帳號:guest(3.128.95.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭弈翔
作者(外文):Kuo, I-Hsiang
論文名稱(中文):2+1維度的宇宙膨脹偽熵
論文名稱(外文):2+1 Dimensional Pseudo Entropy for Cosmological Expansion
指導教授(中文):朱創新
指導教授(外文):Chu, Chong-Sun
口試委員(中文):陳江梅
張敬民
口試委員(外文):Chen, Chiang-Mei
Cheung, Kingman
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:110022506
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:41
中文關鍵詞:糾纏熵偽熵宇宙膨脹度規
外文關鍵詞:Entanglement entropyPseudo entropyCosmological expansion metirc
相關次數:
  • 推薦推薦:0
  • 點閱點閱:185
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
偽熵是一個取決於初始態和最終態,推廣糾纏熵的新量度。基於已知結果表
明量子纏繞熵和偽熵均具有面積定律特性,我們對一個(2 + 1)維度的宇宙膨
脹度規進行了測試,以確定面積定律的有效性以及時間因素對偽熵值的影響。
此外,我們引入了量子猝滅的概念,以進一步探索可能存在的有趣現象。
Pseudo entropy is a novel quantity that generalizes the concept of entanglement
entropy, depending on both an initial state and a final state. Based on the wellknown
results indicating that both entanglement entropy and pseudo entropy
exhibit the area law property, we conducted tests on a (2+1)-dimensional cosmological
expansion metric to determine the validity of the area law and how the time
factor affects the value of pseudo entropy. Additionally, we analysis the concept
of quantum quench to further explore any potential interesting phenomena.
Contents

Contents ii
List of Figures iii
1 Introduction 1

2 Theoretical Background 3

2.1 Entropy and Area Law . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Entanglement Entropy for 2-Coupled Oscillators . . . . . . 5
2.1.2 Entanglement Entropy for N-Coupled Oscillators . . . . . . 6
2.1.3 Entanglement Entropy for Massless Field . . . . . . . . . .7
2.2 Correlator Method for Entanglement Entropy . . . . . . . . . 8
2.2.1 Correlation Function and Quantum State . . . . . . . . . . 9
2.2.2 Correlation Function and Coupling Matrix . . . . . . . . . 11
2.2.3 Fitted Curve for Entanglement Entropy . . . . . . . . . . .12
2.3 Pseudo Entropy for Free Field Theories . . . . . . . . . . . 14
2.3.1 Pseudo Entropy for 2-Coupled Oscillators . . . . . . . . . 15
2.3.2 Correlator Method for Pseudo Entropy . . . . . . . . . . . 17
2.3.3 Operator Method for Pseudo Entropy . . . . . . . . . . . . 20
2.4 Pseudo Entropy for (1+1) Scalar Field . . . . . . . . . . . .25

3 (2+1)D Pseudo Entropy 28

3.1 (2+1)D Pseudo entropy for cosmological expansion . . . . . . 28
3.1.1 Massive and Almost Massless Limit . . . . . . . . . . . . .32

4 Quantum Quenches 34

4.1 Global Quench for (2+1)D Pseudo Entropy . . . . . . . . . . .34

5 Conclusions and Discussions 38
[1] Tatsuma Nishioka, Shinsei Ryu, and Tadashi Takayanagi. Holographic Entanglement
Entropy: An Overview. J. Phys. A, 42:504008, 2009.
[2] Mukund Rangamani and Tadashi Takayanagi. Holographic Entanglement
Entropy, volume 931. Springer, 2017.
[3] Yoshifumi Nakata, Tadashi Takayanagi, Yusuke Taki, Kotaro Tamaoka, and
Zixia Wei. New holographic generalization of entanglement entropy. Phys.
Rev. D, 103:026005, Jan 2021.
[4] Ali Mollabashi, Noburo Shiba, Tadashi Takayanagi, Kotaro Tamaoka, and
Zixia Wei. Aspects of pseudoentropy in field theories. Phys. Rev. Res.,
3(3):033254, 2021.
[5] Mark Srednicki. Entropy and area. Phys. Rev. Lett., 71:666–669, Aug 1993.
[6] H. Casini and M. Huerta. Entanglement entropy in free quantum field theory.
J. Phys. A, 42:504007, 2009.
[7] Rodolfo R. Soldati. Entanglement entropy in quantum field theory.
[8] W. H. Zurek. Entropy evaporated by a black hole. Phys. Rev. Lett., 49:1683–
1686, Dec 1982.
[9] R. Lohmayer, H. Neuberger, A. Schwimmer, and S. Theisen. Numerical determination
of entanglement entropy for a sphere. Phys. Lett. B, 685:222–227,
2010.
[10] Ingo Peschel. Calculation of reduced density matrices from correlation functions.
Journal of Physics A: Mathematical and General, 36(14):L205–L208,
mar 2003.
[11] Ali Mollabashi, Noburo Shiba, Tadashi Takayanagi, Kotaro Tamaoka, and
Zixia Wei. Pseudo-entropy in free quantum field theories. Phys. Rev. Lett.,
126:081601, Feb 2021.
[12] Temple He, Javier M. Magan, and Stefan Vandoren. Entanglement Entropy
in Lifshitz Theories. SciPost Phys., 3(5):034, 2017.
[13] M. Reza Mohammadi Mozaffar and Ali Mollabashi. Entanglement in Lifshitztype
Quantum Field Theories. JHEP, 07:120, 2017.
[14] K. Audenaert, J. Eisert, M. B. Plenio, and R. F. Werner. Entanglement
properties of the harmonic chain. Phys. Rev. A, 66:042327, Oct 2002.
[15] Pasquale Calabrese and John Cardy. Quantum quenches in 1 + 1 dimensional
conformal field theories. J. Stat. Mech., 1606(6):064003, 2016.
[16] Pasquale Calabrese and John Cardy. Quantum Quenches in Extended Systems.
J. Stat. Mech., 0706:P06008, 2007.
[17] Pasquale Calabrese and John Cardy. Time dependence of correlation functions
following a quantum quench. Phys. Rev. Lett., 96:136801, Apr 2006.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *