帳號:guest(18.118.137.67)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭銘健
作者(外文):Teh, Ming-Jian
論文名稱(中文):粒子標記模擬中星系形成的星團星系比例關係
論文名稱(外文):Cluster galaxy scaling relation in particle tagging simulations of galaxy formation
指導教授(中文):安德魯古柏
指導教授(外文):Cooper, Andrew-Paul
口試委員(中文):江瑛貴
林彥廷
口試委員(外文):Jiang, Ing-Guey
Lin, Yen-Ting
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:110022401
出版年(民國):112
畢業學年度:112
語文別:英文
論文頁數:55
中文關鍵詞:星系天文模擬
外文關鍵詞:galaxyastronomysimulationfundamental planevelocity dispersion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:19
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
橢圓星系的基本平面是一种眾所周知的關係,它建立了尺寸、恒星速度離散和亮度之间的聯系。我們能夠根据其他兩個特性估計一個特性,為我們提供了有力的約束,以驗證星系形成和演化理論。在這篇論文中,我們使用STINGS粒子標記技術得到的星系來研究其基本平面的投影關係,半徑——質量关系和費伯——杰克遜關系。這些星系来自Phoenix項目的九個大質量星系团的N-body模擬。在STINGS中,N-body粒子會被分配不同的恒星質量權重,稱為“標籤”,這些權重是使用半解析模型確定的,然后可以通过過考慮這些帶有標籤的粒子的位置和速度來計算相空間分佈。這种方法允許對各种不同的星系形成模型進行高效且高分辨率的預測,以獲取星系團內部光的性質。然而,它在考慮到重子物質的引力位能方面缺乏自洽性。在之前的研究中,STINGS主要用於重子效應对整体位能影響較小的情況。相比之下,驗證星團内大質量星系的基本平面可以測試STINGS的近似是否還成立。

我們發現,在Phoenix模擬中,與觀測相比的情況下,STINGS傾向於在恒定質量下略微低估大質量橢圓星系的半徑,并明顯低估速度離散的數值。這种差异源於STINGS的關鍵參數 “fmb” 如何塑造新形成恒星的結合能分布。我們發現,STINGS應用於Phoenix的常數fmb可以進行微調,以更好地與觀測結果吻合。然而,將 fmb視為在所有恒星形成事件中均匀分布可能不适用於大質量星系。為了解决速度離散方面更嚴重的差异,我們證明可以通過對STINGS的預測引入適當的修正來恢复費伯-杰克遜關係的觀測斜率和分散。此修正基于應用維里定理於投影的質量分布,以彌補由重子物質產生的引力位能缺失。我們討論了這一結果的潛在用途,并建議未來的研究方向,以探索橢圓星系比例關係的起源。
The Fundamental Plane of elliptical galaxies is a well-known relation that establishes connections between size, stellar velocity dispersion, and luminosity. This allows us to estimate one property based on the other two, providing strong constraints on the theories of galaxy formation and evolution. In this thesis we examine the projection of the fundamental plane, the size-mass relation and the Faber-Jackson relation, for galaxies simulated using the STINGS particle tagging technique in nine N-body simulations of massive galaxy clusters from the Phoenix project. In STINGS, N-body particles are assigned distinct stellar mass weights referred to as "tags", these weights are determined using a semi-analytic model, and from there, the phase space distribution can be computed by considering the positions and velocities of these tagged particles. This approach allows efficient and high-resolution predictions of intracluster light properties across a variety of different galaxy formation models. However, it lacks self-consistency in accounting for the gravitational potential of baryons. In previous studies, STINGS has mainly been used in situations where baryonic effects have a minor impact on the overall potential. In contrast, examining the fundamental plane of massive galaxies within clusters can test STINGS in scenarios where its limitations might be more important.

We find that in the Phoenix simulations, STINGS tends to slightly underestimate the sizes and significantly underestimate the velocity dispersion of massive early-type galaxies at constant mass, in comparison to the observations. This discrepancy arises from how STINGS' key parameter, the `most-bound fraction' (fmb), shapes the distribution of binding energy for newly-formed stars. We find that the constant fmb used in STINGS' application to Phoenix could be fine-tuned for better alignment with observations. However, treating fmb as uniform across all star formation events might not be appropriate for massive galaxies. To address the more serious difference in velocity dispersion, we demonstrate that we can recover the observed slope and scatter of the Faber-Jackson relation by introducing an appropriate correction to STINGS' predictions. This correction is based on applying the virial theorem to the projected stellar mass distribution to make up for the missing gravitational potential from the baryons. We discuss potential uses for this outcome and suggest future work to explore the origins of elliptical galaxy scaling relationships.
Abstract (Chinese) I
Acknowledgements (Chinese) III
Abstract IV
Contents VI
List of Figures VIII
List of Tables XIII
1 Introduction - - - - - - - - - - - - - - - - - - - - 1
2 Numerical Method - - - - - - - - - - - - - - - - - - - - 7
2.1 Simulations - - - - - - - - - - - - - - - - - - - - 7
2.2 Particle tagging Technique - - - - - - - - - - - - - - - - - - - - 9
3 ETG Selections - - - - - - - - - - - - - - - - - - - - 17
3.1 STINGS sample of Phoenix ETGs - - - - - - - - - - - - - - - - - - - - 17
3.2 Observation data - - - - - - - - - - - - - - - - - - - - 18
3.2.1 MaNGA survey - - - - - - - - - - - - - - - - - - - - 18
3.2.2 SAMI survey - - - - - - - - - - - - - - - - - - - - 20
4 Early-Type scaling relations in Phoenix - - - - - - - - - - - - - - - - - - - - 22
4.1 Size-Mass relation - - - - - - - - - - - - - - - - - - - - 22
4.2 Mass-to-light ratio within effective radius - - - - - - - - - - - - - - - - - - - - 26
4.3 Mass Faber-Jackson relation - - - - - - - - - - - - - - - - - - - - 29
4.4 Dynamical Mass - - - - - - - - - - - - - - - - - - - - 33
5 Conclusion - - - - - - - - - - - - - - - - - - - - 36
6 Appendix - - - - - - - - - - - - - - - - - - - - 38
6.1 Velocity Dispersion profile - - - - - - - - - - - - - - - - - - - - 38
Bibliography - - - - - - - - - - - - - - - - - - - - 43

N. Abdurro’uf, K. Accetta, C. Aerts, V. Silva Aguirre, R. Ahumada, N. Ajgaonkar, N. Filiz Ak, S. Alam, C. Allende Prieto, A. Almeida, et al. The seventeenth data
release of the sloan digital sky surveys: Complete release of manga, mastar, and
apogee-2 data. The Astrophysical Journal. Supplement Series, 259(2), 2022.
M. Auger, T. Treu, A. Bolton, R. Gavazzi, L. Koopmans, P. Marshall, L. Moustakas,
and S. Burles. The sloan lens acs survey. x. stellar, dynamical, and total mass
correlations of massive early-type galaxies. The Astrophysical Journal, 724(1): 511, 2010.
P. Behroozi, R. H. Wechsler, A. P. Hearin, and C. Conroy. Universemachine: The
correlation between galaxy growth and dark matter halo assembly from z= 0- 10. Monthly Notices of the Royal Astronomical Society, 488(3):3143–3194, 2019.
F. Belfiore, K. B. Westfall, A. Schaefer, M. Cappellari, X. Ji, M. A. Bershady, C. Tremonti, D. R. Law, R. Yan, K. Bundy, et al. The data analysis pipeline for
the sdss-iv manga ifu galaxy survey: emission-line modeling. The Astronomical
Journal, 158(4):160, 2019.
M. Bernardi, R. K. Sheth, J. Annis, S. Burles, D. J. Eisenstein, D. P. Finkbeiner, D. W. Hogg, R. H. Lupton, D. J. Schlegel, M. SubbaRao, et al. Early-type galaxies
in the sloan digital sky survey. iii. the fundamental plane. The Astronomical Journal, 125(4):1866, 2003.
M. R. Blanton, M. A. Bershady, B. Abolfathi, F. D. Albareti, C. A. Prieto,
A. Almeida, J. Alonso-Garc´ıa, F. Anders, S. F. Anderson, B. Andrews, et al.
Sloan digital sky survey iv: Mapping the milky way, nearby galaxies, and the
distant universe. The Astronomical Journal, 154(1):28, 2017.
A. S. Bolton, T. Treu, L. V. Koopmans, R. Gavazzi, L. A. Moustakas, S. Burles, D. J. Schlegel, and R. Wayth. The sloan lens acs survey. vii. elliptical galaxy scaling
laws from direct observational mass measurements. The Astrophysical Journal, 684(1):248, 2008.
K. Bundy, M. A. Bershady, D. R. Law, R. Yan, N. Drory, N. MacDonald, D. A. Wake, B. Cherinka, J. R. Sa´nchez-Gallego, A.-M. Weijmans, et al. Overview of
the sdss-iv manga survey: mapping nearby galaxies at apache point observatory. The Astrophysical Journal, 798(1):7, 2014.
M. Cappellari. Efficient multi-gaussian expansion of galaxies. Monthly Notices of
the Royal Astronomical Society, 333(2):400–410, 2002.
M. Cappellari, R. Bacon, M. Bureau, M. Damen, R. L. Davies, P. T. De Zeeuw,
E. Emsellem, J. Falco´n-Barroso, D. Krajnovic, H. Kuntschner, et al. The sauron project—iv. the mass-to-light ratio, the virial mass estimator and the fundamental
plane of elliptical and lenticular galaxies. Monthly Notices of the Royal Astronom-
ical Society, 366(4):1126–1150, 2006.
M. Cappellari, N. Scott, K. Alatalo, L. Blitz, M. Bois, F. Bournaud, M. Bureau, A. F. Crocker, R. L. Davies, T. A. Davis, et al. The atlas3d project–xv. benchmark
for early-type galaxies scaling relations from 260 dynamical models: mass-to-light
ratio, dark matter, fundamental plane and mass plane. Monthly Notices of the Royal Astronomical Society, 432(3):1709–1741, 2013.
C. Chiosi, M. D’Onofrio, E. Merlin, L. Piovan, and P. Marziani. The parallelism
between galaxy clusters and early-type galaxies-iii. the mass–radius relationship. Astronomy & Astrophysics, 643:A136, 2020.
L. Ciotti. Co-evolution of elliptical galaxies and their central black holes clues from
their scaling laws. La Rivista del Nuovo Cimento, 32:1–69, 2009.
A. Cooper, L. Gao, Q. Guo, C. Frenk, A. Jenkins, V. Springel, and S. White. Surface
photometry of brightest cluster galaxies and intracluster stars in λcdm. Monthly Notices of the Royal Astronomical Society, 451(3):2703–2722, 2015.
A. P. Cooper, S. Cole, C. Frenk, S. White, J. Helly, A. Benson, G. De Lucia, A. Helmi, A. Jenkins, J. Navarro, et al. Galactic stellar haloes in the cdm model. Monthly Notices of the Royal Astronomical Society, 406(2):744–766, 2010.
A. P. Cooper, R. D’Souza, G. Kauffmann, J. Wang, M. Boylan-Kolchin, Q. Guo,
C. S. Frenk, and S. D. White. Galactic accretion and the outer structure of
galaxies in the cdm model. Monthly Notices of the Royal Astronomical Society, 434(4):3348–3367, 2013.
A. P. Cooper, S. Cole, C. S. Frenk, T. Le Bret, and A. Pontzen. Comparing semi-
analytic particle tagging and hydrodynamical simulations of the milky way’s stel-
lar halo. Monthly Notices of the Royal Astronomical Society, 469(2):1691–1712, 2017.
L. Cortese, L. M. Fogarty, K. Bekki, J. Van De Sande, W. Couch, B. Catinella,M. Colless, D. Obreschkow, D. Taranu, E. Tescari, et al. The sami galaxy survey: the link between angular momentum and optical morphology. Monthly Notices of
the Royal Astronomical Society, 463(1):170–184, 2016.
M. Davis, G. Efstathiou, C. S. Frenk, and S. D. White. The evolution of large-scale
structure in a universe dominated by cold dark matter. Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 292, May 15, 1985, p. 371-394. Research supported
by the Science and Engineering Research Council of England and NASA., 292: 371–394, 1985.
G. De Lucia, V. Springel, S. D. White, D. Croton, and G. Kauffmann. The formation
history of elliptical galaxies. Monthly Notices of the Royal Astronomical Society, 366(2):499–509, 2006.
J. Diemand, P. Madau, and B. Moore. The distribution and kinematics of early high-σ peaks in present-day haloes: implications for rare objects and old stellar
populations. Monthly Notices of the Royal Astronomical Society, 364(2):367–383, 2005.
S. Djorgovski and M. Davis. Fundamental properties of elliptical galaxies. Astro-
physical Journal, 313:59–68, 1987.
H. Dom´ınguez S´anchez, B. Margalef, M. Bernardi, and M. Huertas-Company. Sdss-
iv dr17: final release of manga pymorph photometric and deep-learning morpho-
logical catalogues. Monthly Notices of the Royal Astronomical Society, 509(3): 4024–4036, 2022.
A. Dressler, D. Lynden-Bell, D. Burstein, R. L. Davies, S. Faber, R. Terlevich, and G. Wegner. Spectroscopy and photometry of elliptical galaxies. i-a new distance
estimator. The Astrophysical Journal, 313:42–58, 1987.
S. P. Driver, D. T. Hill, L. S. Kelvin, A. S. Robotham, J. Liske, P. Norberg, I. K. Baldry, S. P. Bamford, A. M. Hopkins, J. Loveday, et al. Galaxy and mass
assembly (gama): survey diagnostics and core data release. Monthly Notices of
the Royal Astronomical Society, 413(2):971–995, 2011.
M. D’Onofrio, G. Fasano, J. Varela, D. Bettoni, M. Moles, P. Kjærgaard, E. Pig-
natelli, B. Poggianti, A. Dressler, A. Cava, et al. The fundamental plane of
early-type galaxies in nearby clusters from the wings database. The Astrophysical
Journal, 685(2):875, 2008.
B. G. Elmegreen and D. M. Elmegreen. Properties of barred spiral galaxies. Astro-
physical Journal, Part 1 (ISSN 0004-637X), vol. 288, Jan. 15, 1985, p. 438-455., 288:438–455, 1985.
E. Emsellem, G. Monnet, and R. Bacon. The multi-gaussian expansion method: a
tool for building realistic photometric and kinematical models of stellar systems i. the formalism. Astronomy and Astrophysics, Vol. 285, p. 723-738 (1994), 285: 723–738, 1994.
C. Engler, A. Pillepich, G. D. Joshi, D. Nelson, A. Pasquali, E. K. Grebel, T. Lisker, E. Zinger, M. Donnari, F. Marinacci, et al. The distinct stellar-to-halo mass
relations of satellite and central galaxies: insights from the illustristng simulations. Monthly Notices of the Royal Astronomical Society, 500(3):3957–3975, 2021.
S. Faber and R. E. Jackson. Velocity dispersions and mass-to-light ratios for elliptical
galaxies. The Astrophysical Journal, 204:668–683, 1976.
S. Faber, A. Dressler, R. Davies, D. Burstein, D. Lynden-Bell, R. Terlevich, and G. Wegner. Global scaling relations for elliptical galaxies and implications for
formation. In Nearly normal galaxies: From the Planck time to the present, pages 175–183. Springer, 1987.
I. Ferreras. Fundamentals of Galaxy Dynamics, Formation and Evolution. UCL
Press, 2019.
J. S. Gallagher and D. A. Hunter. Structure and evolution of irregular galaxies.Annual review of astronomy and astrophysics, 22(1):37–74, 1984.
L. Gao, A. Loeb, P. Peebles, S. D. White, and A. Jenkins. Early formation and late
merging of the giant galaxies. The Astrophysical Journal, 614(1):17, 2004.
L. Gao, C. Frenk, M. Boylan-Kolchin, A. Jenkins, V. Springel, and S. White. The
statistics of the subhalo abundance of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 410(4):2309–2314, 2011.
L. Gao, J. F. Navarro, C. S. Frenk, A. Jenkins, V. Springel, and S. D. White. The
phoenix project: the dark side of rich galaxy clusters. Monthly Notices of the Royal Astronomical Society, 425(3):2169–2186, 2012.
D. R. Garnett. The luminosity-metallicity relation, effective yields, and metal loss
in spiral and irregular galaxies. The Astrophysical Journal, 581(2):1019, 2002.
S. Genel, D. Nelson, A. Pillepich, V. Springel, R. Pakmor, R. Weinberger, L. Hern-
quist, J. Naiman, M. Vogelsberger, F. Marinacci, and P. Torrey. The size evolution
of star-forming and quenched galaxies in the IllustrisTNG simulation. , 474(3): 3976–3996, Mar. 2018. doi: 10.1093/mnras/stx3078.
J. Gott. On the formation of elliptical galaxies. In Symposium-International Astro-
nomical Union, volume 69, pages 271–285. Cambridge University Press, 1975.
G. J. Graves, S. Faber, and R. P. Schiavon. Dissecting the red sequence. iv. the role of truncation in the two-dimensional family of early-type galaxy star formation
histories. The Astrophysical Journal, 721(1):278, 2010.
P. Grosbol. Morphology of spiral galaxies. i-general properties. Astronomy and
Astrophysics Supplement Series (ISSN 0365-0138), vol. 60, May 1985, p. 261276., 60:261–276, 1985.
Q. Guo, S. White, M. Boylan-Kolchin, G. De Lucia, G. Kauffmann, G. Lemson,C. Li, V. Springel, and S. Weinmann. From dwarf spheroidals to cd galaxies: simulating the galaxy population in a λ cdm cosmology. Monthly Notices of the Royal Astronomical Society, 413(1):101–131, 2011.
J. B. Hyde and M. Bernardi. Curvature in the scaling relations of early-type galaxies. Monthly Notices of the Royal Astronomical Society, 394(4):1978–1990, 2009a.
J. B. Hyde and M. Bernardi. The luminosity and stellar mass fundamental plane of
early-type galaxies. Monthly Notices of the Royal Astronomical Society, 396(2): 1171–1185, 2009b.
J. Kormendy. Brightness distributions in compact and normal galaxies. ii-structure
parameters of the spheroidal component. The Astrophysical Journal, 218:333–346, 1977.
F. La Barbera, P. A. A. Lopes, R. R. de Carvalho, I. G. de la Rosa, and A. Berlind.
Spider–iii. environmental dependence of the fundamental plane of early-type galaxies. Monthly Notices of the Royal Astronomical Society, 408(3):1361–1386, 2010.
C. F. Laporte, S. D. White, T. Naab, M. Ruszkowski, and V. Springel. Shallow
dark matter cusps in galaxy clusters. Monthly Notices of the Royal Astronomical Society, 424(1):747–753, 2012.
C. F. Laporte, S. D. White, T. Naab, and L. Gao. The growth in size and mass of
cluster galaxies since z= 2. Monthly Notices of the Royal Astronomical Society, 435(2):901–909, 2013.
D. R. Law, B. Cherinka, R. Yan, B. H. Andrews, M. A. Bershady, D. Bizyaev, G. A.Blanc, M. R. Blanton, A. S. Bolton, J. R. Brownstein, et al. The data reduction
pipeline for the sdss-iv manga ifu galaxy survey. The Astronomical Journal, 152 (4):83, 2016.
E. L. L okas and G. A. Mamon. Properties of spherical galaxies and clusters with an
nfw density profile. Monthly Notices of the Royal Astronomical Society, 321(1):
155–166, 2001.
M. S. Longair. Galaxy formation. Evolution of Galaxies Astronomical Observations:
Proceedings of the Astrophysics School I, Organized by the European Astrophysics Doctoral Network at Les Houches, France, 5–16 September 1988, pages 1–93, 2005.
S. Lu, D. Xu, Y. Wang, S. Mao, J. Ge, V. Springel, Y. Wang, M. Vogelsberger,
J. Naiman, and L. Hernquist. Redshift evolution of the Fundamental Plane relation in the IllustrisTNG simulation. , 492(4):5930–5939, Mar. 2020. doi: 10.1093/mnras/staa173.
H. Mo, F. Van den Bosch, and S. White. Galaxy formation and evolution. Cambridge University Press, 2010.
N. R. Napolitano, M. Pannella, M. Arnaboldi, O. Gerhard, J. A. L. Aguerri, K. C. Freeman, M. Capaccioli, S. Ghigna, F. Governato, T. Quinn, et al. Intracluster
stellar population properties from n-body cosmological simulations. i. constraints
at z= 0. The Astrophysical Journal, 594(1):172, 2003.
D. Nelson, A. Pillepich, S. Genel, M. Vogelsberger, V. Springel, P. Torrey, V. Rodriguez-Gomez, D. Sijacki, G. F. Snyder, B. Griffen, et al. The illustris
simulation: Public data release. Astronomy and Computing, 13:12–37, 2015.
L. A. Porter, R. S. Somerville, J. R. Primack, and P. H. Johansson. Understanding
the structural scaling relations of early-type galaxies. , 444(1):942–960, Oct. 2014. doi: 10.1093/mnras/stu1434.
M. S. Rosito, P. B. Tissera, S. E. Pedrosa, and C. D. P. Lagos. The mass-size plane
of EAGLE galaxies. , 629:L3, Sept. 2019. doi: 10.1051/0004-6361/201935162.
B. Sartoris, A. Biviano, P. Rosati, A. Mercurio, C. Grillo, S. Ettori, M. Nonino, K. Umetsu, P. Bergamini, G. Caminha, et al. Clash-vlt: a full dynamical recon-
struction of the mass profile of abell s1063 from 1 kpc out to the virial radius.
Astronomy & Astrophysics, 637:A34, 2020.
S. Shen, H. Mo, S. D. White, M. R. Blanton, G. Kauffmann, W. Voges,
J. Brinkmann, and I. Csabai. The size distribution of galaxies in the sloan digital
sky survey. Monthly Notices of the Royal Astronomical Society, 343(3):978–994, 2003.
Y. Sofue and V. Rubin. Rotation curves of spiral galaxies. Annual Review of Astronomy and Astrophysics, 39(1):137–174, 2001.
V. Springel, S. D. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao, J. Navarro, R. Thacker, D. Croton, J. Helly, et al. Simulations of the formation, evolution
and clustering of galaxies and quasars. nature, 435(7042):629–636, 2005.
V. Springel, J. Wang, M. Vogelsberger, A. Ludlow, A. Jenkins, A. Helmi, J. F. Navarro, C. S. Frenk, and S. D. White. The aquarius project: the subhaloes
of galactic haloes. Monthly Notices of the Royal Astronomical Society, 391(4): 1685–1711, 2008.
E. N. Taylor, A. M. Hopkins, I. K. Baldry, M. J. Brown, S. P. Driver, L. S. Kelvin, D. T. Hill, A. S. Robotham, J. Bland-Hawthorn, D. Jones, et al. Galaxy and
mass assembly (gama): stellar mass estimates. Monthly Notices of the Royal Astronomical Society, 418(3):1587–1620, 2011.
J. van de Sande, C. D. P. Lagos, C. Welker, J. Bland-Hawthorn, F. Schulze, R.S. Remus, Y. Bah´e, S. Brough, J. J. Bryant, L. Cortese, S. M. Croom, J. De-
vriendt, Y. Dubois, M. Goodwin, I. S. Konstantopoulos, J. S. Lawrence, A. M.
Medling, C. Pichon, S. N. Richards, S. F. Sanchez, N. Scott, and S. M. Sweet. The SAMI Galaxy Survey: comparing 3D spectroscopic observations with galax-
ies from cosmological hydrodynamical simulations. , 484(1):869–891, Mar. 2019. doi: 10.1093/mnras/sty3506.
A. van der Wel, M. Franx, P. Van Dokkum, R. Skelton, I. Momcheva, K. Whitaker, G. Brammer, E. F. Bell, H.-W. Rix, S. Wuyts, et al. 3d-hst+ candels: the
evolution of the galaxy size–mass distribution since z= 3. The Astrophysical Journal, 788(1):28, 2014.
M. Vogelsberger, S. Genel, V. Springel, P. Torrey, D. Sijacki, D. Xu, G. Snyder, D. Nelson, and L. Hernquist. Introducing the illustris project: simulating the
coevolution of dark and visible matter in the universe. Monthly Notices of the Royal Astronomical Society, 444(2):1518–1547, 2014.
R. H. Wechsler and J. L. Tinker. The connection between galaxies and their dark
matter halos. Annual Review of Astronomy and Astrophysics, 56:435–487, 2018.
K. B. Westfall, M. Cappellari, M. A. Bershady, K. Bundy, F. Belfiore, X. Ji, D. R. Law, A. Schaefer, S. Shetty, C. A. Tremonti, et al. The data analysis pipeline for
the sdss-iv manga ifu galaxy survey: overview. The Astronomical Journal, 158 (6):231, 2019.
S. D. White. Mixing processes in galaxy mergers. Monthly Notices of the Royal
Astronomical Society, 191(1):1P–4P, 1980.
R. Yan, C. Tremonti, M. A. Bershady, D. R. Law, D. J. Schlegel, K. Bundy, N. Drory, N. MacDonald, D. Bizyaev, G. A. Blanc, et al. Sdss-iv/manga: spectrophotomet-
ric calibration technique. The Astronomical Journal, 151(1):8, 2015.
H. J. Zahid, M. J. Geller, D. G. Fabricant, and H. S. Hwang. The scaling of stellar
mass and central stellar velocity dispersion for quiescent galaxies at z¡ 0.7. The
Astrophysical Journal, 832(2):203, 2016.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *