帳號:guest(3.128.95.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李宗源
作者(外文):Lee, Tsung-Yuan
論文名稱(中文):海森堡群H_1上的馬尤厄-卡當形式及其應用
論文名稱(外文):The Maurer-Cartan form on the Heisenberg group H_1 and its application
指導教授(中文):邱鴻麟
指導教授(外文):Chiu, Hung-Lin
口試委員(中文):陳瑞堂
賴馨華
口試委員(外文):Chen, Jui-Tang
Lai, Sin-Hua
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:110021503
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:24
中文關鍵詞:微分幾何海森堡群馬尤厄-卡當形式
外文關鍵詞:differential geometryMaurer-Cartan formDarboux derivativeHeisenberg group
相關次數:
  • 推薦推薦:0
  • 點閱點閱:13
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文中我們將介紹馬尤厄-卡當形式及卡當定理。接下來將其應用在海森堡群$H_1$,尤其著重在Pansu-Sphere上並計算高斯曲率。
In this thesis, we introduce the Maurer-Cartan form and the Cartan's theorem. We apply them on the Heisenberg group H_1, especially on the the Pansu-Sphere to calculate the Gaussian curvature.
Abstract(chinese)--------------------------I
Abstract-----------------------------------II
Contents-----------------------------------III
1.Introduction-----------------------------1
2.Main Theorem-----------------------------2
3.Example----------------------------------5
4.The Heisenberg Group H_1-----------------8
5.The Darboux Derivative on H_1------------11
6.The Codazzi-like Equation----------------18
7.Applications on the Pansu-Sphere---------20
Bibliography-------------------------------24
1.Hung-Lin Chiu; Yen-Chang Huang; Sin-Hua Lai, An application of the moving frame method to integral geometry in the Heisenberg group, Symmetry Integrability Geom. Methods Appl., 13 (2017), (SCI)
2.Chiu, Hung-Lin; Liu, Hsiao-Fan, A characterization of constant p−mean curvature surfaces in the Heisenberg group H_1, Advances in Mathematics, 405(2022), (SCI)
3.Thomas A. Ivey; J. M. Landsberg, Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems, Graduate Studies in Mathematics, Volume 61, American Mathematical Society, 2003.
4.Chern S.S.; Chen W.H.; Lam K.S., Lectures on Differential Geometry, Series on University Mathematics, Vol.1, World Scientific Publishing Company, 1999.
5.Manfredo P. Do Carmo, Differential Geometry of Curves and Surfaces: Revised and Updated Second Edition, Dover Publications, 2017.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *