帳號:guest(3.142.133.41)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉宇鋒
作者(外文):Yeh, Yu-Feng
論文名稱(中文):Ag(111)基板上的Extended [n]Phenacenes
論文名稱(外文):Extended [n]Phenacenes on Ag(111)
指導教授(中文):霍夫曼
指導教授(外文):Hoffmann, Germar
口試委員(中文):唐述中
林俊良
口試委員(外文):Tang, Shu-Jung
Lin, Chun-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:110022511
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:111
中文關鍵詞:掃描穿隧顯微鏡有機半導體材料有機電子元件Phenacene
外文關鍵詞:STMPhenaceneOFET
相關次數:
  • 推薦推薦:0
  • 點閱點閱:9
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,有機半導體材料因其在顯示器、感測器和柔性裝置中的性能而受到 持續關注。在薄膜和二維材料領域,有機器件材料的半導體特性使其成為新型 有機半導體裝置非常有潛力的候選者。其中,Phenacene-type分子不僅表現出 良好的電荷遷移率,而且在大氣中保持高度穩定性和柔性[1][2]。
在本篇論文中,Dibenzo[6]Phenacenes(DB6P)在Ag(111) 基底上透過 STM 在77K 和UHV 環境中進行實驗。研究涵蓋單層到雙層覆蓋、排 列、STM topography 圖像(包括偏差依賴性)和STS 分析。Au(111)基板上 的DB6P與其他類型的[n]Phenacenes的性能的簡單比較。
此外,在其他部分的章節我將詳細介紹如何對STM掃描結果的drift進行校 正。也會說明我所編寫的Arduino裝置,這是一個外接ADC的裝置,可以即時讀 取電源供應器的數值並返還於電腦,實現遠程的監控效果。
In recent years, organic semiconductor materials received continuous attention for their performance in displays, sensors, and flexible devices. In the field of thin film and two-dimensional materials, the semiconductor properties of organic device materials make them a very potential candidate for new organic semiconductor devices. Among them, Phenacene-type molecules not only exhibit good charge mobility, but also remain highly stable and flexible in the atmosphere[1][2].
In this thesis, we study Dibenzo[6]Phenacenes (DB6P) on a Ag(111) substrate by STM at 77K and in an UHV environment. The research covers single to doub-layer coverage, the arrangement, imaging (including bias dependence), and STS analysis. A simple comparison between the performance of DB6P on Au(111) substrate and other types of [n]Phenacenes.
In addition, I will introduce in detail how to correct the drift of STM scan results. I will explain an Arduino device, which I programmed. The Arduino device is an external ADC device that can instantly read the value of a power supply and return it to the computer to achieve remote monitoring.
1 Introduction 6
1.1 Organic field-effect transistor . . . . . . . . . . . . . . . 6
1.2 Molecules on Surfaces . . . . . . . . . . . . . . . . . . . 8
1.2.1 Molecules on Surfaces . . . . . . . . . . . . . . . . . . . 8
1.2.2 Higher layer Molecules on Surfaces . . . . . . . . . . . . 11
1.2.3 Moire . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Background 15
2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.1 Quantum tunnelling . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Scanning Tunneling Spectroscopy(STS) . . . . . . . . . . . . 18
2.1.3 Analysis and correction of actual experiments . . . . . . . . 19
2.2 Instrumentation . . . . . . . .. . . . . . . . . . . . . 22
2.3 Overview Phenacenes . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Substrate Preparation . . . . . . . . . . . . . . . . . . . 26
2.3.2 Molecule Preparation . . . . . . . . . . . . . . . . . . . . 29
2.4 Analysis Software . .. . . . . .. . . . . . . . . . . . . . . 33
2.4.1 Drift Correction . . .. . . . . . . . . . . . . . . . . . 33
3 Research Work 43
3.1 Development of Instrumentation - Arduino Control . .. . . . . 43
3.2 Objective of Development . . . . . . . . . . . . .. . . . . . 43
3.3 Installed Mode of Operation . . . . .. . . . . . . . . . . . 44
3.3.1 Sample Preparation . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Molecule Evaporation . . . .. . . . . . . . . . . . . . . . 46
3.3.3 Power Supply . . . . . . . .. . . . . . . . . . . . . . . . 47
3.4 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.2 AD 7606 . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.3 Arduino Code . . . . . . . . . .. . . . . . . . . . . . . . 51
3.4.4 Result and Evaluation . . . . . . . . . . . . . . . . . . . 51
3.4.5 Repair . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4 Experiments 58
4.1 DB6P . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 DB6P on Au(111) . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Dibenzo[6]phenacenes on Ag(111) . . . . . . . . . . . . . . . 65
4.3.1 Overview of 1st layer . . . . . . . . . . . . . . . . . . . 65
4.3.2 Row Orientation . . . . . . . . . . . . . . . . . . . . . . 66
4.3.3 Structure of 1st layer . . . . . . . . . . . . . . . . . . 68
4.3.4 Domain of DB6P 1st layer . . . . . . . . . . . . . . . . . 70
4.3.5 Discussion of the 6 orientations . . . . . . . . . . . . . 72
4.3.6 Bias dependence of 1st layer . . . . . . . . . .. . . . . . 73
4.3.7 STS on 1st Layer . . . . . . . . . . . . . . . . . . . . . 82
4.3.8 Unit cell of 1st layer . . . . . . . . . . . . . . . . . . 83
4.4 DB6P 2nd layer . . . . . . . . . . . . . . . . .. . . . . . . 88
4.4.1 Overview of 2nd layer . . . . . . . . . . . . . . . . . . . 88
4.4.2 Bias dependent of 2nd layer . . . . . . . . . . . . . . . . 95
4.4.3 STS 2nd layer . . . . . . . . . . . . . . . . . . . . . . . 97
5 Summary 99
6 Acknowledgment 100
7 Appendix 101
7.1 Arduino Code . . . . . . . . . . . . . . . . . . . . . . . . 101
8 Literature 106
[1] Yuma Shimo, Takahiro Mikami, Shino Hamao, Hidenori Goto, Hideki Okamoto, Ritsuko Eguchi, Shin Gohda, Yasuhiko Hayashi, and Yoshihiro Kubozono. Synthesis and transistor application of the extremely extended phenacene molecule, [9]phenacene. Scientific Reports, 6(1), February 2016.
[2] Emanuela Pompei, Claudio Turchetti, Shino Hamao, Akari Miura, Hidenori Goto, Hideki Okamoto, Akihiko Fujiwara, Ritsuko Eguchi, and Yoshihiro Kubozono. Fabrication of flexible high-performance organic field-effect transistors using phenacene molecules and their application toward flexible cmos inverters. Journal of Materials Chemistry C, 7(20):6022–6033, 2019.
[3] Rongbin Ye, Mamoru Baba, Kazunori Suzuki, Yoshiyuki Ohishi, and Kunio Mori. Effects of o2 and h2o on electrical characteristics of pentacene thin film transistors. Thin Solid Films, 464–465:437–440, October 2004.
[4] Yoshiro Yamashita. Organic semiconductors for organic field-effect transistors.
Science and Technology of Advanced Materials, 10(2):024313, April 2009.
[5] Yanting Zhang, Ritsuko Eguchi, Shino Hamao, Kenta Goto, Fumito Tani, Minoru Yamaji, Yoshihiro Kubozono, and Hideki Okamoto. Photochemical synthesis and device application of acene–phenacene hybrid molecules, dibenzo[n]phenacenes (n = 5–7). Chemical Communications, 57(39):4768– 4771, 2021.
[6] Yanting Zhang, Shino Hamao, Hidenori Goto, Yoshihiro Kubozono, Hideki Okamoto, Kunihisa Sugimoto, Nobuhiro Yasuda, Akihiko Fujiwara, and Ritsuko Eguchi. Charge transport capabilities of dibenzo[n]phenacenes (n = 5–7): Influence of trap states and molecular packing. The Journal of Physical Chemistry C, 126(44):18849–18854, October 2022.
[7] F. Schreiber. Organic molecular beam deposition: Growth studies beyond the first monolayer. physica status solidi (a), 201(6):1037–1054, May 2004.
[8] Takuya Hosokai, Alexander Hinderhofer, Fabio Bussolotti, Keiichirou Yonezawa, Christopher Lorch, Alexei Vorobiev, Yuri Hasegawa, Yoichi Yamada, Yoshihiro Kubozoro, Alexander Gerlach, Satoshi Kera, Frank Schreiber, and Nobuo Ueno. Thickness and substrate dependent thin film growth of picene and impact on the electronic structure. The Journal of Physical Chemistry C, 119(52):29027–29037, December 2015.
[9] Matthias B¨ohringer, Karina Morgenstern, Wolf-Dieter Schneider, and Richard Berndt. Separation of a racemic mixture of two-dimensional molecular clusters by scanning tunneling microscopy. Angewandte Chemie International Edition, 38(6):821–823, March 1999.
[10] Andrew Tan and Pengpeng Zhang. Tailoring the growth and electronic structures of organic molecular thin films. Journal of Physics: Condensed Matter, 31(50):503001, September 2019.
[11] Eva Y. Andrei, Dmitri K. Efetov, Pablo Jarillo-Herrero, Allan H. MacDonald, Kin Fai Mak, T. Senthil, Emanuel Tutuc, Ali Yazdani, and Andrea F. Young.
The marvels of moir´e materials. Nature Reviews Materials, 6(3):201–206, March 2021.
[12] Yoon Seong Heo, Tae Wan Kim, Wooseok Lee, Jungseok Choi, Soyeon Park, Dong-Il Yeom, and Jae-Ung Lee. Mesoscopic stacking reconfigurations in stacked van der waals film. Small, December 2023.
[13] Zexiang Han, Fei Wang, Juehan Sun, Xiaoli Wang, and Zhiyong Tang. Recent advances in ultrathin chiral metasurfaces by twisted stacking. Advanced Materials, 35(3), November 2022.
[14] Shi En Kim, Fauzia Mujid, Akash Rai, Fredrik Eriksson, Joonki Suh, Preeti Poddar, Ariana Ray, Chibeom Park, Erik Fransson, Yu Zhong, David A.
Muller, Paul Erhart, David G. Cahill, and Jiwoong Park. Extremely anisotropic van der waals thermal conductors. Nature, 597(7878):660–665, September 2021.
[15] G. Binnig, H. Rohrer, Ch. Gerber, and E.Weibel. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett., 49:57–61, Jul 1982.
[16] C. Julian Chen. Introduction to Scanning Tunneling Microscopy. Oxford University Press, March 2021.
[17] Amadeo L. V´azquez de Parga and Rodolfo Miranda. Scanning Tunneling Spectroscopy, pages 3544–3553. Springer Netherlands, 2016.
[18] N. D. Lang. Spectroscopy of single atoms in the scanning tunneling microscope.
Physical Review B, 34(8):5947–5950, October 1986.
[19] Randall M Feenstra. Scanning tunneling spectroscopy. Surface Science, 299–300:965–979, January 1994.
[20] Akash Gupta. On-surface polymerization. 2021.
[21] HoKwon Kim, Cecilia Mattevi, Hyun Jun Kim, Anudha Mittal, K. Andre Mkhoyan, Richard E. Riman, and Manish Chhowalla. Optoelectronic properties of graphene thin films deposited by a langmuir–blodgett assembly.
Nanoscale, 5(24):12365, 2013.
[22] Hideki Okamoto, Shino Hamao, Ritsuko Eguchi, Hidenori Goto, Yasuhiro Takabayashi, Paul Yu-Hsiang Yen, Luo Uei Liang, Chia-Wei Chou, Germar Hoffmann, Shin Gohda, Hisako Sugino, Yen-Fa Liao, Hirofumi Ishii, and Yoshihiro Kubozono. Synthesis of the extended phenacene molecules, [10]phenacene and [11]phenacene, and their performance in a field-effect transistor.
Scientific Reports, 9(1), March 2019.
[23] Ryoji Mitsuhashi, Yuta Suzuki, Yusuke Yamanari, Hiroki Mitamura, Takashi Kambe, Naoshi Ikeda, Hideki Okamoto, Akihiko Fujiwara, Minoru Yamaji, Naoko Kawasaki, Yutaka Maniwa, and Yoshihiro Kubozono. Superconductivity in alkali-metal-doped picene. Nature, 464(7285):76–79, March 2010.
[24] Song-Wen Chen, I-Chen Sang, Hideki Okamoto, and Germar Hoffmann. Adsorption of phenacenes on a metallic substrate: Revisited. The Journal of Physical Chemistry C, 121(21):11390–11398, May 2017.
[25] Song-Wen Chen. Initial growth of [7]phenacene. 2016.
[26] I-Chen Sang. Correlation between electronic propertiesand self-assembly behavior of phenacenes. 2016.
[27] Yasuo Yoshida, Hung-Hsiang Yang, Hsu-Sheng Huang, Shu-You Guan, Susumu Yanagisawa, Takuya Yokosuka, Minn-Tsong Lin, Wei-Bin Su, ChiaSeng Chang, Germar Hoffmann, and Yukio Hasegawa. Scanning tunneling microscopy/spectroscopy of picene thin films formed on ag(111). The Journal of Chemical Physics, 141(11), September 2014.
[28] Delta Electronics B.V. ES150–series Manual, January 2021.
[29] A. Vollmer, O. D. Jurchescu, I. Arfaoui, I. Salzmann, T. T. M. Palstra, P. Rudolf, J. Niemax, J. Pflaum, J. P. Rabe, and N. Koch. The effect of oxygen exposure on pentacene electronic structure. The European Physical Journal E, 17(3):339–343, June 2005.
[30] Bert Voigtl¨ander, Gerhard Meyer, and Nabil M. Amer. Epitaxial growth of thin magnetic cobalt films on au(111) studied by scanning tunneling microscopy.
Physical Review B, 44(18):10354–10357, November 1991.
[31] Xiji Shao, Xuhang Ma, Mingjing Liu, Tao Zhang, Yaping Ma, Chaoqiang Xu, Xuefeng Wu, Tao Lin, and Kedong Wang. Comparing study of picene thin films on snse and au(1 1 1) surfaces. Chemical Physics, 532:110689, April 2020.
[32] Guowei Liu, Xiji Shao, Chaoqiang Xu, XuefengWu, and KedongWang. Scanning tunneling microscopy studies of potassium-doped picene films on au(111) surface. The Journal of Physical Chemistry C, 124(40):22025–22034, September 2020.
[33] David J. Griffiths. Introduction Electrodynamics.
[34] Yuri Hasegawa, Yoichi Yamada, Takuya Hosokai, Kaveenga Rasika Koswattage, Masahiro Yano, Yutaka Wakayama, and Masahiro Sasaki.
Overlapping of frontier orbitals in well-defined dinaphtho[2,3-b:2′,3′f]thieno[3,2-b]-thiophene and picene monolayers. The Journal of Physical Chemistry C, 120(38):21536–21542, September 2016.
[35] M. Yano, M. Endo, Y. Hasegawa, R. Okada, Y. Yamada, and M. Sasaki. Wellordered monolayers of alkali-doped coronene and picene: Molecular arrangements and electronic structures. The Journal of Chemical Physics, 141(3), July 2014.
[36] S. S¨ohnchen, S. Lukas, and G. Witte. Epitaxial growth of pentacene films on cu(110). The Journal of Chemical Physics, 121(1):525–534, July 2004.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *