|
[1] M. F. Atiyah and R. Bott. The Yang-Mills Equations over Riemann Sur- faces. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 308(1505):523–615, 1983. [2] R. Bott and L. W. Tu. Differential forms in algebraic topology. Springer New York, 1982. [3] O. Forster. Lectures on Riemann Surfaces. Springer New York, 1981. [4] W. M. Goldman. The symplectic nature of fundamental groups of surfaces. Advances in Mathematics, 54(2):200–225, 1984. [5] W. M. Goldman and J. J. Millson. The deformation theory of represen- tations of fundamental groups of compact K ̈ahler manifolds. Publications Math ́ematiques de l’IHE ́S, 67:43–96, 1988. [6] A. Hatcher. Algebraic topology. Cambridge University Press, 2002. [7] N. J. Hitchin. The Self-Duality Equations on a Riemann Surface. Proceedings of the London Mathematical Society, s3-55(1):59–126, 1987. [8] N.-K. Ho, L. C. Jeffrey, K. D. Nguyen, and E. Z. Xia. The SU(2)-character variety of the closed surface of genus 2. Geometriae Dedicata, 192(2):171–187, 2018. [9] N.-K. Ho, G. Wilkin, and S. Wu. Conditions of smoothness of moduli spaces of flat connections and of character varieties. Mathematische Zeitschrift, 293(1):1–23, 2019. [10] A. W. Knapp. Lie groups beyond an introduction. Birkh ̈auser Boston, MA, 2002. [11] S. Kobayashi and K. NomiZu. Foundations of differential geometry volume I. John Wiley and Sons, 1963. [12] J. Milnor, M. Spivak, and R. Wells. Morse Theory. Princeton University Press, 1969. [13] R. W. Richardson. Conjugacy classes of n-tuples in Lie algebras and algebraic groups. Duke Mathematical Journal, 57(1):1–35, 1988. [14] A. S. Sikora. Character varieties. Transactions of the American Mathematical Society, 364(10):5173–5208, 2012. |