factor of microwave resonators: Comparison of methods,” Journal of applied physics, vol. 84, no. 6, pp. 3392–3402, 1998. [19] M. Castellanos-Beltran and K. Lehnert, “Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator,” Applied Physics Letters, vol. 91, no. 8, 2007. [20] M. Žemlička, P. Neilinger, M. Trgala, M. Rehák, D. Manca, M. Grajcar, P. Szabó, P. Samuely, Š. Gaži, U. Hübner, et al., “Finite quasiparticle lifetime in disordered su- perconductors,” Physical Review B, vol. 92, no. 22, p. 224506, 2015. [21] D. Zoepfl, P. R. Muppalla, C. Schneider, S. Kasemann, S. Partel, and G. Kirchmair, “Char- acterization of low loss microstrip resonators as a building block for circuit qed in a 3d waveguide,” AIP Advances, vol. 7, no. 8, 2017. [22] G. Calusine, A. Melville, W. Woods, R. Das, C. Stull, V. Bolkhovsky, D. Braje, D. Hover, D. K. Kim, X. Miloshi, et al., “Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators,” Applied Physics Letters, vol. 112, no. 6, 2018. [23] P. J. Petersan and S. M. Anlage, “Measurement of resonant frequency and quality factor of microwave resonators: Comparison of methods,” Journal of applied physics, vol. 84, no. 6, pp. 3392–3402, 1998. [24] S. Probst, F. Song, P. A. Bushev, A. V. Ustinov, and M. Weides, “Efficient and robust analysis of complex scattering data under noise in microwave resonators,” Review of Sci- entific Instruments, vol. 86, no. 2, p. 024706, 2015. [25] N. Chernov and C. Lesort, “Least squares fitting of circles,” Journal of Mathematical Imaging and Vision, vol. 23, pp. 239–252, 2005. [26] M. S. Khalil, M. Stoutimore, F. Wellstood, and K. Osborn, “An analysis method for asym- metric resonator transmission applied to superconducting devices,” Journal of Applied Physics, vol. 111, no. 5, p. 054510, 2012. |