帳號:guest(52.14.90.36)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡宗霖
作者(外文):Tsai, Tsung-Lin
論文名稱(中文):在特徵簇上卡當對和的不動點集
論文名稱(外文):The Fixed Point Set of a Cartan Involution on the Character Variety
指導教授(中文):何南國
指導教授(外文):Ho, Nan-Kuo
口試委員(中文):吳思曄
夏杼
口試委員(外文):Wu, Si-Ye
Xia, Eugene Zhu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:110021504
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:38
中文關鍵詞:特徵簇卡當對和不動點集
外文關鍵詞:Character VarietyCartan InvolutionFixed Point Set
相關次數:
  • 推薦推薦:0
  • 點閱點閱:29
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
我們首先描述從環面的基本群到SL(2,C)的reductive representation。接著,考慮在 character variety上的involution,並且研究其不動點集。
We describe the reductive homomorphisms from the fundamental group of a torus of genus 1 to SL(2,C). We consider an involution on the character variety induced by a Cartan involution of SL(2,C) and investigate its fixed point set.
Abstract
Contents
1 Introduction------------------------------------1
2 The moduli space of flat connections-----------3
3 Character variety-------------------------------17
4 The isomorphism between the two models------20
5 Cartan involutions on the character variety------29
Bibliography--------------------------------------37
[1] M. F. Atiyah and R. Bott. The Yang-Mills Equations over Riemann Sur- faces. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 308(1505):523–615, 1983.
[2] R. Bott and L. W. Tu. Differential forms in algebraic topology. Springer New York, 1982.
[3] O. Forster. Lectures on Riemann Surfaces. Springer New York, 1981.
[4] W. M. Goldman. The symplectic nature of fundamental groups of surfaces.
Advances in Mathematics, 54(2):200–225, 1984.
[5] W. M. Goldman and J. J. Millson. The deformation theory of represen- tations of fundamental groups of compact K ̈ahler manifolds. Publications Math ́ematiques de l’IHE ́S, 67:43–96, 1988.
[6] A. Hatcher. Algebraic topology. Cambridge University Press, 2002.
[7] N. J. Hitchin. The Self-Duality Equations on a Riemann Surface. Proceedings
of the London Mathematical Society, s3-55(1):59–126, 1987.
[8] N.-K. Ho, L. C. Jeffrey, K. D. Nguyen, and E. Z. Xia. The SU(2)-character variety of the closed surface of genus 2. Geometriae Dedicata, 192(2):171–187, 2018.
[9] N.-K. Ho, G. Wilkin, and S. Wu. Conditions of smoothness of moduli spaces of flat connections and of character varieties. Mathematische Zeitschrift, 293(1):1–23, 2019.
[10] A. W. Knapp. Lie groups beyond an introduction. Birkh ̈auser Boston, MA, 2002.
[11] S. Kobayashi and K. NomiZu. Foundations of differential geometry volume I. John Wiley and Sons, 1963.
[12] J. Milnor, M. Spivak, and R. Wells. Morse Theory. Princeton University Press, 1969.
[13] R. W. Richardson. Conjugacy classes of n-tuples in Lie algebras and algebraic groups. Duke Mathematical Journal, 57(1):1–35, 1988.
[14] A. S. Sikora. Character varieties. Transactions of the American Mathematical Society, 364(10):5173–5208, 2012.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *